Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
1.
Adv Healthc Mater ; : e2401037, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38885525

RESUMO

Precision material design directed by cell biological processes represents a frontier in developing clinically translatable regenerative technologies. While understanding cell-material interactions on multipotent progenitor cells yields insights on target tissue differentiation, equally if not more important is the quantification of indirect multicellular interactions. In this work, the relationship of two material properties, phosphate content and stiffness, of a nanoparticulate mineralized collagen glycosaminoglycan scaffold (MC-GAG) in the expression of an endogenous anti-osteoclastogenic secreted protein, osteoprotegerin (OPG) by primary human mesenchymal stem cells (hMSCs) is evaluated. The phosphate content of MC-GAG requires the type III sodium phosphate symporter PiT-1/SLC20A1 for OPG expression, correlating with ß-catenin downregulation, but is independent of the effects of phosphate ion on osteogenic differentiation. Using three stiffness MC-GAG variants that do not differ significantly by osteogenic differentiation, it is observed that the softest material elicited ≈1.6-2 times higher OPG expression than the stiffer materials. Knockdown of the mechanosensitive signaling axis of YAP, TAZ, ß-catenin and combinations thereof in hMSCs on MC-GAG demonstrates that ß-catenin downregulation increases OPG expression by 1.5-fold. Taken together, these data constitute a roadmap for material properties that can used to suppress osteoclast activation via osteoprotegerin expression separately from the anabolic processes of osteogenesis.

2.
Bioact Mater ; 40: 168-181, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38910968

RESUMO

Bone, renowned for its elegant hierarchical structure and unique mechanical properties, serves as a constant source of inspiration for the development of synthetic materials. However, achieving accurate replication of bone features in artificial materials with remarkable structural and mechanical similarity remains a significant challenge. In this study, we employed a cascade of continuous fabrication processes, including biomimetic mineralization of collagen, bidirectional freeze-casting, and pressure-driven fusion, to successfully fabricate a macroscopic bulk material known as artificial compact bone (ACB). The ACB material closely replicates the composition, hierarchical structures, and mechanical properties of natural bone. It demonstrates a lamellated alignment of mineralized collagen (MC) microfibrils, similar to those found in natural bone. Moreover, the ACB exhibits a similar high mineral content (70.9 %) and density (2.2 g/cm3) as natural cortical bone, leading to exceptional mechanical properties such as high stiffness, hardness, and flexural strength that are comparable to those of natural bone. Importantly, the ACB also demonstrates excellent mechanical properties in wet, outstanding biocompatibility, and osteogenic properties in vivo, rendering it suitable for a broad spectrum of biomedical applications, including orthopedic, stomatological, and craniofacial surgeries.

3.
Int J Hyperthermia ; 41(1): 2345382, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38843894

RESUMO

PURPOSE: The objective was to describe the technique and clinical outcome of microwave thermal ablation (MWA) and perfusion combined with synthetic bone substitutes in treating unicameral bone cysts (UBCs) in adolescents. MATERIALS AND METHODS: A total of 14 consecutive patients were enrolled by percutaneous MWA and saline irrigation combined with synthetic bone substitutes. Clinical follow-up included the assessment of pain, swelling, and functional mobility. Radiological parameters included tumor volume, physis-cyst distance, cortical thickness of the thinnest cortical bone, and the Modified Neer classification system. RESULTS: The mean follow-up was 28.9 months (26-52 months). All UBCs were primary, and all patients underwent the MWA, saline perfusion, and reconstruction combined with a synthetic bone substitute session, except for one patient (7.1%) who required a second session. All patients had good clinical results at the final follow-up. Satisfactory cyst healing was achieved in 13 cases according to radiological parameters. Tumor volume decreased from a mean of 49.7 cm3 before surgery treatment to 13.9 cm3 at the final follow-up (p < 0.01). The physis-cyst distance increased from a mean of 3.17-4.83 cm at the final follow-up (p < 0.01). Cortical thickness improved from a mean of 1.1 mm to 2.0 mm at the final follow-up (p < 0.01). According to the proposed radiological criteria, our results were considered successful (Grading I and II) in 13 patients (92.9%) at the final follow-up. CONCLUSION: Percutaneous microwave ablation combined with a bone graft substitute is a minimally invasive, effective, safe, and cost-effective approach to treating primary bone cysts in the limbs of adolescents.


