Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 219
Filtrar
1.
Biomed Environ Sci ; 37(3): 266-277, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38582991

RESUMO

Objective: The purpose of this study was to investigate the bacterial communities of biting midges and ticks collected from three sites in the Poyang Lake area, namely, Qunlu Practice Base, Peach Blossom Garden, and Huangtong Animal Husbandry, and whether vectors carry any bacterial pathogens that may cause diseases to humans, to provide scientific basis for prospective pathogen discovery and disease prevention and control. Methods: Using a metataxonomics approach in concert with full-length 16S rRNA gene sequencing and operational phylogenetic unit (OPU) analysis, we characterized the species-level microbial community structure of two important vector species, biting midges and ticks, including 33 arthropod samples comprising 3,885 individuals, collected around Poyang Lake. Results: A total of 662 OPUs were classified in biting midges, including 195 known species and 373 potentially new species, and 618 OPUs were classified in ticks, including 217 known species and 326 potentially new species. Surprisingly, OPUs with potentially pathogenicity were detected in both arthropod vectors, with 66 known species of biting midges reported to carry potential pathogens, including Asaia lannensis and Rickettsia bellii, compared to 50 in ticks, such as Acinetobacter lwoffii and Staphylococcus sciuri. We found that Proteobacteria was the most dominant group in both midges and ticks. Furthermore, the outcomes demonstrated that the microbiota of midges and ticks tend to be governed by a few highly abundant bacteria. Pantoea sp7 was predominant in biting midges, while Coxiella sp1 was enriched in ticks. Meanwhile, Coxiella spp., which may be essential for the survival of Haemaphysalis longicornis Neumann, were detected in all tick samples. The identification of dominant species and pathogens of biting midges and ticks in this study serves to broaden our knowledge associated to microbes of arthropod vectors. Conclusion: Biting midges and ticks carry large numbers of known and potentially novel bacteria, and carry a wide range of potentially pathogenic bacteria, which may pose a risk of infection to humans and animals. The microbial communities of midges and ticks tend to be dominated by a few highly abundant bacteria.


Assuntos
Ceratopogonidae , Microbiota , Carrapatos , Animais , Humanos , Carrapatos/microbiologia , Ceratopogonidae/genética , Filogenia , RNA Ribossômico 16S/genética , Estudos Prospectivos , Coxiella/genética
2.
Insect Biochem Mol Biol ; 168: 104115, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38570118

RESUMO

Biting midges, notably those within the Ceratopogonidae family, have long been recognized for their epidemiological significance, both as nuisances and vectors for disease transmission in vertebrates. Despite their impact, genomic insights into these insects, particularly beyond the Culicoides genus, remain limited. In this study, we assembled the Forcipomyia taiwana (Shiraki) genome, comprising 113 scaffolds covering 130.4 Mbps-with the longest scaffold reaching 7.6 Mbps and an N50 value of 2.6 Mbps-marking a pivotal advancement in understanding the genetic architecture of ceratopogonid biting midges. Phylogenomic analyses reveal a shared ancestry between F. taiwana and Culicoides sonorensis Wirth & Jones, dating back approximately 124 million years, and highlight a dynamic history of gene family expansions and contractions within the Ceratopogonidae family. Notably, a substantial expansion of the odorant receptor (OR) gene family was observed, which is crucial for the chemosensory capabilities that govern biting midges' interactions with their environment, including host seeking and oviposition behaviors. The distribution of OR genes across the F. taiwana genome displays notable clusters on scaffolds, indicating localized tandem gene duplication events. Additionally, several collinear regions were identified, hinting at segmental duplications, inversions, and translocations, contributing to the olfactory system's evolutionary complexity. Among the 156 ORs identified in F. taiwana, 134 are biting midge-specific ORs, distributed across three distinct clades, each exhibiting unique motif features that distinguish them from the others. Through weighted gene co-expression network analysis, we correlated distinct gene modules with sex and reproductive status, laying the groundwork for future investigations into the interplay between gene expression and adaptive behaviors in F. taiwana. In conclusion, our study not only highlights the unique olfactory repertoire of ceratopogonid biting midges but also sets the stage for future studies into the genetic underpinnings of their unique biological traits and ecological strategies.


