Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28.223
Filtrar
1.
J Gastrointest Oncol ; 15(3): 1282-1296, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38989406

RESUMO

Background and Objective: Lactic acid is a metabolite of glycolysis produced in the body, and its production is thought to be a mechanism by which cancer cells evade immune surveillance. Immune evasion and metabolic changes are well established as basic hallmarks of cancer. Although lactate has long been considered a waste product, it is now generally recognized to be a versatile small-molecule chemical that plays an important part in the tumor microenvironment (TME), with increased lactate production linked to the development of human malignancies. Metabolism in liver cancer is redirected toward glycolysis, which enhances the production of metabolic compounds used by tumor cells to produce proteins, lipids, and nucleotides, enabling them to maintain high proliferation rates and to establish the TME. Dysregulation of metabolic activity in liver cancer may impair antitumor responses owing to the immunosuppressive activity of the lactate produced by anaerobic glycolytic rates in tumor cells. This review primarily explores the link connection between lactic acid and the TME; evaluates the role of lactic acid in the occurrence, metastasis, prognosis, and treatment of liver cancer. Additionally, it investigates the associated pathways as potential targets for liver cancer treatment. Methods: Literature searches were conducted in PubMed, Web of Science, and Google Scholar, with the publication date of the most recent article included being January 2024. After eliminating duplicate articles and less relevant articles through titles and abstracts, we selected 113 articles for this review. We categorized references into two categories. One is to classify the content into lactate-related, liver cancer-related and tumor metabolism-related. The other is to classify the article types, which are divided into reviews, research articles and clinical trials. Additionally, we consulted the reference lists of the relevant articles to ensure coverage was comprehensive and unbiased. Key Content and Findings: The connection between lactic acid and the TME has recently become an area of intense research interest, and many related articles have been published in this field. The main finding of this review is to summarize the proven link between lactate and the TME and its possible impact on the TME of liver cancer. And analyzed the potential of lactate in liver cancer treatment and prognosis prediction. Conclusions: Lactate may be key to developing novel approaches in the future treatment of liver cancer. Related research on the combination of classic therapies and molecular targeted drugs may provide innovative medicines that more selectively regulate immune cell activity.

2.
J Gastrointest Oncol ; 15(3): 1179-1197, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38989416

RESUMO

Background: Pancreatic adenocarcinoma (PAAD) is referred to as an immunologically "cold" tumor that responds poorly to immunotherapy. A fundamental theory that explains the low immunogenicity of PAAD is the dramatically low tumor mutation burden (TMB) of PAAD tumors, which fails to induce sufficient immune response. Alternative splicing of pre-mRNA, which could alter the proteomic diversity of many cancers, has been reported to be involved in neoantigen production. Therefore, we aim to identify novel PAAD antigens and immune subtypes through systematic bioinformatics research. Methods: Data for splicing analysis were downloaded from The Cancer Genome Atlas (TCGA) SpliceSeq database. Among the available algorithms, we chose CIBERSORT to evaluate the immune cell distribution among PAADs. The TCGA-PAAD expression matrix was used to construct a co-expression network. Single-cell analysis was performed based on the Seurat workflow. Results: Integrated analysis of aberrantly upregulated genes, alternatively spliced genes, genes associated with nonsense-mediated RNA decay (NMD) factors, antigen presentation and overall survival (OS) in TCGA-PAAD revealed that PLEC is a promising neoantigen for PAAD-targeted therapy. We identified a C2 TCGA-PAAD subtype that had better prognosis and more CD8+ T-cell infiltration. We propose a novel immune subtyping system for PAAD to indicate patient prognosis and opportunities for immunotherapy, such as immune checkpoint (ICP) inhibitors. Conclusions: In conclusion, the present study used a transcriptome-guided approach to screen neoantigen candidates based on alternative splicing, NMD factors, and antigen-presenting signatures for PAAD. A prognosis model with guidance of immunotherapy will aid in patient selection for appropriate treatment.