Assuntos
Cistos Ósseos , Substitutos Ósseos , Micro-Ondas , Humanos , Masculino , Feminino , Adolescente , Cistos Ósseos/cirurgia , Cistos Ósseos/diagnóstico por imagem , Substitutos Ósseos/uso terapêutico , Micro-Ondas/uso terapêutico , Seguimentos , Criança , Procedimentos de Cirurgia Plástica/métodos , Adulto Jovem , Técnicas de Ablação/métodos
4.
Heliyon ; 10(9): e30279, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38711636

RESUMO

Magnesium-based composites are a focal point in biomaterials research. However, the rapid degradation rate of magnesium alloys does not align with the healing time of bone tissue. Additionally, the host reaction caused by magnesium implantation hampers its full osteogenic potential. To maintain an appropriate microenvironment, it is important to enhance both corrosion resistance and osteogenic activity of the magnesium matrix. In this study, a composite scaffold composed of mineralized collagen and magnesium alloy was utilized to investigate the regulatory effect of mineralized collagen on mouse macrophages and evaluate its impact on mouse bone marrow mesenchymal stem cells in terms of osteogenesis, immune response, and macrophage-induced osteogenic differentiation. This experiment examined the biocompatibility of mouse bone marrow mesenchymal stem cells and macrophage-induced osteogenic differentiation in vitro, and examined the expression levels of relevant pathways proteins. Magnesium calcium alloys/mineralized collagen exhibited extensive spreading, facilitated by broad and abundant pseudopodia that firmly adhered them to the material surface and promoted growth and pseudopodia formation. The findings revealed that magnesium calcium alloy/mineralized collagen scaffold materials induced osteogenic differentiation mainly through M2 polarization of macrophages. This effect was mainly mediated by promoting the integrin α2ß1-FAK-ERK1/2 signaling pathways and inhibiting the RANK signaling pathways.

5.
Biomed Mater ; 19(4)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38815596

RESUMO

As the structural basis of connective and load-bearing tissues, collagen fibers with orientation play an important role in the mechanical properties and physiological and biochemical functions of the tissues, but viable methods for preparing scaffolds with highly oriented collagenous structure still need to be further studied. In this study, pure collagen was used as printing ink to 3D printing. Harnessing oriented collagen fiber structure by 3D printing for promoting mechanical and osteogenic properties of scaffolds. The scaffolds with different printed angles and thicknesses were prepared to fit the bone defect site and realize personalized customization. The orientation assembly of collagen fibers was promoted by shear force action of 3D printing, the regular arrangement of collagen fibers and stabilization of fiber structure were promoted by pH adjustment and glutaraldehyde cross-linking, and the collagen fibers were mineralized by cyclic mineralization method. The microscopic morphology of fiber arrangement in the scaffolds were investigated by scanning electron microscopy. Results demonstrated that collagen fibers were changed from non-oriented to oriented after 3D printing. And the tensile modulus of the scaffolds with oriented collagen fibers was nine times higher than that of the scaffolds with non-oriented fibers. Moreover, the effects of oriented collagen fibers on the proliferation, differentiation and mineralization of MC3T3-E1 cells were studied by CCK-8 assay, live/dead cell staining, alkaline phosphatase activity test, and Alizarin red staining. The results indicated that cell proliferation, differentiation and mineralization were significantly promoted by oriented collagen fibers, and the cells proliferated directionally in the direction of the fibers. Taken together, mineralized collagen fiber scaffolds with oriented collagen fibers have great potential in bone tissue engineering applications.


