Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Biochim Biophys Acta Mol Cell Res ; 1871(7): 119793, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39038612

RESUMO

Here, we report that Caveolin-2 (Cav-2) is a cell cycle regulator in the mitotic clonal expansion (MCE) for adipogenesis. For the G2/M phase transition and re-entry into the G1 phase, dephosphorylated Cav-2 by protein tyrosine phosphatase 1B (PTP1B) controlled epigenetic activation of Ccnb1, Cdk1, and p21 in a lamin A/C-dependent manner, thereby ensuring the survival of preadipocytes. Cav-2, associated with lamin A/C, recruited the repressed promoters of Ccnb1 and Cdk1 for activation, and disengaged the active promoter of p21 from lamin A/C for inactivation through histone H3 modifications at the nuclear periphery. Cav-2 deficiency abrogated the histone H3 modifications and impeded the transactivation of Ccnb1, Cdk1, and p21, leading to a delay in mitotic entry, retardation of re-entry into G1 phase, and the apoptotic cell death of preadipocytes. Re-expression of Cav-2 restored the G2/M phase transition and G1 phase re-entry, preadipocyte survival, and adipogenesis in Cav-2-deficient preadipocytes. Our study uncovers a novel mechanism by which cell cycle transition and apoptotic cell death are controlled for adipocyte hyperplasia.

2.
Nutrients ; 16(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38732509

RESUMO

Isoeugenol (IEG), a natural component of clove oil, possesses antioxidant, anti-inflammatory, and antibacterial properties. However, the effects of IEG on adipogenesis have not yet been elucidated. Here, we showed that IEG blocks adipogenesis in 3T3-L1 cells at an early stage. IEG inhibits lipid accumulation in adipocytes in a concentration-dependent manner and reduces the expression of mature adipocyte-related factors including PPARγ, C/EBPα, and FABP4. IEG treatment at different stages of adipogenesis showed that IEG inhibited adipocyte differentiation by suppressing the early stage, as confirmed by lipid accumulation and adipocyte-related biomarkers. The early stage stimulates growth-arrested preadipocytes to enter mitotic clonal expansion (MCE) and initiates their differentiation into adipocytes by regulating cell cycle-related factors. IEG arrested 3T3-L1 preadipocytes in the G0/G1 phase of the cell cycle and attenuated cell cycle-related factors including cyclinD1, CDK6, CDK2, and cyclinB1 during the MCE stage. Furthermore, IEG suppresses reactive oxygen species (ROS) production during MCE and inhibits ROS-related antioxidant enzymes, including superoxide dismutase1 (SOD1) and catalase. The expression of cell proliferation-related biomarkers, including pAKT and pERK1/2, was attenuated by the IEG treatment of 3T3-L1 preadipocytes. These findings suggest that it is a potential therapeutic agent for the treatment of obesity.


Assuntos
Células 3T3-L1 , Adipócitos , Adipogenia , Eugenol , Mitose , Espécies Reativas de Oxigênio , Animais , Adipogenia/efeitos dos fármacos , Camundongos , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Mitose/efeitos dos fármacos , Eugenol/farmacologia , Eugenol/análogos & derivados , Espécies Reativas de Oxigênio/metabolismo , Diferenciação Celular/efeitos dos fármacos , PPAR gama/metabolismo , Proliferação de Células/efeitos dos fármacos , Proteínas de Ligação a Ácido Graxo/metabolismo , Proteínas de Ligação a Ácido Graxo/genética , Metabolismo dos Lipídeos/efeitos dos fármacos , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Antioxidantes/farmacologia
3.
Biochem Biophys Res Commun ; 716: 149998, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38692012

RESUMO

The equilibrium between the hypertrophic growth of existing adipocytes and adipogenesis is vital in managing metabolic stability in white adipocytes when faced with overnutrition. Adipogenesis has been established as a key player in combating metabolic irregularities caused by various factors. However, the benefits of increasing adipogenesis-mediated white adipose tissue (WAT) expansion for metabolic health regulation remain uncertain. Our findings reveal an increase in Impdh2 expression during the adipogenesis phase, both in vivo and in vitro. Xmp enhances adipogenic potential by fostering mitotic clonal expansion (MCE). The conditional knockout of Impdh2 in adipocyte progenitor cells(APCs) in adult and aged mice effectively curbs white adipose tissue expansion, ameliorates glucose tolerance, and augments energy expenditure under high-fat diet (HFD). However, no significant difference is observed under normal chow diet (NCD). Concurrently, the knockout of Impdh2 in APCs significantly reduces the count of new adipocytes induced by HFD, without affecting adipocyte size. Mechanistically, Impdh2 regulates the proliferation of APCs during the MCE phase via Xmp. Exogenous Xmp can significantly offset the reduction in adipogenic abilities of APCs due to Impdh2 deficiency. In summary, we discovered that adipogenesis-mediated WAT expansion, induced by overnutrition, also contributes to metabolic abnormalities. Moreover, the pivotal role of Impdh2 in regulating adipogenesis in APCs offers a novel therapeutic approach to combat obesity.