3.
J Gastrointest Oncol ; 15(3): 1020-1034, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38989417

RESUMO

Background: Colorectal cancer (CRC) is one of the most common cancers. Cellular senescence plays a vital role in carcinogenesis by activating many pathways. In this study, we aimed to identify biomarkers for predicting the survival and recurrence of CRC through cellular senescence-related genes. Methods: Utilizing The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, RNA-sequencing data and clinical information for CRC were collected. A risk model for predicting overall survival was established based on five differentially expressed genes using least absolute shrinkage and selection operator-Cox regression (LASSO-Cox regression), receiver operating characteristic (ROC), and Kaplan-Meier analyses. The study also delved into both the tumor microenvironment and the response to immunotherapy. Moreover, we gathered clinical sample data from our center in order to confirm the findings of public database analysis. Results: Through ROC and Kaplan-Meier analyses, a risk model was developed using five cellular senescence-related genes [i.e., CDKN2A, SERPINE1, SNAI1, CXCL1, and ETS2] to categorize patients into high- and low-risk groups. In the TCGA-colon adenocarcinoma (COAD) and GEO-COAD cohorts, the high-risk group was associated with a bleaker forecast (P<0.05), immune cell inactivation, and insensitivity to immunotherapy in IMvigor210 database (http://research-pub.gene.com/IMvigor210CoreBiologies/). Clinical samples were then used to confirm that ETS2 and CDKN2A could serve as independent prognostic biomarkers in CRC. Conclusions: Gene signatures related to cellular senescence, specifically involving CDKN2A and ETS2, are emerging as promising biomarkers for predicting CRC prognosis and guiding immunotherapy.

4.
J Gastrointest Oncol ; 15(3): 1224-1244, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38989433

RESUMO

Background: Matrix metalloproteinase 11 (MMP11) plays a vital role in cell proliferation, apoptosis, tumor angiogenesis, migration, and other basic processes. Currently, few studies have examined the value of MMP11 in pancreatic cancer in relation to prognostic risk, diagnostic indicators, and immunotherapy. This study aims to explore the association between MMP11 and the tumor immune microenvironment in pancreatic adenocarcinoma (PAAD). Methods: We selected clinical samples and data downloaded from The Cancer Genome Atlas and Genotype-Tissue Expression, in addition, we use other online data for further analysis. Through a comprehensive bioinformatics investigation, we systematically analyzed the clinical significance and expression level of MMP11 in pancreatic cancer. Results: MMP11 was overexpressed in many cancers, and a higher expression of MMP11 was associated with a poorer prognosis in pancreatic cancer. Conversely, the hypermethylation of MMP11 was associated with better overall survival. The MMP11 expression network had widespread effects on the prognosis and immune activation of PAAD. The expression of MMP11 was significantly associated with a variety of tumor-infiltrating immune cells. An association was also found between MMP11 expression and chemokines in PAAD. High MMP11 expression might be involved in immune cell migration to the tumor microenvironment. Conclusions: MMP11 is a prognostic biomarker for patients in pancreatic cancer and may regulate the tumor immune microenvironment. The potential effects and mechanisms of MMP11 in PAAD require further exploring.

5.
J Gastrointest Oncol ; 15(3): 873-889, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38989439

RESUMO

Background: The effect of pharmacological treatment of gastric cancer (GC) is limited, thus, it holds significant scientific importance to thoroughly investigate the molecular mechanisms underlying GC development and identify novel molecules capable of substantially extending patients' survival. This study utilized bioinformatics techniques to identify 11 genes associated with recurrence-free survival (RFS) in GC patients and investigated the potential biological functions of these genes through single-cell transcriptomic analysis. Subsequently, a single gene Cystatin A (CSTA) was selected for further analysis to explore its impact on signaling pathways and treatment. Methods: Differentially expressed genes (DEGs) were identified and overlapped in the analysis of RFS to identify potential prognostic genes for GC patients, based on data from the Cancer Genome Atlas-stomach adenocarcinoma (TCGA-STAD) and GSE54129. Subsequently, a prognostic model based on RFS in GC patients was established. Single-cell sequencing data were employed to explore the potential functions of these model genes. CSTA, one of the RFS-related genes, was further investigated using immunohistochemistry (IHC), Cell Counting Kit 8 (CCK-8), transwell, scratch, colony formation assays, flow cytometry, and Western blotting methods. Results: Through bioinformatics analysis, we identified 23 RFS-related genes in GC. Using the least absolute shrinkage and selection operator (LASSO)-Cox method, an RFS prognostic model was developed which pinpointed 11 GC prognosis-related (GPR) genes as significant factors influencing RFS in GC patients. The single-cell analysis revealed their potential role in affecting differentiation and maturation of pre-fibroblasts thereby impacting RFS in GC patients. CSTA exhibited low expression levels in GC tissues. Overexpression of CSTA promoted apoptosis in GC cells through the caspase-dependent apoptotic pathway and enhanced their response to cisplatin via this same pathway. Conclusions: The 11 GPR genes are primarily enriched within a specific type of stromal cell exhibiting heightened communication, metabolism, and differentiation levels. The gene signature of these stromal cells has implications for patient prognosis. Additionally, CSTA, a gene related to prognosis, has been shown to influence apoptosis levels in GC cells.