Assuntos
Diferenciação Celular , Proliferação de Células , Colágeno , Osteoblastos , Osteogênese , Impressão Tridimensional , Engenharia Tecidual , Alicerces Teciduais , Alicerces Teciduais/química , Camundongos , Animais , Colágeno/química , Engenharia Tecidual/métodos , Osteoblastos/citologia , Teste de Materiais , Resistência à Tração , Materiais Biocompatíveis/química , Linhagem Celular , Microscopia Eletrônica de Varredura , Calcificação Fisiológica , Células 3T3 , Estresse Mecânico
6.
Adv Sci (Weinh) ; 11(26): e2310292, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38704674

RESUMO

The regenerative treatment of infectious vertical bone defects remains difficult and challenging today. Current clinical treatments are limited in their ability to control bacteria and infection, which is unfavorable for new bone formation and calls for a new type of material with excellent osteogenic and antibacterial properties. Here a multifunctional scaffold is synthesized that mimics natural bone nanostructures by incorporating silver nanowires into a hierarchical, intrafibrillar mineralized collagen matrix (IMC/AgNWs), to achieve the therapeutic goals of inhibiting bacterial activity and promoting infectious alveolar bone augmentation in rats and beagle dogs. An appropriate concentration of 0.5 mg mL-1 AgNWs is selected to balance biocompatibility and antibacterial properties. The achieved IMC/AgNWs exhibit a broad spectrum of antimicrobial properties against Gram-negative Porphyromonas gingivalis and Gram-positive Streptococcus mutans. When the IMC/AgNWs are cocultured with periodontal ligament stem cells, it possesses excellent osteoinductive activities under both non-inflammatory and inflammatory conditions. By constructing a rat mandibular infected periodontal defect model, the IMC/AgNWs achieve a near-complete healing through the canonical BMP/Smad signaling. Moreover, the IMC/AgNWs enhance vertical bone height and osseointegration in peri-implantitis in beagle dogs, indicating the clinical translational potential of IMC/AgNWs for infectious vertical bone augmentation.


Assuntos
Alicerces Teciduais , Animais , Cães , Ratos , Alicerces Teciduais/química , Modelos Animais de Doenças , Porphyromonas gingivalis/efeitos dos fármacos , Regeneração Óssea/efeitos dos fármacos , Ratos Sprague-Dawley , Streptococcus mutans/efeitos dos fármacos , Masculino , Osteogênese/efeitos dos fármacos , Antibacterianos/farmacologia , Biomimética/métodos
7.
ArXiv ; 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38562451

RESUMO

The mineralized collagen fibril is the main building block of hard tissues and it directly affects the macroscopic mechanics of biological tissues such as bone. The mechanical behavior of the fibril itself is determined by its structure: the content of collagen molecules, minerals, and cross-links, and the mechanical interactions and properties of these components. Advanced-Glycation-Endproducts (AGEs) cross-linking between tropocollagen molecules within the collagen fibril is one important factor that is believed to have a major influence on the tissue. For instance, it has been shown that brittleness in bone correlates with increased AGEs densities. However, the underlying nano-scale mechanisms within the mineralized collagen fibril remain unknown. Here, we study the effect of mineral and AGEs cross-linking on fibril deformation and fracture behavior by performing destructive tensile tests using coarse-grained molecular dynamics simulations. Our results demonstrate that after exceeding a critical content of mineral, it induces stiffening of the collagen fibril at high strain levels. We show that mineral morphology and location affect collagen fibril mechanics: The mineral content at which this stiffening occurs depends on the mineral's location and morphology. Further, both, increasing AGEs density and mineral content lead to stiffening and increased peak stresses. At low mineral contents, the mechanical response of the fibril is dominated by the AGEs, while at high mineral contents, the mineral itself determines fibril mechanics.

8.
Biomed Mater ; 19(3)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38518370

RESUMO

In bone tissue engineering, the bone immunomodulatory properties of biomaterials are critical for bone regeneration, which is a synergistic process involving physiological activities like immune response, osteogenesis, and angiogenesis. The effect of the macrophage immune microenvironment on the osteogenesis and angiogenesis of various material extracts was examined in this experiment using Mg2+and Nano-hydroxyapatite/collagen (nHAC) in both a single application and a combined form. This studyin vitrorevealed that the two compounds combined significantly inhibited the NF-κB signaling pathway and reduced the release of inflammatory factors from macrophages when compared with the extraction phase alone. Additionally, by contributing to the polarization of macrophages towards the M2 type, the combined effects of the two materials can significantly improve osteogenesis/angiogenesis. The results ofin vivoexperiments confirmed that Mg2+/nHAC significantly promoted bone regeneration and angiogenesis. This study offers a promising method for enhancing bone graft material osseointegration.