Assuntos
Ceratopogonidae , Feminino , Animais , Ceratopogonidae/genética , Perfilação da Expressão Gênica
3.
Vet Med Sci ; 10(3): e1462, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38659360

RESUMO

BACKGROUND: Culicoides is a genus of ubiquitous biting midges (Ceratopogonidae). Female midges have blood-sucking habit. They not only bite and harass humans and animals but also may be an important vector of disease transmission. Therefore, building an animal allergy model caused by Culicoides biting is very beneficial for studying its pathogenesis and exploring the therapeutic methods. MATERIAL AND METHOD: Kunming mice were used in this study to build the model and sensitised by two-step injection of midge extracts. Scratching behaviour and histological examination were used to check the immediate and delayed responses. Immunoglobulin E (IgE) and Immunoglobulin G (IgG) were detected using indirect enzyme-linked immunosorbent assay (ELISA) assay. Splenic cell proliferation and cytokine production were determined using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) and ELISA assays. The response of cytokine gene expression to midge stimulation was analysed through quantitative real-time polymerase chain reaction (qPCR). RESULTS: Behavioural results revealed a significant increase in scratching frequency among the midge-sensitised animals (p < 0.05). Histological examination showed more inflammatory cytokine infiltration at the injection site of midge-sensitised mice comparing to the ones in the control group. The serum levels of IgE and IgG1 antibodies in the midge-sensitised group were significantly elevated (p < 0.05). After splenocytes were stimulated in vitro with midge extracts, the midge-sensitised group's splenocyte count significantly increased in comparison to the control group. The midge-sensitised group's qPCR data revealed a down-regulation of tumor necrosis factor alpha (TNF-α) expression and an increase in the expression of interleukin (IL)-4, IL-5, IL-10 and IL-13 but not in the control group (p < 0.05). CONCLUSIONS: In this study, an animal model of Culicoides-mouse sensitisation was successfully constructed using a two-step method. The mode of administration of the model was in good agreement with the natural immune pathway, and the immune response induced by the sensitisation of the model was similar to that produced by the bite of a midge.


Assuntos
Ceratopogonidae , Modelos Animais de Doenças , Hipersensibilidade , Animais , Ceratopogonidae/fisiologia , Camundongos , Feminino , Hipersensibilidade/veterinária , Hipersensibilidade/imunologia , Mordeduras e Picadas de Insetos/veterinária , Mordeduras e Picadas de Insetos/imunologia
4.
Pest Manag Sci ; 80(8): 4006-4012, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38527917

RESUMO

BACKGROUND: Toxins of Bacillus thuringiensis subsp. israelensis (Bti) are safer alternatives for controlling dipteran pests such as black flies and mosquitoes. The biting midge Culicoides sonorensis (Diptera: Ceratopogonidae) is an important pest of livestock in much of the United States and larval midges utilize semi-aquatic habitats which are permissive for Bti product application. Reports suggest that Bti products are ineffective at killing biting midges despite their taxonomic relation to black flies and mosquitoes. Here, we investigate the toxicity of a Bti-based commercial insecticide and its active ingredient in larval Culicoides sonorensis. A suspected mechanism of Bti tolerance is an acidic larval gut, and we used a pH indicator dye to examine larval Culicoides sonorensis gut pH after exposure to Bti. RESULTS: The lethal concentration to kill 90% (LC90) of larvae of the commercial product (386 mg/L) was determined to be almost 10 000 times more than that of some mosquito species, and no concentration of active ingredient tested achieved 50% larval mortality. The larval gut was found to be more acidic after exposure to Bti which inhibits Bti toxin activity. By comparison, 100% mortality was achieved in larval Aedes aegypti at the product's label rate for this species and mosquito larvae had alkaline guts regardless of treatment. Altering the larval rearing water to alkaline conditions enhanced Bti efficacy when using the active ingredient. CONCLUSION: We conclude that Bti is not practical for larval Culicoides sonorensis control at the same rates as mosquitos but show that alterations or additives to the environment could make the products more effective. © 2024 Society of Chemical Industry.