6.
Front Mol Biosci ; 11: 1340024, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38966131

RESUMO

Tumor microenvironment (TME) in head and neck squamous cell carcinoma (HNSCC) has a major influence on disease progression and therapy response. One of the predominant stromal cell types in the TME of HNSCC is cancer-associated fibroblasts (CAF). CAF constitute a diverse cell population and we are only at the beginning of characterizing and understanding the functions of various CAF subsets. CAF have been shown to interact with tumor cells and other components of the TME to shape mainly a favourable microenvironment for HNSCC progression, although some studies report existence of tumor-restraining CAF subtypes. The numerous pathways used by CAF to promote tumorigenesis may represent potential therapeutic targets. This review summarizes current knowledge on the origins, subtypes and mechanisms employed by CAF in HNSCC. The aim is to contribute to the understanding on how CAF actively influence the TME and modulate different immune cell types, as well as cancer cells, to establish a conducive setting for cancer growth. Although CAF are currently a promising therapeutic target for the treatment of other types of cancer, there is no significant therapeutic advancement in HNSCC.

7.
Front Immunol ; 15: 1417398, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38966636

RESUMO

Introduction: Acute myeloid leukemia (AML) is an aggressive blood cancer with high heterogeneity and poor prognosis. Although the metabolic reprogramming of nicotinamide adenine dinucleotide (NAD) has been reported to play a pivotal role in the pathogenesis of acute myeloid leukemia (AML), the prognostic value of NAD metabolism and its correlation with the immune microenvironment in AML remains unclear. Methods: We utilized our large-scale RNA-seq data on 655 patients with AML and the NAD metabolism-related genes to establish a prognostic NAD metabolism score based on the sparse regression analysis. The signature was validated across three independent datasets including a total of 1,215 AML patients. ssGSEA and ESTIMATE algorithms were employed to dissect the tumor immune microenvironment. Ex vivo drug screening and in vitro experimental validation were performed to identify potential therapeutic approaches for the high-risk patients. In vitro knockdown and functional experiments were employed to investigate the role of SLC25A51, a mitochondrial NAD+ transporter gene implicated in the signature. Results: An 8-gene NAD metabolism signature (NADM8) was generated and demonstrated a robust prognostic value in more than 1,800 patients with AML. High NADM8 score could efficiently discriminate AML patients with adverse clinical characteristics and genetic lesions and serve as an independent factor predicting a poor prognosis. Immune microenvironment analysis revealed significant enrichment of distinct tumor-infiltrating immune cells and activation of immune checkpoints in patients with high NADM8 scores, acting as a potential biomarker for immune response evaluation in AML. Furthermore, ex vivo drug screening and in vitro experimental validation in a panel of 9 AML cell lines demonstrated that the patients with high NADM8 scores were more sensitive to the PI3K inhibitor, GDC-0914. Finally, functional experiments also substantiated the critical pathogenic role of the SLC25A51 in AML, which could be a promising therapeutic target. Conclusion: Our study demonstrated that NAD metabolism-related signature can facilitate risk stratification and prognosis prediction in AML and guide therapeutic decisions including both immunotherapy and targeted therapies.