Assuntos
Magnésio , Osteogênese , Magnésio/metabolismo , Angiogênese , Regeneração Óssea , Colágeno/metabolismo , Macrófagos/metabolismo , Íons
9.
Polymers (Basel) ; 16(4)2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38399876

RESUMO

In recent years, the incidence of bone defects has been increasing year by year. Bone transplantation has become the most needed surgery after a blood transfusion and shows a rising trend. Three-dimensional-printed implants can be arbitrarily shaped according to the defects of tissues and organs to achieve perfect morphological repair, opening a new way for non-traumatic repair and functional reconstruction. In this paper, strontium-doped mineralized collagen was first prepared by an in vitro biomimetic mineralization method and then polylactic acid was homogeneously blended with the mineralized collagen to produce a comprehensive bone repair scaffold by a gas extrusion 3D printing method. Characterization through scanning electron microscopy, X-ray diffraction, and mechanical testing revealed that the strontium-functionalized composite scaffold exhibits an inorganic composition and nanostructure akin to those of human bone tissue. The scaffold possesses uniformly distributed and interconnected pores, with a compressive strength reaching 21.04 MPa. The strontium doping in the mineralized collagen improved the biocompatibility of the scaffold and inhibited the differentiation of osteoclasts to promote bone regeneration. This innovative composite scaffold holds significant promise in the field of bone tissue engineering, providing a forward-thinking solution for prospective bone injury repair.

10.
Mater Today Bio ; 24: 100896, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38162280

RESUMO

Mineralized collagen (MC) is the fundamental unit of natural bone tissue and can induce bone regeneration. Unmodified MC has poor mechanical properties and a single component, making it unable to cope with complex physiological environment. In this study, we introduced sodium alginate (SA) and vascular endothelial growth factor (VEGF) into the MC material to construct functionalized mineralized collagen (FMC) with good mechanical strength and the ability to continuously release growth factors. The FMC is filled into the pores of 3D printed titanium alloy scaffold to form a new organic-inorganic bioactive interface. With the continuous degradation of FMC, bone marrow mesenchymal stem cells (BMSCs) and vascular endothelial cells (VECs) in the surrounding environment are recruited to the surface of the scaffold to promote bone and vascular regeneration. After implanting the scaffold into the distal femoral defect of rabbits, Micro CT, histological, push-out, as well as immunohistochemical analysis showed that the composite interface can significantly promote osseointegration. These findings provide a new strategy for the development and application of mineralized collagen materials.

11.
J Mech Behav Biomed Mater ; 151: 106403, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38237206

RESUMO

This study proposed and validated a 2D finite element (FE) model for conducting in-silico simulations of in-situ nanoindentation tests on mineralized collagen fibrils (MCF) and the extrafibrillar matrix (EFM) within human cortical bone. Initially, a multiscale cohesive FE model was developed by adapting a previous model of bone lamellae, encompassing both MCF and EFM. Subsequently, nanoindentation tests were simulated in-silico using this model, and the resulting predictions were compared to AFM nanoindentation test data to verify the model's accuracy. The FE model accurately predicted nanoindentation results under wet conditions, closely aligning with outcomes obtained from AFM nanoindentation tests. Specifically, it successfully mirrored the traction/separation curve, nanoindentation modulus, plastic energy dissipation, and plastic energy ratio obtained from AFM nanoindentation tests. Additionally, this in-silico model demonstrated its ability to capture alterations in nanoindentation properties caused by the removal of bound water, by considering corresponding changes in mechanical properties of the collagen phase and the interfaces among bone constituents. Notably, significant changes in the elastic modulus and plastic energy dissipation were observed in both MCF and EFM compartments of bone, consistent with observations in AFM nanoindentation tests. These findings indicate that the proposed in-silico model effectively captures the influence of ultrastructural changes on bone's mechanical properties at sub-lamellar levels. Presently, no experimental methods exist to conduct parametric studies elucidating the ultrastructural origins of bone tissue fragility. The introduction of this in-silico model presents an invaluable tool to bridge this knowledge gap in the future.