Assuntos
Adipócitos , Adipogenia , Tecido Adiposo Branco , Dieta Hiperlipídica , Camundongos Knockout , Hipernutrição , Animais , Tecido Adiposo Branco/metabolismo , Adipogenia/genética , Hipernutrição/metabolismo , Hipernutrição/genética , Camundongos , Adipócitos/metabolismo , Camundongos Endogâmicos C57BL , Masculino , Metabolismo Energético/genética , Deleção de Genes , Proliferação de Células , Células-Tronco/metabolismo , Células-Tronco/citologia , Células-Tronco/patologia
4.
Phytomedicine ; 128: 155551, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38569293

RESUMO

BACKGROUND: Because obesity is associated with a hyperplasia-mediated increase in adipose tissue, inhibiting cell proliferation during mitotic clonal expansion (MCE) is a leading strategy for preventing obesity. Although (-)-hydroxycitric acid (HCA) is used to control obesity, the molecular mechanisms underlying its effects on MCE are poorly understood. PURPOSE: This study aimed to investigate the potential effects of HCA on MCE and underlying molecular mechanisms affecting adipogenesis and obesity improvements. METHODS: Preadipocyte cell line, 3T3-L1, were treated with HCA; oil red O, cell proliferation, cell cycle, and related alterations in signaling pathways were examined. High-fat diet (HFD)-fed mice were administered HCA for 12 weeks; body and adipose tissues weights were evaluated, and the regulation of signaling pathways in epidydimal white adipose tissue were examined in vivo. RESULTS: Here, we report that during MCE, HCA attenuates the proliferation of the preadipocyte cell line, 3T3-L1, by arresting the cell cycle at the G0/G1 phase. In addition, HCA markedly inhibits Forkhead Box O1 (FoxO1) phosphorylation, thereby inducing the expression of cyclin-dependent kinase inhibitor 1B and suppressing the levels of cyclin-dependent kinase 2, cyclin E1, proliferating cell nuclear antigen, and phosphorylated retinoblastoma. Importantly, we found that ribosomal protein S6 kinase A1 (RPS6KA1) influences HCA-mediated inactivation of FoxO1 and its nuclear exclusion. An animal model of obesity revealed that HCA reduced high-fat diet-induced obesity by suppressing adipocyte numbers as well as epididymal and mesenteric white adipose tissue mass, which is attributed to the regulation of RPS6KA1, FoxO1, CDKN1B and PCNA that had been consistently identified in vitro. CONCLUSIONS: These findings provide novel insights into the mechanism by which HCA regulates adipogenesis and highlight the RPS6KA1/FoxO1 signaling axis as a therapeutic target for obesity.


Assuntos
Proliferação de Células , Citratos , Proteína Forkhead Box O1 , Obesidade , Proteínas Quinases S6 Ribossômicas 90-kDa , Animais , Camundongos , Células 3T3-L1/efeitos dos fármacos , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Adipogenia/efeitos dos fármacos , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/metabolismo , Proliferação de Células/efeitos dos fármacos , Citratos/farmacologia , Citratos/uso terapêutico , Dieta Hiperlipídica/efeitos adversos , Proteína Forkhead Box O1/antagonistas & inibidores , Proteína Forkhead Box O1/metabolismo , Camundongos Endogâmicos C57BL , Mitose/efeitos dos fármacos , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/antagonistas & inibidores , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Transdução de Sinais/efeitos dos fármacos
5.
Phytomedicine ; 129: 155563, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38552377

