RESUMO
Culex quinquefasciatus is a cosmopolitan species distributed throughout tropical and subtropical areas of the world. The species is of great epidemiological importance as it is responsible for vectoring the causative agent of lymphatic filariasis and several arboviruses, including West Nile virus. Wing geometric morphometrics has been widely used to assess phenotypic variations in mosquito species. Here, we hypothesize that Cx. quinquefasciatus populations in urban parks in the city of São Paulo, Brazil, have been subjected to anthropogenic selective pressures that are responsible for driving their ecology and behavior. Mosquitoes were collected by CDC traps in five municipal parks in the city of São Paulo. Eighteen anatomical landmark coordinates on each female right wing were digitized. Canonical variate analysis, wireframe graphs, cross-validated reclassification tests and the neighbor-joining method were used to assess phenotypical dissimilarity in wing shape between populations. Centroid size was calculated to assess differences in wing size between populations, which can result from different environmental conditions during immature mosquito development. Moderately heterogeneous wing shape and wing size patterns were found in the populations analyzed, indicating that selective pressures in the urban environment are affecting the wing patterns of Cx. quinquefasciatus populations in the city of São Paulo, Brazil.
Assuntos
Arbovírus , Culex , Culicidae , Animais , Feminino , Brasil , CidadesRESUMO
Herbicide resistance is an evolutionary process that affects entire agricultural regions' yield and productivity. The high number of farms and the diversity of weed management can generate hot selection spots throughout the regions. Resistant biotypes can present a diversity of mechanisms of resistance and resistance factors depending on selective conditions inside the farm; this situation is similar to predictions by the geographic mosaic theory of coevolution. In Mexico, the agricultural region of the Bajio has been affected by herbicide resistance for 25 years. To date, Avena fatua L. is one of the most abundant and problematic weed species. The objective of this study was to determine the mechanism of resistance of biotypes with failures in weed control in 70 wheat and barley crop fields in the Bajio, Mexico. The results showed that 70% of farms have biotypes with target site resistance (TSR). The most common mutations were Trp-1999-Cys, Asp-2078-Gly, Ile-2041-Asn, and some of such mutations confer cross-resistance to ACCase-inhibiting herbicides. Metabolomic fingerprinting showed four different metabolic expression patterns. The results confirmed that in the Bajio, there exist multiple selection sites for both resistance mechanisms, which proves that this area can be considered as a geographic mosaic of resistance.
RESUMO
Protozoa and fungi are known to have extraordinarily diverse mechanisms of genetic exchange. However, the presence and epidemiological relevance of genetic exchange in Trypanosoma cruzi, the agent of Chagas disease, has been controversial and debated for many years. Field studies have identified both predominantly clonal and sexually recombining natural populations. Two of six natural T. cruzi lineages (TcV and TcVI) show hybrid mosaicism, using analysis of single-gene locus markers. The formation of hybrid strains in vitro has been achieved and this provides a framework to study the mechanisms and adaptive significance of genetic exchange. Using whole genome sequencing of a set of experimental hybrids strains, we have confirmed that hybrid formation initially results in tetraploid parasites. The hybrid progeny showed novel mutations that were not attributable to either (diploid) parent showing an increase in amino acid changes. In long-term culture, up to 800 generations, there was a variable but gradual erosion of progeny genomes towards triploidy, yet retention of elevated copy number was observed at several core housekeeping loci. Our findings indicate hybrid formation by fusion of diploid T. cruzi, followed by sporadic genome erosion, but with substantial potential for adaptive evolution, as has been described as a genetic feature of other organisms, such as some fungi.
Assuntos
Doença de Chagas , Trypanosoma cruzi , Doença de Chagas/parasitologia , DNA de Protozoário/genética , Variação Genética , Genótipo , Humanos , Hibridização Genética , Hibridização de Ácido Nucleico , Trypanosoma cruzi/genéticaRESUMO
Treatment of drug-resistant tuberculosis requires extended use of more toxic and less effective drugs and may result in retreatment cases due to failure, abandonment or disease recurrence. It is therefore important to understand the evolutionary process of drug resistance in Mycobacterium tuberculosis. We here in describe the microevolution of drug resistance in serial isolates from six previously treated patients. Drug resistance was initially investigated through phenotypic methods, followed by genotypic approaches. The use of whole-genome sequencing allowed the identification of mutations in the katG, rpsL and rpoB genes associated with drug resistance, including the detection of rare mutations in katG and mixed populations of strains. Molecular docking simulation studies of the impact of observed mutations on isoniazid binding were also performed. Whole-genome sequencing detected 266 single nucleotide polymorphisms between two isolates obtained from one patient, suggesting a case of exogenous reinfection. In conclusion, sequencing technologies can detect rare mutations related to drug resistance, identify subpopulations of resistant strains, and identify diverse populations of strains due to exogenous reinfection, thus improving tuberculosis control by guiding early implementation of appropriate clinical and therapeutic interventions.
