RESUMO
ABSTRACT Congeneric species have similarities in phenotypic and ecological traits. The sympatry of congeneric species constitutes an opportunity for studies on coexistence. Two bird species of Mimidae, the native Tropical mockingbird, Mimus gilvus Oberholser, 1919, and the restinga invader Chalk-browed mockingbird, Mimus saturninus (Lichtenstein, 1823), currently occur in sympatry across the sandy-coastal ecosystem (restinga) of Espírito Santo state, Southeastern Brazil. We studied the spatial distribution of Tropical mockingbird and Chalk-browed mockingbird to understand the degree of competition across a preserved and urban gradient. We sampled 1,451 sampling units across a preserved and urban landscape in a coastal area of southeastern Brazil. The best-fitting model for abundance (Punctual Abundance Index) included urbanization index, distance from the coast, and distance from the closest protected area, which explained 63% and 97% of the abundance of Tropical mockingbird and Chalk-browed mockingbird, respectively. The species exhibited a segregated spatial pattern at small scale, indicating that both species are avoiding one another. Chalk-browed mockingbird showed ecological plasticity in modified environments, whereas Tropical mockingbird was more sensitive to urbanization. We suggested that the coexistence of these species is associated with resource partitioning. Monitoring Tropical mockingbird populations may be a proxy for the assessment of habitat quality and restoration success in the highly threatened restinga ecosystem.
RESUMO
The complete mitochondrial genomes of two important octopus species from the eastern Pacific were sequenced, obtaining their complete nucleotide sequences. Octopus mimus is the most important commercially catched species along the eastern Pacific, from Mexico to Chile, whereas 'Octopus' fitchi is a pigmy species with uncertain taxonomic genus. The mitogenomes of Octopus mimus and 'Octopus' fitchi were 15,696 and 15,780 base pairs (bp) in length with an A + T composition of 75.5% and 75.8%, respectively. Each genome contains 13 protein-coding genes, 22 tRNA genes, and two rRNA genes, as well as a control region. Gene order is maintained as reported for other species of the Octopodidae. The phylogenetic analysis based on the concatenated thirteen protein-coding genes confirms that O. mimus belongs to the genus Octopus, which is supported by the genetic distance (11-16%) whereas the position of 'O'. fitchi within this group it is not supported. The analysis also indicated that the phylogenetic position of 'O'. fitchi is closer to Callistoctopus than to the Cistopus or the Amphioctopus clades. Based on the tree topology and the high genetic distance observed (24-25%), we suggest that 'O'. fitchi might represent a different genus.
Assuntos
DNA Mitocondrial/genética , Genoma Mitocondrial/genética , Octopodiformes/genética , Animais , Composição de Bases/genética , Sequência de Bases/genética , Ordem dos Genes , Mitocôndrias/genética , Fases de Leitura Aberta , Oceano Pacífico , Filogenia , RNA Ribossômico/genética , RNA de Transferência/genéticaRESUMO
Sexual maturation and reproduction influence the status of a number of physiological processes and consequently the ecology and behaviour of cephalopods. Using Octopus mimus as a study model, the present work was focused in the changes in biochemical compound and activity that take place during gonadal maturation of females and its consequences in embryo and hatchlings characteristics. To do that, a total of 31 adult females of O. mimus were sampled to follow metabolites (ovaries and digestive gland) and digestive enzyme activities (alkaline and acidic proteases) during physiological and functional maturation. Levels of protein (Prot), triacylglyceride (TG), cholesterol (Chol), glucose (Glu), and glycogen (Gly) were evaluated. Groups of eggs coming from mature females were also sampled along development and after hatching (paralarvae of 1 and 3 days old) to track metabolites (Prot, TG, Glu, Gly, TG, Chol), digestive enzymes activity (Lipase, alkaline proteases, and acidic proteases), and antioxidant/detoxification defence indicators with embryos development. Based on the data obtained, we hypothesized that immature females store Chol in their ovaries, probably from the food they ingested, but switch to TG reserves at the beginning of the maturation processes. At the same time, results suggest that these processes were energetically supported by Glu, obtained probably from Gly breakdown by gluconeogenic pathways. Also, was observed that embryos metabolites and enzyme activities (digestive and antioxidant/detoxification enzymes) where maintained without significant changes and in a low activity during the whole organogenesis, meaning that organogenesis is relatively not energetically costly. In contrast, after organogenesis, a mobilization of nutrients and activation of the metabolic and digestive enzymes was observed, together with increments in consumption of yolk and Gly, and reduction in lipid peroxidation. Derived from our results, we also have the hypothesis that reactive oxygen species (ROS) were produced during the metabolic processes that occurs in ovarian maturation. Those ROS may be in part transferred to the egg provoking a ROS charge to the embryos. The elimination of ROS in embryos started when the activity of the heart and the absorption of the yolk around stages XIV and XV were evident. Altogether, these processes allowed the paralarvae to hatch with buffered levels of ROS and with the antioxidant defence mechanisms ready to support further ROS production derived from paralarvae higher life stage requirements (feeding and metabolic demands).