RESUMO

BACKGROUND: Mitotic clonal expansion (MCE) is a prerequisite for preadipocyte differentiation and adipogenesis. Epigallocatechin gallate (EGCG) has been shown to inhibit preadipocyte differentiation. However, the exact molecular mechanisms are still elusive. PURPOSE: This study investigated whether EGCG could inhibit adipogenesis and lipid accumulation by regulating the cell cycle in the MCE phase of adipogenesis and its underlying molecular mechanisms. METHOD: 3T3-L1 preadipocytes were induced to differentiate by a differentiation cocktail (DMI) and were treated with EGCG (25-100 µM) for 9, 18, and 24 h to examine the effect on MCE, or eight days to examine the effect on terminal differentiation. C57BL/6 mice were fed a high-fat diet (HFD) for three months to induce obesity and were given EGCG (50 or 100 mg/kg) daily by gavage. RESULTS: We showed that EGCG significantly inhibited terminal adipogenesis and lipid accumulation in 3T3-L1 cells and decreased expressions of PPARγ, C/EBPα, and FASN. Notably, at the MCE phase, EGCG regulated the cell cycle in sequential order, induced G0/G1 arrest at 18 h, and inhibited the G2/M phase at 24 h upon DMI treatment. Meanwhile, EGCG regulated the expressions of cell cycle regulators (cyclin D1, cyclin E1, CDK4, CDK6, cyclin B1, cyclin B2, p16, and p27), and decreased C/EBPß, PPARγ, and C/EBPα expressions at MCE. Mechanistic studies using STAT3 agonist Colivelin and antagonist C188-9 revealed that EGCG-induced cell cycle arrest in the MCE phase and terminal adipocyte differentiation was mediated by the inhibition of JAK2/STAT3 signaling cascades and STAT3 (Tyr705) nuclear translocation. Furthermore, EGCG significantly protected mice from HFD-induced obesity, reduced body weight and lipid accumulations in adipose tissues, reduced hyperlipidemia and leptin levels, and improved glucose intolerance and insulin sensitivity. Moreover, RNA sequencing (RNA-seq) analysis showed that the cell cycle changes in epididymal white adipose tissue (eWAT) were significantly enriched upon EGCG treatment. We further verified that EGCG treatment significantly reduced expressions of adipogenic factors, cell cycle regulators, and p-STAT3 in eWAT. CONCLUSION: EGCG inhibits MCE, resulting in the inhibition of early and terminal adipocyte differentiation and lipid accumulation, which were mediated by inhibiting p-STAT3 nucleus translocation and activation.


Assuntos
Células 3T3-L1 , Adipócitos , Adipogenia , Catequina , Dieta Hiperlipídica , Janus Quinase 2 , Camundongos Endogâmicos C57BL , Fator de Transcrição STAT3 , Animais , Catequina/farmacologia , Catequina/análogos & derivados , Camundongos , Fator de Transcrição STAT3/metabolismo , Adipogenia/efeitos dos fármacos , Janus Quinase 2/metabolismo , Adipócitos/efeitos dos fármacos , Masculino , Mitose/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Obesidade/tratamento farmacológico , PPAR gama/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
6.
Int J Mol Sci ; 25(2)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38255766

RESUMO

Cinnamyl alcohol (CA) is an aromatic compound found in several plant-based resources and has been shown to exert anti-inflammatory and anti-microbial activities. However, the anti-adipogenic mechanism of CA has not been sufficiently studied. The present study aimed to investigate the effect and mechanism of CA on the regulation of adipogenesis. As evidenced by Oil Red O staining, Western blotting, and real-time PCR (RT-PCR) analyses, CA treatment (6.25-25 µM) for 8 d significantly inhibited lipid accumulation in a concentration-dependent manner and downregulated adipogenesis-related markers (peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer-binding protein α (C/EBPα), fatty acid binding protein 4 (FABP4), adiponectin, fatty acid synthase (FAS)) in 3-isobutyl-1-methylxanthine, dexamethasone, and insulin(MDI)-treated 3T3-L1 adipocytes. In particular, among the various differentiation stages, the early stage of adipogenesis was critical for the inhibitory effect of CA. Cell cycle analysis using flow cytometry and Western blotting showed that CA effectively inhibited MDI-induced initiation of mitotic clonal expansion (MCE) by arresting the cell cycle in the G0/G1 phase and downregulating the expression of C/EBPß, C/EBPδ, and cell cycle markers (cyclin D1, cyclin-dependent kinase 6 (CDK6), cyclin E1, CDK2, and cyclin B1). Moreover, AMP-activated protein kinase α (AMPKα), acetyl-CoA carboxylase (ACC), and extracellular signal-regulated kinase 1/2 (ERK1/2), markers of upstream signaling pathways, were phosphorylated during MCE by CA. In conclusion, CA can act as an anti-adipogenic agent by inhibiting the AMPKα and ERK1/2 signaling pathways and the cell cycle and may also act as a potential therapeutic agent for obesity.