Assuntos
Resistência a Medicamentos/genética , Estudo de Associação Genômica Ampla/estatística & dados numéricos , Mycobacterium tuberculosis/efeitos dos fármacos , Brasil , Resistência a Medicamentos/imunologia , Estudo de Associação Genômica Ampla/métodos , Humanos , Testes de Sensibilidade Microbiana/métodos , Testes de Sensibilidade Microbiana/estatística & dados numéricos , Mycobacterium tuberculosis/imunologia , Mycobacterium tuberculosis/isolamento & purificação , Tuberculose Resistente a Múltiplos Medicamentos/microbiologiaRESUMO
Genetic mechanisms controlling root development are well-understood in plant model species, and emerging frontier research is currently dissecting how some of these mechanisms control root development in cacti. Here we show the patterns of root architecture development in a gradient of divergent lineages, from populations to species in Mammillaria. First, we show the patterns of variation in natural variants of the species Mammillaria haageana. Then we compare this variation to closely related species within the Series Supertexta in Mammillaria (diverging for the last 2.1 million years) in which M. haageana is inserted. Finally, we compared these patterns of variation to what is found in a set of Mammillaria species belonging to different Series (diverging for the last 8 million years). When plants were grown in controlled environments, we found that the variation in root architecture observed at the intra-specific level, partially recapitulates the variation observed at the inter-specific level. These phenotypic outcomes at different evolutionary time-scales can be interpreted as macroevolution being the cumulative outcome of microevolutionary phenotypic divergence, such as the one observed in Mammillaria accessions and species.
RESUMO
Staphylococcus aureus chronic airway infection in patients with cystic fibrosis (CF) allows this pathogen to adapt over time in response to different selection pressures. We have previously shown that the main sequence types related to community-acquired methicillin-resistant S. aureus (MRSA) infections in Argentina - ST5 and ST30 - are also frequently isolated from the sputum of patients with CF, but in these patients they usually display multi-drug antimicrobial resistance. In this study, we sequenced the genomes of MRSA from four paediatric CF patients with the goal of identifying mutations among sequential isolates, especially those possibly related to antimicrobial resistance and virulence, which might contribute to the adaptation of the pathogen in the airways of patients with CF. Our results revealed genetic differences in sequential MRSA strains isolated from patients with CF in both their core and accessory genomes. Although the genetic adaptation of S. aureus was distinct in different hosts, we detected independent mutations in thyA, htrA, rpsJ and gyrA - which are known to have crucial roles in S. aureus virulence and antimicrobial resistance - in isolates recovered from multiple patients. Moreover, we identified allelic variants that were detected in all of the isolates recovered after a certain time point; these non-synonymous mutations were in genes associated with antimicrobial resistance, virulence, iron scavenging and oxidative stress resistance. In conclusion, our results provide evidence of genetic variability among sequential MRSA isolates that could be implicated in the adaptation of these strains during chronic CF airway infection.
Assuntos
Fibrose Cística/microbiologia , Staphylococcus aureus Resistente à Meticilina/genética , Antibacterianos/farmacologia , Argentina , Criança , Pré-Escolar , Feminino , Genoma Bacteriano , Genômica , Humanos , Masculino , Resistência a Meticilina , Staphylococcus aureus Resistente à Meticilina/classificação , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Testes de Sensibilidade Microbiana , Filogenia , Sistema Respiratório/microbiologia , Escarro/microbiologiaRESUMO
Aedes albopictus and Aedes scapularis are vectors of several arboviruses, including the dengue, chikungunya, and Rocio virus infection. While Ae. albopictus is a highly invasive species native to Asia and has been dispersed by humans to most parts of the world, Ae. scapularis is native to Brazil and is widely distributed in the southeast of the country. Both species are highly anthropophilic and are often abundant in places with high human population densities. Because of the great epidemiological importance of these two mosquitoes and the paucity of knowledge on how they have adapted to different urban built environments, we investigated the microgeographic population structure of these vector species in the city of São Paulo, Brazil, using wing geometric morphometrics. Females of Ae. albopictus and Ae. scapularis were collected in seven urban parks in the city. The right wings of the specimens were removed and digitized, and eighteen landmarks based on vein intersections in the wing venation patterns were used to assess cross-sectional variation in wing shape and size. The analyses revealed distinct results for Ae. albopictus and Ae. scapularis populations. While the former had less wing shape variation, the latter had more heterogeneity, indicating a higher degree of intraspecific variation. Our results indicate that microgeographic selective pressures exerted by different urban built environments have a distinct effect on wing shape patterns in the populations of these two mosquito species studied here.