Assuntos
Biomarcadores Tumorais , Leucemia Mieloide Aguda , NAD , Microambiente Tumoral , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/imunologia , Prognóstico , NAD/metabolismo , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Biomarcadores Tumorais/genética , Feminino , Masculino , Pessoa de Meia-Idade , Regulação Leucêmica da Expressão Gênica , Perfilação da Expressão Gênica , Transcriptoma , Linhagem Celular Tumoral
8.
Front Immunol ; 15: 1427348, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38966635

RESUMO

Uveal melanoma (UM) is a highly aggressive and fatal tumor in the eye, and due the special biology of UM, immunotherapy showed little effect in UM patients. To improve the efficacy of immunotherapy for UM patients is of great clinical importance. Single-cell RNA sequencing(scRNA-seq) provides a critical perspective for deciphering the complexity of intratumor heterogeneity and tumor microenvironment(TME). Combing the bioinformatics analysis, scRNA-seq could help to find prognosis-related molecular indicators, develop new therapeutic targets especially for immunotherapy, and finally to guide the clinical treatment options.


Assuntos
Imunoterapia , Melanoma , Análise de Célula Única , Microambiente Tumoral , Neoplasias Uveais , Humanos , Neoplasias Uveais/genética , Neoplasias Uveais/terapia , Neoplasias Uveais/imunologia , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Melanoma/terapia , Melanoma/genética , Melanoma/imunologia , Análise de Célula Única/métodos , Imunoterapia/métodos , Análise de Sequência de RNA , Biomarcadores Tumorais/genética , Heterogeneidade Genética , Animais , Biologia Computacional/métodos , Regulação Neoplásica da Expressão Gênica
10.
Aging (Albany NY) ; 162024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38968580

RESUMO

To get a systematic assessment of disulfidptosis-related genes across human cancers and explore the predictive role of disulfidptosis in cancer drug sensitivity. We developed a score-level model to quantify the level of disulfidptosis in 33 human cancers using TCGA data. The mRNA expression and protein levels of disulfidptosis-related genes in human cancer cells and tissues were detected and retrieved from the Human Protein Atlas. Multiomics bioinformatic analyses were performed to evaluate disulfidptosis-related gene characteristics as well as the effect of disulfidptosis on the cancer immune microenvironment and drug resistance. Thirty cancers showed significantly different expression levels of disulfidptosis-related genes between normal and tumor samples. The mRNA expression and protein level of disulfidptosis-related genes were consistent with TCGA databases in lung cancer and hepatocellular carcinoma. We also found that altered levels of the disulfidptosis score expression were usually related to patient prognosis, and high expression of disulfidptosis-related genes was associated with drug resistance in different cancer types. Our study illustrates the characterization of disulfidptosis in multiple cancer types and highlights its potential value as a predictive biomarker of drug response, which can pave the way for further investigation of the prognostic and therapeutic potential of disulfidptosis.

11.
Drug Resist Updat ; 76: 101116, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38968684

RESUMO

Drug resistance and tumor recurrence remain clinical challenges in the treatment of urothelial carcinoma (UC). However, the underlying mechanism is not fully understood. Here, we performed single-cell RNA sequencing and identified a subset of urothelial cells with epithelial-mesenchymal transition (EMT) features (EMT-UC), which is significantly correlated with chemotherapy resistance and cancer recurrence. To validate the clinical significance of EMT-UC, we constructed EMT-UC like cells by introducing overexpression of two markers, Zinc Finger E-Box Binding Homeobox 1 (ZEB1) and Desmin (DES), and examined their histological distribution characteristics and malignant phenotypes. EMT-UC like cells were mainly enriched in UC tissues from patients with adverse prognosis and exhibited significantly elevated EMT, migration and gemcitabine tolerance in vitro. However, EMT-UC was not specifically identified from tumorous tissues, certain proportion of them were also identified in adjacent normal tissues. Tumorous EMT-UC highly expressed genes involved in malignant behaviors and exhibited adverse prognosis. Additionally, tumorous EMT-UC was associated with remodeled tumor microenvironment (TME), which exhibited high angiogenic and immunosuppressive potentials compared with the normal counterparts. Furthermore, a specific interaction of COL4A1 and ITGB1 was identified to be highly enriched in tumorous EMT-UC, and in the endothelial component. Targeting the interaction of COL4A1 and ITGB1 with specific antibodies significantly suppressed tumorous angiogenesis and alleviated gemcitabine resistance of UC. Overall, our findings demonstrated that the driven force of chemotherapy resistance and recurrence of UC was EMT-UC mediated COL4A1-ITGB1 interaction, providing a potential target for future UC treatment.