RESUMO
Digestive physiology is one of the bottlenecks of octopus aquaculture. Although, there are successful experimentally formulated feeds, knowledge of the digestive physiology of cephalopods is fragmented, and focused mainly on Octopus vulgaris. Considering that the digestive physiology could vary in tropical and sub-tropical species through temperature modulations of the digestive dynamics and nutritional requirements of different organisms, the present review was focused on the digestive physiology timing of Octopus maya and Octopus mimus, two promising aquaculture species living in tropical (22-30°C) and sub-tropical (15-24°C) ecosystems, respectively. We provide a detailed description of how soluble and complex nutrients are digested, absorbed, and assimilated in these species, describing the digestive process and providing insight into how the environment can modulate the digestion and final use of nutrients for these and presumably other octopus species. To date, research on these octopus species has demonstrated that soluble protein and other nutrients flow through the digestive tract to the digestive gland in a similar manner in both species. However, differences in the use of nutrients were noted: in O. mimus, lipids were mobilized faster than protein, while in O. maya, the inverse process was observed, suggesting that lipid mobilization in species that live in relatively colder environments occurs differently to those in tropical ecosystems. Those differences are related to the particular adaptations of animals to their habitat, and indicate that this knowledge is important when formulating feed for octopus species.
RESUMO
The extracellular subunit of the major histocompatibility complex MHCIIß plays an important role in the recognition of pathogens and the initiation of the adaptive immune response of vertebrates. It is widely accepted that pathogen-mediated selection in combination with neutral micro-evolutionary forces (e.g. genetic drift) shape the diversity of MHCIIß, but it has proved difficult to determine the relative effects of these forces. We evaluated the effect of genetic drift and balancing selection on MHCIIß diversity in 12 small populations of Galápagos mockingbirds belonging to four different species, and one larger population of the Northern mockingbird from the continental USA. After genotyping MHCIIß loci by high-throughput sequencing, we applied a correlational approach to explore the relationships between MHCIIß diversity and population size by proxy of island size. As expected when drift predominates, we found a positive effect of population size on the number of MHCIIß alleles present in a population. However, the number of MHCIIß alleles per individual and number of supertypes were not correlated with population size. This discrepancy points to an interesting feature of MHCIIß diversity dynamics: some levels of diversity might be shaped by genetic drift while others are independent and possibly maintained by balancing selection.