RESUMO
OBJECTIVES: The Y chromosome has highly informative markers, such as single-nucleotide polymorphisms (SNPs), that are useful for making historical inferences about the settlement of the Americas. However, the scarcity of these markers has limited their use. This study aims to identify new SNPs and increase the phylogenetic resolution of haplogroup Q for the Americas, mainly focusing on the lineages of the Amazon region. MATERIALS AND METHODS: Next-generation sequencing was performed on two Y chromosomes belonging to haplogroup Q-M3 using samples with divergent short tandem repeat haplotypes from the Colombian Amazon, and 14 of the new variants identified were selected for characterization in 207 samples of indigenous Colombians belonging to haplogroup Q-M3. RESULTS: This methodology allowed us to establish nine new lineages within Q-M3, including its paragroups. The most basal lineages were predominant in communities of Andean origin, such as the Embera-Katio, the Nasas, and the Pastos. In contrast, the most distal lineages were restricted to inhabitants of the Amazon region of Vaupés. DISCUSSION: The SNPs reported here advance the development of subhaplogroups of Q-M3 with a higher level of phylogenetic resolution than has been previously reported, which allowed the differentiation between populations that inhabit two regions of Vaupes area: the Pirá-Paraná region and the upper and middle sections of the Vaupés River, and the region encompassing the Papurí River and the lower Vaupés. They are very useful for the microevolutionary analysis of the Amerindian populations of Colombia and of the Americas.
Assuntos
Cromossomos Humanos Y/genética , Indígenas Sul-Americanos/classificação , Indígenas Sul-Americanos/genética , Antropologia Física , Colômbia/etnologia , Evolução Molecular , Genética Populacional , Haplótipos/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Repetições de Microssatélites/genética , Polimorfismo de Nucleotídeo Único/genéticaRESUMO
To understand the underlying mechanisms generating population genetic divergence and structure is a critical step towards understanding how biodiversity evolves at both micro- and macroevolutionary scales. At the population-level, geographic isolation as well as adaptation to local environmental conditions can generate different patterns of spatial genetic variation among populations. Specific organismal traits as well as the characteristics of the environment might influence the process under which populations become spatially structured. In a From the Cover article in this issue of Molecular Ecology, Myers et al. (2019) present an integrative approach to investigate if the Cochise filter barrier (CFB), lying between the Sonoran and Chihuahuan Deserts, and the surrounding river networks were relevant in driving the population structure of 13 snake species. While local environmental conditions seem to predominantly contribute to lineage divergence, traditionally studied vicariant barriers seem to have played a minor role in shaping population structure across the studied species. This study brings insights into how population-level processes could contribute to the formation of incipient species, which ultimately might affect the speciation rates measured at macroevolutionary scales. Hence, Myers et al. (2019) not only represents an integrative study aiming to understand the drivers of population genetic divergence, but also a potentially important contribution to our ongoing challenge in linking micro- and macroevolution.
Assuntos
Evolução Molecular , Fenômenos Genéticos/fisiologia , Especiação Genética , Animais , Evolução Biológica , Genética Populacional , Genoma/genética , Filogenia , Filogeografia , SerpentesRESUMO
After gene duplication, paralogous genes evolve independently, and consequently, the new proteins encoded by these duplicated genes are exposed to changes in their subcellular location. Although there are increasing evidence that phylogenetically related proteins play different functions in different subcellular compartments, the number of evolutionary steps required for the emergence of a novel protein with a novel subcellular localization remains unclear. Regarding this intriguing topic, here we examine in depth our previous reports describing both intracellular and extracellular polyhydroxybutyrate polymerases (PhaC) in the Pseudomonadales group. The recapitulation of the intracellular-to-extracellular localization switch of PhaC in these strains shows a gradual evolution from a simple cytosolic PhaC form to a complex extracellular PhaC form specifically secreted via the type 1 secretion system. This gradual evolution includes several adaptive and pre-adaptive changes at the genomic, genetic and enzymatic levels, which are intimately related to the lifestyle of organisms during the evolution of protein localization. We conclude that the protein localization switch can be an extremely complex process in nature.