Assuntos
Proteínas Quinases Ativadas por AMP , Adipogenia , Propanóis , Camundongos , Animais , Células 3T3-L1 , Ciclo Celular , Divisão Celular
7.
Nutrients ; 15(14)2023 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-37513496

RESUMO

During the worldwide COVID-19 outbreak, there was an increase in the prevalence of obesity, including childhood obesity, due to which the awareness of obesity and interest in treatment increased. Accordingly, we describe EJF (Euscaphis japonica Kanitz fruit) extract as a candidate for naturally derived antiobesity agents. In this study, we found that EJF is involved in the early stage of adipogenic differentiation in vitro and finally inhibits adipogenesis. We propose two mechanisms for the antiobesity effect of EJF. First, EJF inhibits MDI-induced mitotic clonal expansion (MCE) by inducing cell cycle arrest at the initiation of adipogenic differentiation. The second aims to regulate stability and activation at the protein level of IRS1, which initiates differentiation in the early stage of differentiation. As a result, it was found that the activation of Akt decreased, leading to the inhibition of the expression of adipogenesis-related transcription factors (PPARγ, C/EBPα) and the subsequent suppression of adipogenic differentiation. In summary, we suggest that EJF can inhibit adipogenesis and lipid accumulation by suppressing the early stage of adipogenic differentiation in 3T3-L1 adipocytes. These findings indicate that EJF's functionality could be beneficial in the treatment of obesity, particularly childhood obesity associated with adipocyte hyperplasia.


Assuntos
COVID-19 , Obesidade Infantil , Criança , Humanos , Camundongos , Animais , Adipogenia , Frutas/metabolismo , Diferenciação Celular , PPAR gama/metabolismo , Células 3T3-L1
8.
Stem Cells ; 41(7): 711-723, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37210668

RESUMO

Enhanced adipogenic differentiation of mesenchymal stem cells (MSCs) is considered as a major risk factor for steroid-induced osteonecrosis of the femoral head (SOFNH). The role of microRNAs during this process has sparked interest. miR-486-5p expression was down-regulated significantly in femoral head bone tissues of both SONFH patients and rat models. The purpose of this study was to reveal the role of miR-486-5p on MSCs adipogenesis and SONFH progression. The present study showed that miR-486-5p could significantly inhibit adipogenesis of 3T3-L1 cells by suppressing mitotic clonal expansion (MCE). And upregulated expression of P21, which was caused by miR-486-5p mediated TBX2 decrease, was responsible for inhibited MCE. Further, miR-486-5p was demonstrated to effectively inhibit steroid-induced fat formation in the femoral head and prevented SONFH progression in a rat model. Considering the potent effects of miR-486-5p on attenuating adipogenesis, it seems to be a promising target for the treatment of SONFH.


Assuntos
MicroRNAs , Osteonecrose , Animais , Ratos , Adipogenia/genética , Diferenciação Celular/genética , Cabeça do Fêmur/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Osteonecrose/induzido quimicamente , Osteonecrose/metabolismo , Esteroides/efeitos adversos
9.
Cells ; 12(5)2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36899850

RESUMO

Background: Obesity is a pandemic disease characterized by excessive severe body comorbidities. Reduction in fat accumulation represents a mechanism of prevention, and the replacement of white adipose tissue (WAT) with brown adipose tissue (BAT) has been proposed as one promising strategy against obesity. In the present study, we sought to investigate the ability of a natural mixture of polyphenols and micronutrients (A5+) to counteract white adipogenesis by promoting WAT browning. Methods: For this study, we employed a murine 3T3-L1 fibroblast cell line treated with A5+, or DMSO as control, during the differentiation in mature adipocytes for 10 days. Cell cycle analysis was performed using propidium iodide staining and cytofluorimetric analysis. Intracellular lipid contents were detected by Oil Red O staining. Inflammation Array, along with qRT-PCR and Western Blot analyses, served to measure the expression of the analyzed markers, such as pro-inflammatory cytokines. Results: A5+ administration significantly reduced lipids' accumulation in adipocytes when compared to control cells (p < 0.005). Similarly, A5+ inhibited cellular proliferation during the mitotic clonal expansion (MCE), the most relevant stage in adipocytes differentiation (p < 0.0001). We also found that A5+ significantly reduced the release of pro-inflammatory cytokines, such as IL-6 and Leptin (p < 0.005), and promoted fat browning and fatty acid oxidation through increasing expression levels of genes related to BAT, such as UCP1 (p < 0.05). This thermogenic process is mediated via AMPK-ATGL pathway activation. Conclusion: Overall, these results demonstrated that the synergistic effect of compounds contained in A5+ may be able to counteract adipogenesis and then obesity by inducing fat browning.