Assuntos
Ceratopogonidae , Trato Gastrointestinal , Larva , Animais , Ceratopogonidae/efeitos dos fármacos , Ceratopogonidae/fisiologia , Concentração de Íons de Hidrogênio , Larva/crescimento & desenvolvimento , Larva/efeitos dos fármacos , Trato Gastrointestinal/efeitos dos fármacos , Bacillus thuringiensis/química , Inseticidas/farmacologia , Toxinas de Bacillus thuringiensis
5.
Virus Genes ; 60(3): 325-331, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38492201

RESUMO

Whole-genome sequencing of a virus isolated from Culicoides biting midges in southern Japan in 2020 revealed that it is a strain of Balagodu virus (BLGV; genus Orthobunyavirus; family Peribunyaviridae; order Bunyavirales). A solitary instance of BLGV isolation occurred in India in 1963. All assembled segments comprise complete protein-coding sequences that are similar to those of other orthobunyaviruses. The consensus 3'- and 5'-terminal sequences of orthobunyaviruses' genomic RNAs are also conserved in the Japanese BLGV strain. Here, we update the geographic distribution of BLGV and provide its complete sequence, contributing to the clarification of orthobunyavirus phylogeny.


Assuntos
Genoma Viral , Orthobunyavirus , Filogenia , Sequenciamento Completo do Genoma , Japão , Genoma Viral/genética , Orthobunyavirus/genética , Orthobunyavirus/isolamento & purificação , Orthobunyavirus/classificação , Animais , RNA Viral/genética , Ceratopogonidae/virologia , Infecções por Bunyaviridae/virologia
6.
J Med Entomol ; 61(3): 756-763, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38470211

RESUMO

Biting midges in the genus Culicoides Latreille (Diptera: Ceratopogonidae) are known to transmit many pathogens of veterinary and medical concern. Although much work has been done globally and in certain regions of North America, Culicoides spp. research in rural Appalachia is limited. To begin characterizing the distribution and community structure of Culicoides spp. in Appalachia, we surveyed 2 distinct sites in the Ridge and Valley ecoregion of northeastern Tennessee, USA, from April 2021-September 2021. Culicoides spp. were sampled using 2 methods: Centers for Disease Control ultraviolet LED light traps and potential larval habitat substrate collection (coupled with water chemistry values). Site 1 was dominated by natural features, and Site 2 was a beef cattle operation. During 96 trap nights, a total of 1,568 Culicoides were collected, representing 24 species. Site 1 yielded the highest diversity, with 24 species, while Site 2 yielded 12 species. Overall, the most abundant species in light traps were C. stellifer Coquillett (44%), C. bergi Cochrane (18%), C. haematopotus Malloch (12%), and C. debilipalpis Lutz (11%). From substrate sampling, 8 species were identified. Culicoides haematopotus was the most abundant and was collected during each sampling period. Water chemistry values taken at the time of substrate collection were not significantly related to which Culicoides spp. emerged from a given substrate. Our results indicate a diverse community of Culicoides spp. in our study area, however, further work is needed to identify Culicoides species composition across a variety of landscapes in Appalachia and inform research on vector presence and associated vector disease dynamics.


Assuntos
Ceratopogonidae , Animais , Ceratopogonidae/classificação , Tennessee , Distribuição Animal , Biodiversidade
7.
Sci Total Environ ; 919: 170844, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38342470

RESUMO

A detailed understanding of microplastics (MPs) behaviour in freshwater ecosystems is crucial for a proper ecological assessment. This includes the identification of significant transport pathways and net accumulation zones, considering their inherent, and already proven influence on aquatic ecosystems. Bioavailability of toxic agents is significantly influenced by macroinvertebrates' behaviour, such as bioturbation and burrowing, and their prior exposure history. This study investigates the effect of bioturbation activity of Chironomus riparius Meigen, 1804 on the vertical transfer of polyethylene MPs ex-situ. The experimental setup exposes larvae to a scenario of 10× the environmentally relevant high concentration of MPs (80 g m-2). Bioturbation activity was estimated using sediment profile imaging with luminophore tracers. This study demonstrated that spherical MPs are vertically transferred in the sediment due to the bioturbation activity of C. riparius larvae and that their presence influences the intensity of the bioturbation activity over time. The present findings provide a noteworthy contribution to the understanding of the relationship between ecosystem engineers and the dispersion and accumulation of MPs within freshwater ecosystems.