Assuntos
Aciltransferases/metabolismo , Citosol/enzimologia , Evolução Molecular , Espaço Extracelular/enzimologia , Pseudomonas/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Filogenia , Transporte Proteico/genética , Pseudomonas/genética , Alinhamento de SequênciaRESUMO
Previous studies of population genetic structure in Dissostichus eleginoides have shown that oceanographic and geographic discontinuities drive in this species population differentiation. Studies have focused on the genetics of D. eleginoides in the Southern Ocean; however, there is little knowledge of their genetic variation along the South American continental shelf. In this study, we used a panel of six microsatellites to test whether D. eleginoides shows population genetic structuring in this region. We hypothesized that this species would show zero or very limited genetic structuring due to the habitat continuity along the South American shelf from Peru in the Pacific Ocean to the Falkland Islands in the Atlantic Ocean. We used Bayesian and traditional analyses to evaluate population genetic structure, and we estimated the number of putative migrants and effective population size. Consistent with our predictions, our results showed no significant genetic structuring among populations of the South American continental shelf but supported two significant and well-defined genetic clusters of D. eleginoides between regions (South American continental shelf and South Georgia clusters). Genetic connectivity between these two clusters was 11.3% of putative migrants from the South American cluster to the South Georgia Island and 0.7% in the opposite direction. Effective population size was higher in locations from the South American continental shelf as compared with the South Georgia Island. Overall, our results support that the continuity of the deep-sea habitat along the continental shelf and the biological features of the study species are plausible drivers of intraspecific population genetic structuring across the distribution of D. eleginoides on the South American continental shelf.
RESUMO
Resumen El orden Ciconiiformes incluye especies de aves zancudas de tamaño mediano a grande, con dinámicas de crecimiento corporal que pueden ser analizadas para esclarecer las tendencias microevolutivas del grupo. Las garzas (familia Ardeidae) provienen de un ancestro común, sin embargo, existen diferencias en la forma corporal de los adultos actuales y se ha sugerido un proceso de evolución por heterocronías. Sin embargo, los estudios de crecimiento previamente se han enfocado solo en las dimensiones lineales y no se han analizado los cambios alométricos. En el presente trabajo se describen los cambios de proporciones corporales durante el crecimiento en siete especies de ardéidos y se analizan bajo una hipótesis filogenética para identificar el patrón morfológico primitivo entre los géneros basales Butorides y Nycticorax. Para ellos se calcularon las proporciones pico / tarso en 353 pichones, medidos entre 1998 y 2006, y se evaluaron sus cambios en relación con la edad y el incremento del peso corporal. Las especies mostraron diferencias marcadas en la magnitud del cambio en las proporciones pico/tarso entre la eclosión y un momento análogo del crecimiento, excepto Bubulcus que tiende a crecer de forma casi isométrica. Los cambios alométricos al crecer conjuntamente con las proporciones al nacer, generan un crecimiento diferencial que produce las disímiles morfologías adultas que se expresan en el grupo de las garzas. La tendencia general de estos cambios es de un incremento ligero en el medio del crecimiento para luego descender a casi la misma proporción inicial. El crecimiento en las primeras etapas de vida tiende a ser más isométrico y las diferencias se acentúan en momentos más tardíos. La hipótesis de asumir a Nycticorax como morfotipo peramórfico es más parsimoniosa en las tendencias de cambio dentro del grupo, resultando en un alargamiento relativo con alometría positiva del pico y del tarso en todas las especies. Esta hipótesis sería consistente con una hipermorfosis gradual que alcanzaría su máxima expresión en Ardea.