Assuntos
Proteínas Quinases Ativadas por AMP , Adipogenia , Camundongos , Animais , Proteínas Quinases Ativadas por AMP/metabolismo , Polifenóis/farmacologia , Micronutrientes/metabolismo , Tecido Adiposo Branco/metabolismo , Obesidade/metabolismo , Proteína Desacopladora 1/metabolismo
10.
Int J Mol Med ; 51(1)2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36484370

RESUMO

Cyclophilin is known to act as a molecular chaperone in the endoplasmic reticulum. Recent studies have reported that the expression of cyclophilin B (CypB) is increased in ob/ob mice and its inhibitor suppresses adipocyte differentiation. However, the mechanism of action of CypB in adipocytes remains to be elucidated. The present study investigated the role of CypB in 3T3­L1 adipocyte differentiation. It showed that the expression level of CypB was increased during 3T3­L1 adipocyte differentiation by reverse transcription­quantitative PCR and western blotting analysis. CypB knockdown using short interfering RNA delayed cell cycle progression from the G1/S to G2/M phase through the mammalian target of rapamycin (mTOR) signaling pathway and inhibited the expression levels of adipogenic transcription factors including peroxisome proliferator­activated receptor Î³ (PPARγ) and CCAAT­enhancer binding protein (C/EBP)α. Additionally, the accumulation of lipid droplets was inhibited by CypB knockdown. Conversely, overexpression of CypB promoted cell cycle progression from the G1/S to G2/M phase by the mTOR signaling pathway and enhanced the expression levels of adipogenic transcription factors including PPARγ and C/EBPα. Finally, the present study showed that CypB downregulated the expression of CHOP, a well­known negative regulator of adipogenesis. Taken together, the data suggested that CypB might serve important physiological regulatory roles in 3T3­L1 adipocyte differentiation.


Assuntos
Chaperonas Moleculares , Serina-Treonina Quinases TOR , Animais , Camundongos , Células 3T3-L1 , Fatores de Transcrição , Mamíferos
11.
J Cell Sci ; 136(2)2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36546833

RESUMO

The temporal order of DNA replication along the chromosomes is thought to reflect the transcriptional competence of the genome. During differentiation of mouse 3T3-L1 cells into adipocytes, cells undergo one or two rounds of cell division called mitotic clonal expansion (MCE). MCE is an essential step for adipogenesis; however, little is known about the regulation of DNA replication during this period. Here, we performed genome-wide mapping of replication timing (RT) in mouse 3T3-L1 cells before and during MCE, and identified a number of chromosomal regions shifting toward either earlier or later replication through two rounds of replication. These RT changes were confirmed in individual cells by single-cell DNA-replication sequencing. Coordinate changes between a shift toward earlier replication and transcriptional activation of adipogenesis-associated genes were observed. RT changes occurred before the full expression of these genes, indicating that RT reorganization might contribute to the mature adipocyte phenotype. To support this, cells undergoing two rounds of DNA replication during MCE had a higher potential to differentiate into lipid droplet-accumulating adipocytes, compared with cells undergoing a single round of DNA replication and non-replicating cells.


Assuntos
Adipogenia , Mitose , Animais , Camundongos , Adipogenia/genética , Mitose/genética , Diferenciação Celular/genética , Replicação do DNA/genética , Expressão Gênica , Células 3T3-L1
12.
J Appl Toxicol ; 43(3): 402-415, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36065135

RESUMO

Lanthanum (La) as a rare earth element is widely used in agriculture, industry, and medicine. It has been suggested in several studies that La might influence glycolipid metabolism in vivo. In this study, we used 3T3-L1 preadipocytes as in vitro cell model to elucidate the effects of La(NO3 )3 on adipogenesis and the underlying mechanisms. The results showed that La(NO3 )3 could inhibit the adipogenic differentiation of 3T3-L1 preadipocytes, which showed a decrease in lipid accumulation and the downregulation of specific adipogenic transcription factors. La(NO3 )3 exerted its inhibitory effect mainly at the early differentiation stage. Furthermore, La(NO3 )3 influenced the S-phase entry and cell cycle process during the mitotic clonal expansion and regulated the phosphorylation of signal transducer and activator of transcription 3 (STAT3) and expressions of the proteins in phosphatidylinositol 3-kinase (PI3K)/Akt pathway at the early stage of differentiation. Besides, La(NO3 )3 upregulated the expressions of wnt10b mRNA and ß-catenin protein and promoted the nucleus translocation of ß-catenin. Additionally, we found that La(NO3 )3 could promote the growth of 3T3-L1 preadipocytes both with and without MDI (3-isobutyl-1-methylxanthine [IBMX], dexamethasone [Dex], and insulin) stimulation. Collectively, these results indicated that La(NO3 )3 could inhibit adipogenesis in 3T3-L1 preadipocytes and influence cell proliferation.