Assuntos
Osso e Ossos , Osso Cortical , Humanos , Análise de Elementos Finitos , Estresse Mecânico , Osso e Ossos/metabolismo , Osso Cortical/metabolismo , Colágeno/química
12.
Small ; 20(19): e2309230, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38112271

RESUMO

Bone infection poses a major clinical challenge that can hinder patient recovery and exacerbate postoperative complications. This study has developed a bioactive composite scaffold through the co-assembly and intrafibrillar mineralization of collagen fibrils and zinc oxide (ZnO) nanowires (IMC/ZnO). The IMC/ZnO exhibits bone-like hierarchical structures and enhances capabilities for osteogenesis, antibacterial activity, and bacteria-infected bone healing. During co-cultivation with human bone marrow mesenchymal stem cells (BMMSCs), the IMC/ZnO improves BMMSC adhesion, proliferation, and osteogenic differentiation even under inflammatory conditions. Moreover, it suppresses the activity of Gram-negative Porphyromonas gingivalis and Gram-positive Streptococcus mutans by releasing zinc ions within the acidic infectious microenvironment. In vivo, the IMC/ZnO enables near-complete healing of infected bone defects within the intricate oral bacterial milieu, which is attributed to IMC/ZnO orchestrating M2 macrophage polarization, and fostering an osteogenic and anti-inflammatory microenvironment. Overall, these findings demonstrate the promise of the bioactive scaffold IMC/ZnO for treating bacteria-infected bone defects.


Assuntos
Regeneração Óssea , Colágeno , Células-Tronco Mesenquimais , Nanofios , Osteogênese , Alicerces Teciduais , Óxido de Zinco , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Nanofios/química , Regeneração Óssea/efeitos dos fármacos , Alicerces Teciduais/química , Humanos , Colágeno/química , Células-Tronco Mesenquimais/citologia , Osteogênese/efeitos dos fármacos , Animais , Porphyromonas gingivalis/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Streptococcus mutans/fisiologia , Streptococcus mutans/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos
13.
Front Bioeng Biotechnol ; 11: 1267912, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38125304

RESUMO

The absence of a conducive bone formation microenvironment between fractured ends poses a significant challenge in repairing large bone defects. A promising solution is to construct a bone formation microenvironment that mimics natural bone tissue. Biomimetic mineralized collagen possesses a chemical composition and microstructure highly similar to the natural bone matrix, making it an ideal biomimetic bone substitute material. The microstructure of biomimetic mineralized collagen is influenced by various factors, and its biomineralization and microstructure, in turn, affect its physicochemical properties and biological activity. We aimed to utilize mineralization time and solution concentration as variables and employed the polymer-induced liquid precursor strategy to fabricate mineralized collagen with diverse microstructures, to shed light on how mineralization parameters impact the material microstructure and physicochemical properties. We also investigated the influence of microstructure and physicochemical properties on cell biocompatibility and the bone-forming microenvironment. Through comprehensive characterization, we examined the physical and chemical properties of I-EMC under various mineralization conditions and assessed the in vitro and in vivo biocompatibility and osteogenic performance. By investigating the relationship between mineralization parameters, material physicochemical properties, and osteogenic performance, we revealed how microstructures influence cellular behaviors like biocompatibility and osteogenic microenvironment. Encouragingly, mineralization solutions with varying concentrations, stabilized by polyacrylic acid, successfully produced intrafibrillar and extrafibrillar mineralized collagen. Compared to non-mineralized collagen, all mineralized samples demonstrated improved bone-forming performance. Notably, samples prepared with a 1× mineralization solution exhibited relatively smooth surfaces with even mineralization. Extending the mineralization time enhanced the degree of mineralization and osteogenic performance. Conversely, samples prepared with a 2× mineralization solution had rough surfaces with large calcium phosphate particles, indicating non-uniform mineralization. Overall, our research advances the potential for commercial production of mineralized collagen protein products, characterized by dual biomimetic properties, and their application in treating various types of bone defects.