Abstract The order Ciconiiformes include wading bird species of sizes from medium to high, with body growth dynamic that can be analyzed to enlighten micro evolutionary trends. Egrets and herons (family Ardeidae) evolved from a common ancestor, but there are differences in adult body shapes, and their evolution has been suggested to be based on heterochronic processes. However, previous researches on growth have focused only in lineal dimension, and alometric changes have not been studied. In the current paper I described changes in body proportions during growth in seven ardeid species, and analyzed body growth under a phylogenetic point of view, to identify the primitive morphology pattern among genus Butorides and Nycticorax. For this purpose, I calculated bill/ tarsus rate in 353 nestlings, measured between 1998 and 2006, and assessed their changes with age and body weight. All species showed marked differences in proportion changes extension between hatching and an analogous growth moment, except Bubulcus that grows almost isometrically. Alometric changes during growth and at hatch, generate a differential growth that produced the different adult morphologies expressed among egrets and herons. The general trends were toward a slight increase in the middle of the growth period up to a lowering to almost the same initial proportions. Growth in the first life stages tends to be more isometric and differences get higher latter in growth. The hypothesis of Nycticorax as peramorphic morfotype is more parsimonious with changes trends in the group, resulting in a relative extremities extension with positive alometry in bill and tarsus in all species. This hypothesis is consistent with a gradual hipermorphosis that reaches a maximum expression in Ardea. Rev. Biol. Trop. 65 (4): 1347-1357. Epub 2017 December 01.
RESUMO
Genome sequencing has been useful to gain an understanding of bacterial evolution. It has been used for studying the phylogeography and/or the impact of mutation and recombination on bacterial populations. However, it has rarely been used to study gene turnover at microevolutionary scales. Here, we sequenced Mexican strains of the human pathogen Acinetobacter baumannii sampled from the same locale over a 3 year period to obtain insights into the microevolutionary dynamics of gene content variability. We found that the Mexican A. baumannii population was recently founded and has been emerging due to a rapid clonal expansion. Furthermore, we noticed that on average the Mexican strains differed from each other by over 300 genes and, notably, this gene content variation has accrued more frequently and faster than the accumulation of mutations. Moreover, due to its rapid pace, gene content variation reflects the phylogeny only at very short periods of time. Additionally, we found that the external branches of the phylogeny had almost 100 more genes than the internal branches. All in all, these results show that rapid gene turnover has been of paramount importance in producing genetic variation within this population and demonstrate the utility of genome sequencing to study alternative forms of genetic variation.
RESUMO
Despite the vast screening for natural nitrogen-fixing isolates by public and private consortia, no significant progresses in the production of improved nitrogen-fixing inoculants for alfalfa production have been made in the last years. Here, we present a comprehensive characterization of the nitrogen-fixing strain Ensifer meliloti B399 (originally named Rhizobium meliloti 102F34), probably the inoculant most widely used in alfalfa production since the 1960s. Complete nucleotide sequence and genome analysis of strain B399 showed that the three replicons present in this commercial strain and the model bacterium Ensifer meliloti 1021 are extremely similar to each other in terms of nucleotide identity and synteny conservation. In contrast to that observed in B399-treated plants, inoculation of plants with strain 1021 did not improve nitrogen content in different alfalfa cultivars under field conditions, suggesting that a small genomic divergence can drastically impact on the symbiotic phenotype. Therefore, in addition to the traditional screening of natural nitrogen-fixing isolates, the genome engineering of model strains could be an attractive strategy to improve nitrogen fixation in legume crops.
Assuntos
Evolução Biológica , Genoma Bacteriano , Fixação de Nitrogênio/genética , Sinorhizobium meliloti/genética , Simbiose , Genômica , Medicago sativa/genética , Medicago sativa/fisiologia , Análise de Sequência de DNA , Sinorhizobium meliloti/metabolismo , Sinorhizobium meliloti/fisiologia , SinteniaRESUMO
"Candidatus Marithrix" is a recently described lineage within the group of large sulfur bacteria (Beggiatoaceae, Gammaproteobacteria). This genus of bacteria comprises vacuolated, attached-living filaments that inhabit the sediment surface around vent and seep sites in the marine environment. A single filament is ca. 100 µm in diameter, several millimeters long, and consists of hundreds of clonal cells, which are considered highly polyploid. Based on these characteristics, "Candidatus Marithrix" was used as a model organism for the assessment of genomic plasticity along segments of a single filament using next generation sequencing to possibly identify hotspots of microevolution. Using six consecutive segments of a single filament sampled from a mud volcano in the Gulf of Mexico, we recovered ca. 90% of the "Candidatus Marithrix" genome in each segment. There was a high level of genome conservation along the filament with average nucleotide identities between 99.98 and 100%. Different approaches to assemble all reads into a complete consensus genome could not fill the gaps. Each of the six segment datasets encoded merely a few hundred unique nucleotides and 5 or less unique genes-the residual content was redundant in all datasets. Besides the overall high genomic identity, we identified a similar number of single nucleotide polymorphisms (SNPs) between the clonal segments, which are comparable to numbers reported for other clonal organisms. An increase of SNPs with greater distance of filament segments was not observed. The polyploidy of the cells was apparent when analyzing the heterogeneity of reads within a segment. Here, a strong increase in single nucleotide variants, or "intrasegmental sequence heterogeneity" (ISH) events, was observed. These sites may represent hotspots for genome plasticity, and possibly microevolution, since two thirds of these variants were not co-localized across the genome copies of the multicellular filament.