Assuntos
Chironomidae , Poluentes Químicos da Água , Animais , Microplásticos , Plásticos , Ecossistema , Larva , Polietileno , Poluentes Químicos da Água/análise , Sedimentos Geológicos
8.
J Med Entomol ; 61(2): 389-399, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38342485

RESUMO

Forcipomyia (Lasiohelea) (Meigen, Diptera: Ceratopogonidae) penguin sp. nov. is described and illustrated based on male specimens from China. It is characterized by the approximately rectangular aedeagus, which is longitudinally split in the middle, with the apices slightly bending to the outside, making it into the shape of a hook; bilobed aedeagus is very closely connected. The description is provided using scanning electron microscopes, light microscopes, and camera lucida drawing. The specimens were collected from woods near a pond in Liping County, Guizhou Province. We provide both keys to male and female of Forcipomyia (Lasiohelea) taiwana species group in China.


Assuntos
Ceratopogonidae , Masculino , Feminino , Animais , China
9.
J Med Entomol ; 61(2): 465-472, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38297491

RESUMO

Bluetongue virus (BTV) and epizootic hemorrhagic disease virus (EHDV) are arthropod-borne viruses that are transmitted by biting midges in the genus Culicoides (Diptera: Ceratopogonidae) and can cause hemorrhagic disease in certain ruminants. The objectives of this study were to measure the incidence of BTV and EHDV infections in captive white-tailed deer herd as well as tissues and corresponding presence of Culicoides midges at a location near Clinton, LA. During a 7-yr study with yearly outbreaks of hemorrhagic disease in the deer herd, 15 species of Culicoides were captured using Centers for Disease Control (CDC) black light traps. Reverse transcriptase quantitative polymerase chain reaction (PCR) was performed to screen for BTV and EHDV in pools of midges and tissues of deer. From 2012 to 2018, 1,711 pools of midges representing 24,859 specimens were tested, and specimens from 5 of the 15 collected species (Culicoides debilipalpis, Culicoides stellifer, Culicoides venustus, Culicoides haematopotus, and Culicoides crepuscularis) were found to be PCR positive for BTV and EHDV. Most of the BTV-positive pools of biting midges were from specimens of C. debilipalpis and C. stellifer, and most of the EHDV-positive pools were from specimens of C. venustus and C. stellifer. During the 7-yr period, 112 white-tailed deer that died at the study location were PCR positive for BTV or EHDV: detected BTV serotypes were 10 and 12 and EHDV serotypes were 1, 2, and 6. There was a significant increase in BTV/EHDV antibody prevalence in white-tailed deer during the study; antibody-positive rates increased from 15% to 78% in the deer herd of approximately 100 animals.


Assuntos
Vírus Bluetongue , Bluetongue , Ceratopogonidae , Cervos , Vírus da Doença Hemorrágica Epizoótica , Infecções por Reoviridae , Doenças dos Ovinos , Viroses , Animais , Ovinos , Estudos Prospectivos , Incidência , Insetos Vetores , Ruminantes
10.
Insects ; 15(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38249029

RESUMO

Forcipomyia (Lasiohelea) taiwana, a small bloodsucking midge, thrives in moderately moist habitats and is commonly found in grassy and bushy areas at an elevation below 250 m. This species exhibits a diurnal biting pattern and shows a marked preference for human blood. Although not known to transmit arthropod-borne diseases, the bites of F. taiwana can induce severe allergic reactions in some individuals. As a significant nuisance in Taiwan, affecting both daily life and the tourism industry, comprehensive studies on its population genetics across different geographical regions remain scarce. The central mountain ranges in Taiwan, comprising more than two hundred peaks above 3000 m in elevation, extend from the north to the south of the island, creating distinct eastern and western geographical divisions. This study utilizes microsatellite markers to explore the genetic differentiation of F. taiwana populations located in the eastern and western regions of the mountain ranges. Our findings reveal substantial genetic differentiation among populations inhabiting Taiwan's western region compared to those in the eastern region. This indicates that the topographical barriers presented by the mountain ranges significantly restrict gene flow, particularly given the species' limited active flight ability and habitat preferences. Although passive dispersal mechanisms, like wind or human activity, could contribute, this study concludes that the gene flow of F. taiwana between the western and eastern regions is primarily influenced by topographical constraints.