Assuntos
Adipogenia , Lantânio , Animais , Camundongos , Lantânio/toxicidade , Células 3T3-L1 , Fosfatidilinositol 3-Quinases , Diferenciação Celular
13.
Eur J Pharmacol ; 925: 175002, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35526567

RESUMO

The abnormal proliferation and hypertrophy of adipocytes mediate the expansion of adipose tissue and then cause obesity-related diseases. Theoretically, an approach for preventing and curing obesity is to inhibit cell proliferation during the mitotic clonal expansion (MCE) progression of adipocyte differentiation. Polycyclic polyprenylated acylphloroglucinols (PPAPs) are mainly found from Hypericum and Garcinia genus, which have been reported to have various biological activities such as anti-depressant, anti-oxidant, and anti-tumor. Previously, our group has reported that adamantane-type PPAPs exhibited blunting activity in adipogenesis. In this study, another six adamantane PPAPs were screened to investigate their anti-adipogenesis activities and then discussed the structure-activity relationship. Particularly, sampsonione F, one of the PPAPs dramatically suppressed adipogenesis dose-dependently in vitro, along with decreased expressions of C/EBPß, C/EBPα, PPARγ, FABP4, and FAS. Moreover, sampsonione F upregulated the expression of p27 by activating p53 pathway and then downregulated the expressions of key regulators during G1/S phase arrest. Our data support that sampsonione F suppressed adipogenesis by activating p53 pathway, regulating cyclins, and resulting in G1/S phase arrest during the MCE progression of adipogenesis. This work provides a new adamantane-type PPAPs in the regulation of adipogenesis and extends our knowledges on the mechanism of the type PPAPs in regulation of adipogenesis.


Assuntos
Adamantano , Adipócitos , Adipogenia , Diferenciação Celular , Proteína Supressora de Tumor p53 , Células 3T3-L1 , Adamantano/análogos & derivados , Adamantano/farmacologia , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Adipogenia/efeitos dos fármacos , Animais , Camundongos , Mitose , Obesidade , Compostos Fitoquímicos/farmacologia , Proteína Supressora de Tumor p53/metabolismo
14.
J Appl Toxicol ; 42(4): 588-599, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34553387

RESUMO

Obesogens are a subset of endocrine disruptor chemicals (EDCs) that cause obesity. The typical EDC 4-nonylphenol (4-NP) has been identified as an obesogen. However, the in vitro effects of 4-NP on adipogenesis remain unclear. In this study, 3T3-L1 preadipocytes and C3H/10T1/2 mesenchymal stem cells (MSCs) were used to investigate the influence of 4-NP on adipogenesis. The differentiation protocols for 3T3-L1 preadipocytes and C3H/10T1/2 MSCs took 8 and 12 days, respectively, beginning at Day 0. In differentiated 3T3-L1 preadipocytes, 20 µM 4-NP decreased cell viability on Days 4 and 8. Exposure to 4-NP inhibited triglyceride (TG) accumulation and adipogenic marker expression on Days 0-8, but the inhibitory effects were weaker on Days 2-8. The protein expression of pSTAT3 or STAT3 decreased on Days 0-8 and 2-8. Conversely, 4-NP promoted TG accumulation and the adipogenic marker expression in C3H/10T1/2 adipocytes. The opposing effects were attributed to physiological differences between the two cell lines. The 3T3-L1 preadipocytes are dependent on mitotic clonal expansion (MCE) to drive differentiation, while C3H/10T1/2MSCs and human preadipocytes are not. Additionally, 4-NP downregulated ß-catenin expression in C3H/10T1/2 adipocytes. Accordingly, we hypothesized that 4-NP promotes adipogenesis. The role of the canonical Wnt pathway in the promotion of adipogenesis by 4-NP requires further validation. This study provides new insights into the mechanisms and appropriate risk management of 4-NP.