RESUMO
Bacterial genomes undergo numerous events of gene losses and gains that generate genome variability among strains of the same species (microevolution). Our aim was to compare the genomes and relevant phenotypes of three Bacillus coahuilensis strains from two oligotrophic hydrological systems in the Cuatro Ciénegas Basin (México), to unveil the environmental challenges that this species cope with, and the microevolutionary differences in these genotypes. Since the strains were isolated from a low P environment, we placed emphasis on the search of different phosphorus acquisition strategies. The three B. coahuilensis strains exhibited similar numbers of coding DNA sequences, of which 82% (2,893) constituted the core genome, and 18% corresponded to accessory genes. Most of the genes in this last group were associated with mobile genetic elements (MGEs) or were annotated as hypothetical proteins. Ten percent of the pangenome consisted of strain-specific genes. Alignment of the three B. coahuilensis genomes indicated a high level of synteny and revealed the presence of several genomic islands. Unexpectedly, one of these islands contained genes that encode the 2-keto-3-deoxymannooctulosonic acid (Kdo) biosynthesis enzymes, a feature associated to cell walls of Gram-negative bacteria. Some microevolutionary changes were clearly associated with MGEs. Our analysis revealed inconsistencies between phenotype and genotype, which we suggest result from the impossibility to map regulatory features to genome analysis. Experimental results revealed variability in the types and numbers of auxotrophies between the strains that could not consistently be explained by in silico metabolic models. Several intraspecific differences in preferences for carbohydrate and phosphorus utilization were observed. Regarding phosphorus recycling, scavenging, and storage, variations were found between the three genomes. The three strains exhibited differences regarding alkaline phosphatase that revealed that in addition to gene gain and loss, regulation adjustment of gene expression also has contributed to the intraspecific diversity of B. coahuilensis.
RESUMO
This study explores potential signals of microdifferentiation in the gene pool of three high-altitude populations from Jujuy province in northwest Argentina using highly polymorphic markers. These human communities are characterized by extreme living conditions and very low population densities owing to considerable height above sea level and steep orography. A set of autosomal short tandem repeats (STRs) located at chromosome 6 (6p21.3) was typed in samples from Quebrada Baja (â¼2,500 m), Quebrada Alta (â¼3,300 m), and Puna (> 3,500 m). Genetic diversity was estimated through the observed and expected heterozygosities and the haplotype diversity. Analyses of the molecular variance (AMOVAs) and population differentiation tests based on allele and haplotype frequencies were performed to assess genetic heterogeneity among subgroups. No deviation from Hardy-Weinberg equilibrium was detected in any subpopulation, yet significant departures were detected in the analysis considering the whole area (D6S2792 and D6S105 loci). Overall, genetic diversity showed a decreasing trend as the altitude increased. Thus, allele and haplotype frequencies showed the most significant differences between Puna and Quebrada Baja, the populations sited at the edges of the altitude range. The trend toward reduction of heterozygosity with altitude is compatible with historical patterns of colonization, interregional migration trends, population density, and genetic admixture. The main consequence of the complex mountainous landscape of Jujuy would be an imbalance in the interplay of gene flow and genetic drift, favoring the latter. The combined effect of restricted gene flow and intense genetic drift would have promoted local genetic differentiation between the Jujuy highland subpopulations, leading to spatial patterning of the allele frequencies not entirely attributable to geographic distance. Our findings corroborate the effectiveness of STRs to identify microevolutionary changes.