12.
Biomater Adv ; 163: 213937, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38968788

RESUMO

PURPOSE: In chronic hyperglycemia, the advanced glycation end product (AGE) interacts with its receptor (RAGE) and contributes to impaired wound healing by inducing oxidative stress, generating dysfunctional macrophages, and prolonging the inflammatory response. Additionally, uncontrolled levels of proteases, including metallomatrix protease-9 (MMP-9), in the diabetic wound bed degrade the extracellular matrix (ECM) and biological cues that augment healing. A multifunctional antimicrobial hydrogel (Immuno-gel) containing RAGE and MMP-9 inhibitors can regulate the wound microenvironment and promote scar-free healing. RESULTS: Immuno-gel was characterized and the wound healing efficacy was determined in vitro cell culture and in vivo diabetic Wistar rat wound model using ELISA, Western blot, and Immunofluorescence staining. The Immuno-gel exhibited a highly porous morphology with excellent in vitro cytocompatibility. AGE-stimulated macrophages treated with the Immuno-gel released higher levels of pro-healing cytokines in vitro. In the hydrogel-wound interface of diabetic Wistar rats, Immuno-gel treatment significantly reduced MMP-9 and NF-κB expression and enhanced pro-healing (M2) macrophage population and pro-healing cytokines. CONCLUSION: Altogether, this study suggests that Immuno-gel simultaneously attenuates macrophage dysfunction through the inhibition of AGE/RAGE signaling and reduces MMP-9 overexpression, both of which favor scar-free healing. The combinatorial treatment with RAGE and MMP-9 inhibitors via Immuno-gel simultaneously modulates the diabetic wound microenvironment, making it a promising novel treatment to accelerate diabetic wound healing.

13.
Cancer Lett ; : 217101, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38969156

RESUMO

The tumor microenvironment (TME) consists of tumor cells, non-tumor cells, extracellular matrix, and signaling molecules, which can contribute to tumor initiation, progression, and therapy resistance. In response to starvation, hypoxia, and drug treatments, tumor cells undergo a variety of deleterious endogenous stresses, such as hypoxia, DNA damage, and oxidative stress. In this context, to survive the difficult situation, tumor cells evolve multiple conserved adaptive responses, including metabolic reprogramming, DNA damage checkpoints, homologous recombination, up-regulated antioxidant pathways, and activated unfolded protein responses. In the last decades, the protein O-GlcNAcylation has emerged as a crucial causative link between glucose metabolism and tumor progression. Here, we discuss the relevant pathways that regulate the above responses. These pathways are adaptive adjustments induced by endogenous stresses in cells. In addition, we systematically discuss the role of O-GlcNAcylation-regulated stress-induced adaptive response pathways (SARPs) in TME remodeling, tumor progression, and treatment resistance. We also emphasize targeting O-GlcNAcylation through compounds that modulate OGT or OGA activity to inhibit tumor progression. It seems that targeting O-GlcNAcylated proteins to intervene in TME may be a novel approach to improve tumor prognosis.