11.
Microbiol Spectr ; 12(1): e0283023, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38095510

RESUMO

IMPORTANCE: Ambrosia gall midges are endophagous insect herbivores whose larvae live enclosed within a single gall for their entire development period. They may exhibit phytomycetophagy, a remarkable feeding mode that involves the consumption of plant biomass and mycelia of their cultivated gall symbionts. Thus, AGMs are ideal model organisms for studying the role of microorganisms in the evolution of host specificity in insects. However, compared to other fungus-farming insects, insect-fungus mutualism in AGMs has been neglected. Our study is the first to use DNA metabarcoding to characterize the complete mycobiome of the entire system of the gall-forming insects as we profiled gall surfaces, nutritive mycelia, and larvae. Interestingly, larval mycobiomes were significantly different from their nutritive mycelia, although Botryosphaeria dothidea dominated the nutritive mycelia, regardless of the evolutionary separation of the tribes studied. Therefore, we confirmed a long-time hypothesized paradigm for the important evolutionary association of this fungus with AGMs.


Assuntos
Dípteros , Micobioma , Animais , Larva , Ambrosia , Insetos
12.
Environ Entomol ; 53(1): 57-66, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38156653

RESUMO

Chironomid nonbiting midges are common in many waterbodies, occurring at high densities in sediment and also when flying adults emerge. Although important for food webs and ecosystem processes, the mass emergences of chironomid adults make some species nuisance pests. As part of an effort to develop "push-pull" strategies for managing midge populations, we investigated the importance of visual and chemical cues used by gravid females when selecting sites for oviposition. Field and laboratory oviposition choice tests with Chironomus riparius (Meigen) were used to assess the attractiveness of dark container colors and polarized light for females seeking water for egg laying. Females were not sensitive to increased intensity of polarized light, but they laid fewer eggs in containers with white color above the water's edge but black below the surface. A disruptive pattern of vertical black and white stripes at the water's edge reduced egg laying to a similar degree as white. To investigate the importance of olfactory or gustatory cues in oviposition decisions, we tested 3 potential chemical repellents (damaged larvae simulating predator presence, azadiractin, and picaridin) and 5 potential attractants (a tannin-molasses mixture, leaf detritus, live Hydrilla plants, periphyton, and fermented alfalfa infusions used to bait mosquito oviposition traps). Chemical cues appeared to play a weak role, if any, in oviposition choices. Onlyazadiractin (0.02 and 0.11 ppm) reduced the number of egg ropes deposited, but the mechanism may have been from mechanical trapping and drowning, not deterrence.


Assuntos
Chironomidae , Feminino , Animais , Ecossistema , Oviposição , Sinais (Psicologia) , Larva , Água
13.
J Exp Biol ; 226(24)2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37942703

RESUMO

Most mosquito and midge species use hearing during acoustic mating behaviors. For frog-biting species, however, hearing plays an important role beyond mating as females rely on anuran calls to obtain blood meals. Despite the extensive work examining hearing in mosquito species that use sound in mating contexts, our understanding of how mosquitoes hear frog calls is limited. Here, we directly investigated the mechanisms underlying detection of frog calls by a mosquito species specialized on eavesdropping on anuran mating signals: Uranotaenia lowii. Behavioral, biomechanical and neurophysiological analyses revealed that the antenna of this frog-biting species can detect frog calls by relying on neural and mechanical responses comparable to those of non-frog-biting species. Our findings show that in Ur. lowii, contrary to most species, males do not use sound for mating, but females use hearing to locate their anuran host. We also show that the response of the antennae of this frog-biting species resembles that of the antenna of species that use hearing for mating. Finally, we discuss our data considering how mosquitoes may have evolved the ability to tap into the communication system of frogs.


Assuntos
Culicidae , Masculino , Animais , Feminino , Culicidae/fisiologia , Anuros/fisiologia , Audição , Vocalização Animal , Som
14.
J Econ Entomol ; 116(6): 2009-2013, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-37878788

RESUMO

Soybean gall midge, Resseliella maxima Gagné, was recently identified as a new species causing significant injury to soybean and is currently found in 164 counties across 7 midwestern states (NE, IA, SD, MN, MO, ND, and KS). Infestation of soybean begins in late spring, when adults emerge from last year's soybean field. Infestation of a new soybean crop depends on the presence of fissures which start to form at the base of the soybean plant around the V2 stage. Field observations indicate that these fissures are only present below the cotyledonary nodes or in the area within 3-5 cm above the soil surface. To determine the importance of these fissures for R. maxima infestation and plant injury, hilling or the movement of the soil to cover the base of soybean plants at the V2-V3 stage was compared with the standard practice (no-hilling). Field studies were conducted at 3 sites in east-central Nebraska during the 2021 growing season. The results showed a significant reduction in the frequency of infested plants, larval number per plant, and plant injury for hilled compared to no-hill treatment. This reduction in the presence of larvae and plant injury corresponded with a significantly greater yield for hilled compared to the no-hill treatment. These results highlight the importance of fissures on soybean for R. maxima adult infestation as well as the potential for hilling to be used as a management strategy for R. maxima.