Assuntos
Genes MHC da Classe II , Deriva Genética , Passeriformes/genética , Seleção Genética , Animais , Equador , Variação Genética , Genética Populacional , Genótipo , Ilhas , Densidade DemográficaRESUMO
Introduced parasites threaten native host species that lack effective defenses. Such parasites increase the risk of extinction, particularly in small host populations like those on islands. If some host species are tolerant to introduced parasites, this could amplify the risk of the parasite to vulnerable host species. Recently, the introduced parasitic nest fly Philornis downsi has been implicated in the decline of Darwin's finch populations in the Galápagos Islands. In some years, 100% of finch nests fail due to P. downsi; however, other common host species nesting near Darwin's finches, such as the endemic Galápagos mockingbird (Mimus parvulus), appear to be less affected by P. downsi. We compared effects of P. downsi on mockingbirds and medium ground finches (Geospiza fortis) on Santa Cruz Island in the Galápagos. We experimentally manipulated the abundance of P. downsi in nests of mockingbirds and finches to measure the direct effect of the parasite on the reproductive success of each species of host. We also compared immunological and behavioral responses by each species of host to the fly. Although nests of the two host species had similar parasite densities, flies decreased the fitness of finches but not mockingbirds. Neither host species had a significant antibody-mediated immune response to P. downsi. Moreover, finches showed no significant increase in begging, parental provisioning, or plasma glucose levels in response to the flies. In contrast, parasitized mockingbird nestlings begged more than nonparasitized mockingbird nestlings. Greater begging was correlated with increased parental provisioning behavior, which appeared to compensate for parasite damage. The results of our study suggest that finches are negatively affected by P. downsi because they do not have such behavioral mechanisms for energy compensation. In contrast, mockingbirds are capable of compensation, making them tolerant hosts, and a possible indirect threat to Darwin's finches.
Assuntos
Tentilhões/fisiologia , Passeriformes/fisiologia , Animais , Equador , Monitoramento Ambiental , Tentilhões/parasitologia , Ilhas , Parasitos , Passeriformes/parasitologiaRESUMO
Introgression of genes through hybridization has been proposed to be an important driver of speciation, but in animals this has been shown only in relatively few cases until recently. Additionally, introgressive hybridization among non-sister species leads to a change in the gene tree topology of the concerned loci and thus complicates phylogenetic reconstruction. However, such cases of ancient introgression have been very difficult to demonstrate in birds. Here, we present such an example in an island bird subspecies, the Genovesa mockingbird (Mimus parvulus bauri). We assessed phylogenetic relationships and population structure among mockingbirds of the Galápagos archipelago using mitochondrial and nuclear DNA sequences, autosomal microsatellites, and morphological measurements. Mitochondrial haplotypes of Genovesa mockingbirds clustered closely with the haplotypes from two different species, San Cristóbal (M. melanotis) and Española (M. macdonaldi) mockingbirds. The same pattern was found for some haplotypes of two nuclear gene introns, while the majority of nuclear haplotypes of Genovesa mockingbirds were shared with other populations of the same species (M. parvulus). At 26 autosomal microsatellites, Genovesa mockingbirds grouped with other M. parvulus populations. This pattern shows that Genovesa mockingbirds contain mitochondria and some autosomal alleles that have most likely introgressed from M. melanotis into a largely M. parvulus background, making Genovesa mockingbirds a lineage of mixed ancestry, possibly undergoing speciation. Consistent with this hypothesis, mockingbirds on Genovesa are more clearly differentiated morphologically from other M. parvulus populations than M. melanotis is from M. parvulus.
Assuntos
Evolução Molecular , Genética Populacional , Passeriformes/classificação , Filogenia , Animais , Núcleo Celular/genética , DNA Mitocondrial/genética , Equador , Haplótipos , Hibridização Genética , Repetições de Microssatélites , Passeriformes/anatomia & histologia , Passeriformes/genética , Análise de Sequência de DNARESUMO
Understanding how birds use vegetation to obtain food resources has implications for habitat conservation and management. Restinga is a poorly known and threatened tropical habitat, associated to the Atlantic forest, that could benefit from this kind of information to know which plants can be used and dispersed by birds that can help on the maintenance of this habitat. Frugivorous and insectivorous birds are important components of tropical ecosystems, such as restinga. To provide more information regarding the ecology of restinga, we studied the feeding behavior and spatial use of this vegetation by birds at Restinga de Jurubatiba National Park, southeastern Brazil. We found that feeding behavior was similar to that recorded for the same species in other vegetation types. In addition, spatial use of the restinga vegetation by the most abundant species did not overlap greatly, except for two insectivorous species that used different foraging maneuvers and two frugivorous birds that foraged in flocks. The two most abundant species were generalists in their diet and were capable of feeding at the ground level on sand substrate.