14.
Exp Eye Res ; : 109990, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38969283

RESUMO

Ocular melanoma, including uveal melanoma (UM) and conjunctival melanoma (CM), is the most common ocular cancer among adults with a high rate of recurrence and poor prognosis. Loss of epigenetic homeostasis disturbed gene expression patterns, resulting in oncogenesis. Herein, we comprehensively analyzed the DNA methylation, transcriptome profiles, and corresponding clinical information of UM patients through multiple machine-learning algorithms, finding that a methylation-driven gene RBMS1 was correlated with poor clinical outcomes of UM patients. RNA-seq and single-cell RNA-seq analyses revealed that RBMS1 reflected diverse tumor microenvironments, where high RBMS1 expression marked an immune active TME. Furthermore, we found that tumor cells were identified to have the higher communication probability in RBMS1+ state. The functional enrichment analysis revealed that RBMS1 was associated with pigment granule and melanosome, participating in cell proliferation as well as apoptotic signaling pathway. Biological experiments were performed and demonstrated that the silencing of RBMS1 inhibited ocular melanoma proliferation and promoted apoptosis. Our study highlighted that RBMS1 reflects a distinct microenvironment and promotes tumor progression in ocular melanoma, contributing to the therapeutic customization and clinical decision-making.

15.
Semin Hematol ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38969539

RESUMO

Classic Hodgkin lymphoma is a unique B-cell derived malignancy featuring rare malignant Hodgkin and Reed Sternberg (HRS) cells that are embedded in a quantitively dominant tumor microenvironment (TME). Treatment of classic Hodgkin lymphoma has significantly evolved in the past decade with improving treatment outcomes for newly diagnosed patients and the minority of patients suffering from disease progression. However, the burden of toxicity and treatment-related long-term sequelae remains high in a typically young patient population. This highlights the need for better molecular biomarkers aiding in risk-adapted treatment strategies and predicting response to an increasing number of available treatments that now prominently involve multiple immunotherapy options. Here, we review modern molecular biomarker approaches that reflect both the biology of the malignant HRS cells and cellular components in the TME, while holding the promise to improve diagnostic frameworks for clinical decision-making and be feasible in clinical trials and routine practice. In particular, technical advances in sequencing and analytic pipelines using liquid biopsies, as well as deep phenotypic characterization of tissue architecture at single-cell resolution, have emerged as the new frontier of biomarker development awaiting further validation and implementation in routine diagnostic procedures.

16.
Artigo em Inglês | MEDLINE | ID: mdl-38969601

RESUMO

The gut microbiome can play a crucial role in hepatocellular carcinoma (HCC) progression through the enterohepatic circulation, primarily acting via metabolic reprogramming and alterations in the hepatic immune microenvironment triggered by microbe-associated molecular patterns (MAMPs), metabolites, and fungi. In addition, the gut microbiome shows potential as a biomarker for early HCC diagnosis and for assessing the efficacy of immunotherapy in unresectable HCC. This review examines how gut microbiota dysbiosis, with varied functional profiles, contributes to HCCs of different etiologies. We discuss therapeutic strategies to modulate the gut microbiome including diets, antibiotics, probiotics, fecal microbiota transplantation, and nano-delivery systems, and underscore their potential as an adjunctive treatment modality for HCC.

17.
Hum Genomics ; 18(1): 74, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956740

RESUMO

BACKGROUND: Evidence has revealed a connection between cuproptosis and the inhibition of tumor angiogenesis. While the efficacy of a model based on cuproptosis-related genes (CRGs) in predicting the prognosis of peripheral organ tumors has been demonstrated, the impact of CRGs on the prognosis and the immunological landscape of gliomas remains unexplored. METHODS: We screened CRGs to construct a novel scoring tool and developed a prognostic model for gliomas within the various cohorts. Afterward, a comprehensive exploration of the relationship between the CRG risk signature and the immunological landscape of gliomas was undertaken from multiple perspectives. RESULTS: Five genes (NLRP3, ATP7B, SLC31A1, FDX1, and GCSH) were identified to build a CRG scoring system. The nomogram, based on CRG risk and other signatures, demonstrated a superior predictive performance (AUC of 0.89, 0.92, and 0.93 at 1, 2, and 3 years, respectively) in the training cohort. Furthermore, the CRG score was closely associated with various aspects of the immune landscape in gliomas, including immune cell infiltration, tumor mutations, tumor immune dysfunction and exclusion, immune checkpoints, cytotoxic T lymphocyte and immune exhaustion-related markers, as well as cancer signaling pathway biomarkers and cytokines. CONCLUSION: The CRG risk signature may serve as a robust biomarker for predicting the prognosis and the potential viability of immunotherapy responses. Moreover, the key candidate CRGs might be promising targets to explore the underlying biological background and novel therapeutic interventions in gliomas.