Assuntos
Altitude , Genética Populacional , Geografia , Indígenas Sul-Americanos , Repetições de Microssatélites , Argentina , Frequência do Gene , Deriva Genética , Marcadores Genéticos , Variação Genética , Haplótipos , Humanos , Indígenas Sul-Americanos/genéticaRESUMO
INTRODUCTION: The advent of molecular typing using MIRU-VNTR mini-satellites has largely facilitated tuberculosis (TB) molecular epidemiological studies. Apart from detecting the chains of transmission and risk factors, these markers have also allowed to study the phenomena of mixed strain infections versus microevolutionary events. METHODS: An initial set of Mycobacterium tuberculosis strains (n=161) genotyped using spoligotyping and MIRU-VNTRs in Guyana and Suriname was evaluated for indications mixed strain infections (characterized by the detection of double alleles in 2 or more MIRU loci) versus "in-patient" microevolutionary events (characterized by the detection of double alleles in a single locus). RESULTS: The present study hereby reports evidence of microevolution in 3.7% (n=6/161) of the studied population, vs. 0.6% (n=1/161) for mixed infection. The strains belonged to three different spoligotyping-based lineages, namely the T (SITs 44, 53, and 1081), Haarlem (SIT47), and EAI (SITs 72 and 349) lineages, while 1 isolate (SIT237) could not be assigned to any lineage. DISCUSSION: By comparing these results on microevolutionary cases (n=6) to 112,000 strains present in the SITVIT2 database, evidence is presented that in 2/6 cases (each case corresponding to 2 patterns due to MIRU double bands), one of the patterns corresponded to a shared type found exclusively in Suriname or Guyana. Phylogenetic analysis showed that no spoligotyping lineage in particular was more prone to microevolutionary events in this study's sample. Overall, the observations fortify the awareness regarding the existence of microevolution and polyclonal TB infections which has important implications for patient care.
Assuntos
Técnicas de Tipagem Bacteriana , Evolução Molecular , Repetições Minissatélites , Epidemiologia Molecular , Tipagem Molecular , Mycobacterium tuberculosis/genética , Tuberculose/epidemiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Análise por Conglomerados , Feminino , Guiana/epidemiologia , Humanos , Masculino , Pessoa de Meia-Idade , Filogenia , Suriname/epidemiologia , Tuberculose/microbiologia , Adulto JovemRESUMO
If genetic constraints are important, then rates and direction of evolution should be related to trait evolvability. Here we use recently developed measures of evolvability to test the genetic constraint hypothesis with quantitative genetic data on floral morphology from the Neotropical vine Dalechampia scandens (Euphorbiaceae). These measures were compared against rates of evolution and patterns of divergence among 24 populations in two species in the D. scandens species complex. We found clear evidence for genetic constraints, particularly among traits that were tightly phenotypically integrated. This relationship between evolvability and evolutionary divergence is puzzling, because the estimated evolvabilities seem too large to constitute real constraints. We suggest that this paradox can be explained by a combination of weak stabilizing selection around moving adaptive optima and small realized evolvabilities relative to the observed additive genetic variance.
Assuntos
Adaptação Biológica/genética , Evolução Biológica , Euphorbiaceae/genética , Flores/anatomia & histologia , Modelos Biológicos , Fenótipo , Teorema de Bayes , Simulação por Computador , Euphorbiaceae/anatomia & histologia , Genética Populacional , México , Filogenia , Seleção Genética , Especificidade da Espécie , Biologia de SistemasRESUMO
This palaeogenetic study focused on the analysis of a late prehispanic Argentinean group from the Humahuaca valley, with the main aim of reconstructing its (micro)evolutionary history. The Humahuaca valley, a natural passageway from the eastern plains to the highlands, was the living environment of Andean societies whose cultural but especially biological diversity is still poorly understood. We analyzed the DNA extracted from 39 individuals who populated this upper valley during the Regional Development period (RDP) (between the 11th and 15th centuries CE), to determine their maternal and paternal genetic ancestry. Some mitochondrial and Y-chromosomal haplotypes specific to the Andean region are consistent with an origin in the highlands of Central Andes. On the other hand, a significant genetic affinity with contemporary admixed communities of the Chaco area was detected. Expectedly, recent demographic events, such as the expansion of the Inca Empire or the European colonization, have changed the original mitochondrial gene pool of the ancient Humahuaca Valley community. Finally, we identified a particular geographical organization of the prehispanic populations of Northwestern Argentina. Our results suggest that the communities of the region were divided between two different spheres of interaction, which is consistent with assumptions made by means of craniometric traits.