14.
Polymers (Basel) ; 15(20)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37896438

RESUMO

Repairing load-bearing bone defects in children remains a big clinical challenge. Mineralized collagen (MC) can effectively simulate natural bone composition and hierarchical structure and has a good biocompatibility and bone conductivity. Polylactic acid (PLA) is regarded as a gold material because of its mechanical properties and degradability. In this study, we prepare MC/PLA composite scaffolds via in situ mineralization and freeze-drying. Cell, characterization, and animal experiments compare and evaluate the biomimetic properties and repair effects of the MC/PLA scaffolds. Phalloidin and DAPI staining results show that the MC/PLA scaffolds are not cytotoxic. CCK-8 and scratch experiments prove that the scaffolds are superior to MC and hydroxyapatite (HA)/PLA scaffolds in promoting cell proliferation and migration. The surface and interior of the MC/PLA scaffolds exhibit rich interconnected pore structures with a porosity of ≥70%. The XRD patterns are typical HA waveforms. X-ray, micro-CT, and H&E staining reveal that the defect boundary disappears, new bone tissue grows into MC/PLA scaffolds in a large area, and the scaffolds are degraded after six months of implantation. The MC/PLA composite scaffold has a pore structure and composition similar to cancellous bone, with a good biocompatibility and bone regeneration ability.

15.
J Funct Biomater ; 14(8)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37623651

RESUMO

The healing of bone defects after a fracture remains a key issue to be addressed. Globally, more than 20 million patients experience bone defects annually. Among all artificial bone repair materials that can aid healing, implantable scaffolds made from a mineralized collagen (MC) base have the strongest bionic properties. The MC/PLGA scaffold, created by adding Poly (lactic-co-glycolic acid) copolymer (PLGA) and magnesium metal to the MC substrate, plays a powerful role in promoting fracture healing because, on the one hand, it has good biocompatibility similar to that of MC; on the other hand, the addition of PLGA provides the scaffold with an interconnected porous structure, and the addition of magnesium allows the scaffold to perform anti-inflammatory, osteogenic, and angiogenic activities. Using the latest 3D printing technology for scaffold fabrication, it is possible to model the scaffold in advance according to the requirement and produce a therapeutic scaffold suitable for various bone-defect shapes with less time and effort, which can promote bone tissue healing and regeneration to the maximum extent. This study reviews the material selection and technical preparation of MC/PLGA scaffolds, and the progress of their research on bone defect treatment.

16.
Front Bioeng Biotechnol ; 11: 1166840, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37485322

RESUMO

Objective: To investigate whether mineralized collagen modified polymethyl methacrylate (MC-PMMA) bone cement impacts the implanted vertebral body and adjacent segments and the feasibility of biomechanical properties compared with common bone cement in the treatment of osteoporotic vertebral compression fractures (OVCF). Methods: A healthy volunteer was selected to perform a three-dimensional reconstruction of the T11-L1 vertebral body to establish the corresponding finite element model of the spine, and the changes in the stress distribution of different types of cement were biomechanically analyzed in groups by applying quantitative loads. Results: The stress distribution of the T11-L1 vertebral body was similar between the two bone types of cement under various stress conditions. Conclusion: Mineralized collagen modified bone cement had the advantages of promoting bone regeneration, good biocompatibility, good transformability, and coupling, and had support strength not inferior to common PMMA bone cement, indicating it has good development prospects and potential.