Assuntos
Adipogenia , Células-Tronco Mesenquimais , Células 3T3-L1 , Adipócitos , Animais , Diferenciação Celular , Humanos , Camundongos , Fenóis
15.
Front Nutr ; 8: 756803, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34790688

RESUMO

Adipogenesis is mediated by the complex gene expression networks involving the posttranscriptional modifications. The natural compound rhein has been linked to the regulation of adipogenesis, but the underlying regulatory mechanisms remain elusive. Herein, we systematically analyzed the effects of rhein on adipogenesis at both the transcriptional and posttranscriptional levels. Rhein remarkably suppresses adipogenesis in the stage-specific and dose-dependent manners. Rhein has been identified to inhibit fat mass and obesity-associated (FTO) demethylase activity. Surprisingly, side-by-side comparison analysis revealed that the rhein treatment and Fto knockdown triggered the differential gene regulatory patterns, resulting in impaired adipocyte formation. Specifically, rhein treatment mildly altered the transcriptome with hundreds of genes dysregulated. N 6-methyladenosine (m6A) methylome profile showed that, although the supply of rhein induced increased m6A levels on a small subset of messenger RNAs (mRNAs), few of them showed dramatic transcriptional response to this compound. Moreover, the specific rhein-responsive mRNAs, which are linked to mitotic pathway, are barely methylated or contain m6A peaks without dramatic response to rhein, suggesting separate regulation of global m6A pattern and adipogenesis mediated by rhein. Further identification of m6A-independent pathways revealed a positive regulator, receptor expressing-enhancing protein 3 (REEP3), in guidance of adipogenesis. Hence, this study provides the mechanistic view of the cellular actions of rhein in the modulation of adipogenesis and identifies a potential novel target for obesity therapeutic research.

16.
Cell Prolif ; 54(12): e13131, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34647359

RESUMO

OBJECTIVES: RNF20 is recognized as a main E3 ligase for monoubiquitination of histone H2B at lysine 120 (H2Bub). The critical role of RNF20 and H2Bub in various molecular events, such as DNA replication, RNA transcription, and DNA damage response, has been widely investigated and documented. However, its role in porcine adipogenesis remains unknown. In this study, we aimed to clarify the effect of RNF20 on porcine preadipocyte differentiation. MATERIALS AND METHODS: Backfat tissues from fat-type pigs (Bama and Meishan) and lean-type pigs (Yorkshire and Landrace) were collected to detect the expression level of RNF20. Preadipocytes were isolated from Bama piglets and induced to differentiation. Small interfering RNAs were applied to deplete RNF20. Oil Red O staining, quantitative real-time PCR, RNA-seq, Western blot analysis, and EdU assays were performed to study the regulatory mechanism of RNF20 during adipogenesis. RESULTS: We found that the expression levels of RNF20 and H2Bub were significantly higher in backfat tissues from fat-type pigs than in those from lean-type pigs. Consistently, the significantly induced expression of RNF20 and H2Bub was also observed in porcine differentiated adipocytes. In addition, knockdown of RNF20 greatly inhibited porcine adipogenesis, as evidenced by dramatically decreased lipid droplet formation and lower expression levels of adipogenic transcription masters in RNF20 knockdown cells. Mechanistically, the depletion of RNF20 decreases the cell proliferation and the level of p-C/EBPß via the Ras-Raf-MEK1/2-ERK1/2 cascade pathway at the mitotic clonal expansion phase and therefore suppresses cell differentiation. CONCLUSIONS: Our results demonstrate that RNF20 is required for porcine preadipocyte differentiation.


Assuntos
Adipócitos/metabolismo , Adipogenia , Diferenciação Celular , Mitose , Ubiquitina-Proteína Ligases/metabolismo , Animais , Histonas/metabolismo , Suínos
17.
J Food Biochem ; 45(9): e13896, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34368979