Assuntos
Biomarcadores Tumorais , Glioma , Microambiente Tumoral , Humanos , Glioma/genética , Glioma/imunologia , Glioma/patologia , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Prognóstico , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Regulação Neoplásica da Expressão Gênica/genética , Nomogramas , Feminino , Masculino , Perfilação da Expressão Gênica , Pessoa de Meia-Idade
19.
Front Immunol ; 15: 1415736, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962012

RESUMO

Background: Neuroblastoma (NB), characterized by its marked heterogeneity, is the most common extracranial solid tumor in children. The status and functionality of mitochondria are crucial in regulating NB cell behavior. While the significance of mitochondria-related genes (MRGs) in NB is still missing in key knowledge. Materials and methods: This study leverages consensus clustering and machine learning algorithms to construct and validate an MRGs-related signature in NB. Single-cell data analysis and experimental validation were employed to characterize the pivotal role of FEN1 within NB cells. Results: MRGs facilitated the classification of NB patients into 2 distinct clusters with considerable differences. The constructed MRGs-related signature and its quantitative indicators, mtScore and mtRisk, effectively characterize the MRGs-related patient clusters. Notably, the MRGs-related signature outperformed MYCN in predicting NB patient prognosis and was adept at representing the tumor microenvironment (TME), tumor cell stemness, and sensitivity to the chemotherapeutic agents Cisplatin, Topotecan, and Irinotecan. FEN1, identified as the most contributory gene within the MRGs-related signature, was found to play a crucial role in the communication between NB cells and the TME, and in the developmental trajectory of NB cells. Experimental validations confirmed FEN1's significant influence on NB cell proliferation, apoptosis, cell cycle, and invasiveness. Conclusion: The MRGs-related signature developed in this study offers a novel predictive tool for assessing NB patient prognosis, immune infiltration, stemness, and chemotherapeutic sensitivity. Our findings unveil the critical function of FEN1 in NB, suggesting its potential as a therapeutic target.


Assuntos
Perfilação da Expressão Gênica , Neuroblastoma , Análise de Célula Única , Transcriptoma , Humanos , Neuroblastoma/genética , Neuroblastoma/patologia , Mitocôndrias/genética , Regulação Neoplásica da Expressão Gênica , Microambiente Tumoral/genética , Linhagem Celular Tumoral , Biomarcadores Tumorais/genética , Prognóstico
20.
Front Immunol ; 15: 1362120, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962016

RESUMO

Cancer stem cells (CSCs), accounting for only a minor cell proportion (< 1%) within tumors, have profound implications in tumor initiation, metastasis, recurrence, and treatment resistance due to their inherent ability of self-renewal, multi-lineage differentiation, and tumor-initiating potential. In recent years, accumulating studies indicate that CSCs and tumor immune microenvironment act reciprocally in driving tumor progression and diminishing the efficacy of cancer therapies. Extracellular vesicles (EVs), pivotal mediators of intercellular communications, build indispensable biological connections between CSCs and immune cells. By transferring bioactive molecules, including proteins, nucleic acids, and lipids, EVs can exert mutual influence on both CSCs and immune cells. This interaction plays a significant role in reshaping the tumor immune microenvironment, creating conditions favorable for the sustenance and propagation of CSCs. Deciphering the intricate interplay between CSCs and immune cells would provide valuable insights into the mechanisms of CSCs being more susceptible to immune escape. This review will highlight the EV-mediated communications between CSCs and each immune cell lineage in the tumor microenvironment and explore potential therapeutic opportunities.


Assuntos
Vesículas Extracelulares , Neoplasias , Células-Tronco Neoplásicas , Microambiente Tumoral , Microambiente Tumoral/imunologia , Humanos , Vesículas Extracelulares/imunologia , Vesículas Extracelulares/metabolismo , Células-Tronco Neoplásicas/imunologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/terapia , Animais , Comunicação Celular/imunologia , Evasão Tumoral , Imunomodulação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...