17.
Regen Biomater ; 10: rbad030, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37181680

RESUMO

At this stage, bone defects caused by trauma, infection, tumor, or congenital diseases are generally filled with autologous bone or allogeneic bone transplantation, but this treatment method has limited sources, potential disease transmission and other problems. Ideal bone-graft materials remain continuously explored, and bone defect reconstruction remains a significant challenge. Mineralized collagen prepared by bionic mineralization combining organic polymer collagen with inorganic mineral calcium phosphate can effectively imitate the composition and hierarchical structure of natural bone and has good application value in bone repair materials. Magnesium, strontium, zinc and other inorganic components not only can activate relevant signaling pathways to induce differentiation of osteogenic precursor cells but also stimulate other core biological processes of bone tissue growth and play an important role in natural bone growth, and bone repair and reconstruction. This study reviewed the advances in hydroxyapatite/collagen composite scaffolds and osseointegration with natural bone inorganic components, such as magnesium, strontium and zinc.

18.
Bioengineering (Basel) ; 10(5)2023 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-37237628

RESUMO

Bone tissue is mainly composed at the nanoscale of apatite minerals, collagen molecules and water that form the mineralized collagen fibril (MCF). In this work, we developed a 3D random walk model to investigate the influence of bone nanostructure on water diffusion. We computed 1000 random walk trajectories of water molecules within the MCF geometric model. An important parameter to analyse transport behaviour in porous media is tortuosity, computed as the ratio between the effective path length and the straight-line distance between initial and final points. The diffusion coefficient is determined from the linear fit of the mean squared displacement of water molecules as a function of time. To achieve more insight into the diffusion phenomenon within MCF, we estimated the tortuosity and diffusivity at different quotes in the longitudinal direction of the model. Tortuosity is characterized by increasing values in the longitudinal direction. As expected, the diffusion coefficient decreases as tortuosity increases. Diffusivity outcomes confirm the findings achieved by experimental investigations. The computational model provides insights into the relation between the MCF structure and mass transport behaviour that may contribute to the improvement of bone-mimicking scaffolds.

19.
Mater Today Bio ; 20: 100660, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37214545

RESUMO

Mineralized collagen (MC) is the basic unit of bone structure and function and is the main component of the extracellular matrix (ECM) in bone tissue. In the biomimetic method, MC with different nanostructures of neo-bone have been constructed. Among these, extra-fibrous MC has been approved by regulatory agencies and applied in clinical practice to play an active role in bone defect repair. However, in the complex microenvironment of bone defects, such as in blood supply disorders and infections, MC is unable to effectively perform its pro-osteogenic activities and needs to be functionalized to include osteogenesis and the enhancement of angiogenesis, anti-infection, and immunomodulation. This article aimed to discuss the preparation and biological performance of MC with different nanostructures in detail, and summarize its functionalization strategy. Then we describe the recent advances in the osteo-inductive properties and multifunctional coordination of MC. Finally, the latest research progress of functionalized biomimetic MC, along with the development challenges and future trends, are discussed. This paper provides a theoretical basis and advanced design philosophy for bone tissue engineering in different bone microenvironments.

20.
Front Bioeng Biotechnol ; 11: 999137, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37091332

RESUMO

Osteons are composed of concentric lamellar structure, the concentric lamellae are composed of periodic thin and thick sub-lamellae, and every 5 sub-lamellae is a cycle, the periodic helix angle of mineralized collagen fibers in two adjacent sub-lamellae is 30°. Four biomimetic models with different fiber helix angles were established and fabricated according to the micro-nano structure of osteon. The effects of the fiber periodic helical structure on impact characteristic and energy dissipation of multi-layer biomimetic composite were investigated. The calculation results indicated that the stress distribution, contact characteristics and fiber failur during impact, and energy dissipation of the composite are affected by the fiber helix angle. The stress concentration of composite materials under external impact can be effectively improved by adjusting the fiber helix angle when the material composition and material performance parameters are same. Compared with the sample30, the maximum stress of sample60 and sample90 increases by 38.1% and 69.8%, respectively. And the fiber failure analysis results shown that the model with a fiber helix angle of 30° has a better resist impact damage. The drop-weight test results shown that the impact damage area of the specimen with 30° helix angle is smallest among the four types of biomimetic specimens. The periodic helical structure of mineralized collagen fibers in osteon can effectively improve the impact resistance of cortical bone. The research results can provide useful guidance for the design and manufacture of high-performance, impact-resistant biomimetic composite materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...