O conhecimento das estratégias de uso da vegetação pela fauna para forrageio tem implicações para conservação e manejo de habitats. Restinga é um ambiente tropical, associado à Mata Atlântica, ameaçado e ainda pouco conhecido que poderia se beneficiar desse tipo de informação para conhecer quais espécies de plantas podem ser utilizadas e dispersas por aves que atuem na manutenção deste habitat. Aves frugívoras e insetívoras são importantes componentes de ecossistemas tropicais, como a restinga. Para fornecer mais informações sobre a ecologia da restinga, nós estudamos o comportamento de forrageio e o uso do espaço das aves no Parque Nacional da Restinga de Jurubatiba, sudeste do Brasil. Nós encontramos que os comportamentos de forrageio foram similares àqueles registrados para as mesmas espécies em outros ambientes. Além disso, o uso do espaço da vegetação de restinga pelas espécies mais abundantes não apresentou grande sobreposição, exceto por duas espécies insetívoras que usaram manobras de forrageio diferentes e duas aves frugívoras que forragearam em bando. As duas espécies mais abundantes foram generalistas em suas dietas e foram capazes de forragear no chão sobre areia nua.
Assuntos
Biodiversidade , Aves , Comportamento/classificação , Ecossistema , Flora , Fauna/efeitos adversos , InsetosRESUMO
Restingas are considered stressful habitats associated with the Brazilian Atlantic forest, and their ecological interactions are poorly known. The goal of the present study was to determine the potential role of frugivorous birds as seed dispersers in a restinga habitat. Data were collected in Parque Nacional da Restinga de Jurubatiba, southeastern Brazil, where the main physiognomy (Open Clusia Formation) is characterized by the presence of patches of vegetation covering 20 to 48 % of the sandy soil and reaching a height of 5 m. Birds were captured with mist nets (12 x 2.5 m; 36 mm mesh; 1,680 net-hrs) and had their fecal and regurgitate samples inspected for seeds. Six plant species found in these bird samples were studied. The germination of seeds obtained from plants was compared to those from the birds. Both groups of seeds were set on Petri dishes at room temperature and washed when infected with fungi. In general, there was no effect on germination rate, and the effect on germination speed was negative. Germination of seeds from Pilosocereus arrabidae treated by the birds seemed to be influenced by storage of defecated seeds, while few Miconia cinnamomifolia seeds both from plants and from birds germinated. Ocotea notata presented a great variation in time to the onset of germination, perhaps an advantage against dissecation. Aechmea nudicaulis, Clusia hilariana and Erythroxylum subsessile probably take advantage of the arrival to favorable microhabitats, not by the gut effect on the seeds. All plant species studied are numerically important for the community and some of them are main actors in the succession of vegetation patches. Among the birds, Mimus gilvus is an important resident species, endemic to restingas in Brazil, while Turdus amaurochalinus is a visitor and may be important for plants that fructify during its passage by the study site. Although the effect of pulp removal was only tested for one species (Achmea nudicaulis)...
Las restingas se consideran hábitats estresantes asociados al bosque del Atlántico brasileño y sus ecológicas se conocen poco. El objetivo principal del presente trabajo fue determinar el papel potencial de las aves frugívoras como dispersores de plantas en un hábitat de restinga. La información se recolectó en el Parque Nacional da Restinga de Jurubatiba, Brasil. Las aves se capturaron con redes de niebla y sus muestras fecales y de regurgitación se inspeccionaron en busca de semillas. Estudiamos seis especies de plantas de estas muestras. En general, el efecto del paso por el sistema digestivo de las aves sobre el porcentaje de germinación fue nulo (y negativo en la velocidad de germinación). Todas las especies de plantas estudiadas son numéricamente importantes a la comunidad y algunas de ellas tienen papeles principales en la sucesión de parches de vegetación. Entre las aves, Mimus gilvus es una especie residente importante, endémica de tales hábitats en Brasil, mientras que Turdus amaurochalinus es una especie visitante y puede ser importante para las plantas que fructifican durante su paso por el sitio del estudio. El efecto general de los pájaros en la dispersión de semillas en la restinga es probablemente positivo.