Assuntos
Dípteros , Animais , Glycine max , Larva , Solo , Nebraska
15.
Viruses ; 15(10)2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37896885

RESUMO

Viruses that are transmitted by arthropods, or arboviruses, have evolved to successfully navigate both the invertebrate and vertebrate hosts, including their immune systems. Biting midges transmit several arboviruses including vesicular stomatitis virus (VSV). To study the interaction between VSV and midges, we characterized the transcriptomic responses of VSV-infected and mock-infected Culicoides sonorensis cells at 1, 8, 24, and 96 h post inoculation (HPI). The transcriptomic response of VSV-infected cells at 1 HPI was significant, but by 8 HPI there were no detectable differences between the transcriptome profiles of VSV-infected and mock-infected cells. Several genes involved in immunity were upregulated (ATG2B and TRAF4) or downregulated (SMAD6 and TOLL7) in VSV-treated cells at 1 HPI. These results indicate that VSV infection in midge cells produces an early immune response that quickly wanes, giving insight into in vivo C. sonorensis VSV tolerance that may underlie their permissiveness as vectors for this virus.


Assuntos
Arbovírus , Ceratopogonidae , Estomatite Vesicular , Animais , Transcriptoma , Ceratopogonidae/genética , Estomatite Vesicular/genética , Insetos Vetores , Vesiculovirus/genética , Arbovírus/genética , Vírus da Estomatite Vesicular Indiana/genética
16.
Environ Entomol ; 52(6): 990-997, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37715509

RESUMO

The soybean gall midge, Resseliella maxima Gagné (Diptera: Cecidomyiidae), is a pest that injures soybeans in the Midwest United States. Little is known about the natural enemies of R. maxima or the potential for biological control. Therefore, we performed a 2-yr survey in Minnesota to examine the predator community associated with R. maxima infestations. We found that Orius insidiosus (Say) (Heteroptera: Anthocoridae) and Pterostichus melanarius (Illiger) (Coleoptera: Carabidae) were the most common foliar- and ground-foraging predators, respectively. Some of the commonly encountered predator species were tested in laboratory predation experiments. Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae) and O. insidiosus represented the foliar-foraging predators tested, and H. axyridis consumed significantly more R. maxima larvae than O. insidiosus. Among the ground-foraging predators, 4 carabids were tested. Poecilus lucublandus (Say) (Coleoptera: Carabidae) and Pt. melanarius consumed significantly more R. maxima larvae than Poecilus chalcites (Say) (Coleoptera: Carabidae) and Bembidion quadrimaculatum oppositum (Say) (Coleoptera: Carabidae). We conclude that Pt. melanarius should receive further attention as a potential biological control agent of R. maxima, due to its high abundance in the soybean fields in this study, temporal overlap with the pest, and high propensity to feed on the pest.


Assuntos
Besouros , Dípteros , Heterópteros , Animais , Glycine max , Minnesota , Larva , Nematóceros , Comportamento Predatório
17.
Viruses ; 15(9)2023 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-37766224

RESUMO

Midges are widely distributed globally and can transmit various human and animal diseases through blood-sucking. As part of this study, 259,300 midges were collected from four districts in Yunnan province, China, to detect the viral richness and diversity using metavirome analysis techniques. As many as 26 virus families were detected, and the partial sequences of bluetongue virus (BTV), dengue virus (DENV), and Getah virus (GETV) were identified by phylogenetic analysis and PCR amplification. Two BTV gene fragments, 866 bps for the VP2 gene of BTV type 16 and 655 bps for the VP5 gene of BTV type 21, were amplified. The nucleotide sequence identities of the two amplified BTV fragments were 94.46% and 98.81%, respectively, with two classical BTV-16 (GenBank: JN671907) and BTV-21 strains (GenBank: MK250961) isolated in Yunnan province. Furthermore, the BTV-16 DH2021 strain was successfully isolated in C6/36 cells, and the peak value of the copy number reached 3.13 × 107 copies/µL after five consecutive BHK-21 cell passages. Moreover, two 2054 bps fragments including the E gene of DENV genotype Asia II were amplified and shared the highest identity with the DENV strain isolated in New Guinea in 1944. A length of 656 bps GETV gene sequence encoded the partial capsid protein, and it shared the highest identity of 99.68% with the GETV isolated from Shandong province, China, in 2017. Overall, this study emphasizes the importance of implementing prevention and control strategies for viral diseases transmitted by midges in China.


Assuntos
Alphavirus , Vírus Bluetongue , Animais , Humanos , China/epidemiologia , Filogenia , Ásia , Proteínas do Capsídeo/genética
18.
Animals (Basel) ; 13(15)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37570311

RESUMO

Culicoides biting midges (Diptera: Ceratopogonidae) are hematophagous flies that transmit several viruses of veterinary concern to livestock. Understanding blood feeding behaviors is integral towards identification of putative vector species and preventing the transmission of these pathogens. PCR-based blood meal analysis was conducted on 440 blood-engorged Culicoides midges collected in northeastern Kansas, with 316 (71.8%) returning non-human vertebrate identifications at the ≥95% identity match level. Broadly, Culicoides sonorensis, Culicoides stellifer, and Culicoides variipennis were found to feed heavily on mammalian hosts, while Culicoides crepuscularis and Culicoides haematopotus fed on avian hosts. The blood meals in all specimens were graded prior to DNA extraction to determine whether blood meal size or digestion status significantly impacted the likelihood of a quality host match. Size had a significant impact on the likelihood of a quality match at grades 3-5, whereas digestion only significantly impacted outcomes at the most extreme grade. These vector-host dynamics have not previously been studied in Culicoides collected in Kansas, which represents a unique tallgrass prairie biome within the United States that is heavily interspersed with livestock operations. Based on these data, the highly abundant species C. crepuscularis and C. haematopotus are unlikely to be major vectors of mammalian viruses.

19.
Curr Res Insect Sci ; 4: 100064, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37575317

RESUMO

Proteins in saliva of gall-forming insect larvae govern insect-host plant interactions. Contarinia nasturtii, the swede midge, is a pest of brassicaceous vegetables (cabbage, cauliflower, broccoli) and canola. We examined the salivary gland (SG) transcriptome of first instar larvae reared on Brassica napus and catalogued genes encoding secreted proteins that may contribute to the initial stages of larval establishment, the synthesis of plant growth hormones, extra-oral digestion and evasion of host defenses. A significant portion of the secreted proteins with unknown functions were unique to C. nasturtii and were often members of larger gene families organized in genomic clusters with conservation patterns suggesting that they are undergoing selection.

20.
Bull Entomol Res ; 113(5): 645-657, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37578039

RESUMO

Galls function as provide shelter for gall inducers, guarding them against their natural enemies. Previous research has illuminated the interactions between galls, gall inducers, and their corresponding parasitoids within various caltrop plants. However, less is known about these relationships within Nitraria sibirica, particularly regarding the efficacy of parasitism. Therefore, this study aimed to identify the morphometric relationships among the swollen galls, gall inducers, and their parasitoids. Two species of gall inducers and three species of parasitoids were obtained from the swollen galls of N. sibirica. The correlations of the parasitization indexes, the lifespan of gall inhabitants, and temperature and the morphometric relationships between the galls and their inhabitants were analyzed. The dominant gall inducer identified was Contarinia sp. (Diptera: Cecidomyiidae). Furthermore, it was observed that three solitary parasitoids attacked Contarinia sp. in the swollen galls, with only Eupelmus gelechiphagus acting as an idiobiont ectoparasitoid. The dominant parasitoids were Platygaster sp. and Cheiloneurus elegans at sites 1 and 2, respectively, with Platygaster sp. displaying greater abundance than C. elegans in the swollen galls. The lifespan of the gall inhabitants shortened gradually as the temperature increased. Moreover, the optimal number of gall chambers ranged from two to four per swollen gall with maximized fitness, which can be considered the optimal population density for the gall inducer Contarinia sp. Morphometric analysis exhibited a strong linear correlation between gall size and chamber number or the number of gall inhabitants, as well as a weak correlation between gall size and body size of the primary inhabitants of swollen galls. Our results highlight the importance of the biological investigation of parasitoids and gall inducers living in closed galls with multiple chambers and may pave the way for potential application in biological control.


Assuntos
Dípteros , Himenópteros , Animais , Tumores de Planta , Caenorhabditis elegans , Biologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...