RESUMO

Herbs have been of interest to treat diseases, including obesity, owing to their various bioactive constituents that exhibit therapeutic and prophylactic properties. The present study examined the anti-adipogenic effects and mechanisms of Chrysanthemum indicum aqueous extract (CAE) in 3T3-L1 preadipocytes. CAE comprises 1,3-dicaffeoylquinic acid, chlorogenic acid, kaempferol-3-O-glucoside, caffeic acid, and apigenin, which were corresponded with previous reports. CAE inhibited the accumulation of lipid droplets and significantly alleviated the expression of lipogenesis- and adipogenesis-associated biomarkers. Treatment with CAE inhibited the mitotic clonal expansion (MCE), corroborated by cell cycle arrest at the G0 /G1 phase, and mitigated the expression of cell cycle progression-associated proteins and in addition to phosphorylation of MCE-promoting transcription factors. Moreover, CAE downregulated the activation of Akt and extracellular signal-regulated kinase 1/2 signaling pathways. In summary, CAE facilitates adipogenic inhibition during the early phase of differentiation, especially MCE, and its phenolic compounds can contribute to its anti-obesogenic properties. PRACTICAL APPLICATIONS: Chrysanthemum indicum has been mainly used as traditional herbal tea and drinks. Chrysanthemum indicum aqueous extract (CAE) inhibits adipogenesis by suppressing mitotic clonal expansion during the early phase of differentiation in 3T3-L1 preadipocytes. 1,3-Dicaffeoylquinic acid, chlorogenic acid, kaempferol-3-O-glucoside, caffeic acid, and apigenin were detected in CAE. Based on these findings, CAE can be used as nutraceutical agents for prevention and treatment of obesity.


Assuntos
Adipogenia , Chrysanthemum , Células 3T3-L1 , Adipócitos , Animais , Diferenciação Celular , Camundongos
18.
Molecules ; 26(16)2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34443613

RESUMO

Adipogenesis is a complex process in which cell commitment and mitotic clonal expansion (MCE) are in-sequence crucial events leading to terminal adipocyte differentiation. The molecules able to block some key signals in this cascade can hamper adipogenesis becoming promising agents to counteract hyperplasia and hypertrophy of adipose tissue. Mono- and di-caffeoylquinic acid isomers are biologically active polyphenols, displaying in vitro and in vivo antioxidant, hepatoprotective, anti-diabetic and anti-obesity properties. Among these isomers, 3,5-dicaffeoylquinic acid (DCQA) has been reported to inhibit lipid accumulation in adipose cells more successfully than others. Thus, we investigated DCQA effects and molecular mechanisms on 3T3-L1 pre-adipocytes induced to differentiate with a hormonal cocktail (MDI). Oil Red O incorporation assessed that DCQA pre-treatment inhibited lipid accumulation in 3T3-L1 cells induced to differentiate for 10 days. At this time, an increased phosphorylation of both AMP-activated kinase and acetyl-CoA carboxylase, as well as a strong decrease in fatty acid synthase protein level, were registered by immunoblotting, thereby suggesting that DCQA treatment can reduce fatty acid anabolism in 3T3-L1 adipocytes. Furthermore, BrdU incorporation assay, performed 48 h after hormonal stimulation, revealed that DCQA treatment was also able to hinder the 3T3-L1 cell proliferation during the MCE, which is an essential step in the adipogenic process. Thus, we focused our attention on early signals triggered by the differentiation stimuli. In the first hours after hormonal cocktail administration, the activation of ERK1/2 and Akt kinases, or CREB and STAT3 transcription factors, was not affected by DCQA pre-treatment. Whereas 24 h after MDI induction, DCQA pre-treated cells showed increased level of the transcription factor Nrf2, that induced the expression of the antioxidant enzyme heme oxygenase 1 (HO-1). In control samples, the expression level of HO-1 was reduced 24 h after MDI induction in comparison with the higher amount of HO-1 protein found at 2 h. The HO-1 decrease was functional by allowing reactive oxygen species to boost and allowing cell proliferation induction at the beginning of MCE phase. Instead, in DCQA-treated cells the HO-1 expression was maintained at high levels for a further 24 h; in fact, its expression decreased only 48 h after MDI stimulation. The longer period in which HO-1 expression remained high led to a delay of the MCE phase, with a subsequent inhibition of both C/EBP-α expression and adipocyte terminal differentiation. In conclusion, DCQA counteracting an excessive adipose tissue expansion may become an attractive option in obesity treatment.


Assuntos
Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Ácido Clorogênico/análogos & derivados , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Heme Oxigenase-1/metabolismo , Mitose/efeitos dos fármacos , Células 3T3-L1 , Adipócitos/metabolismo , Adipogenia/efeitos dos fármacos , Animais , Ácido Clorogênico/farmacologia , Camundongos
19.
Electron. j. biotechnol ; 52: 67-75, July. 2021. tab, graf, ilus
Artigo em Inglês | LILACS | ID: biblio-1283594

RESUMO

BACKGROUND: Adipogenesis and fibrogenesis can be considered as a competitive process in muscle, which may affect the intramuscular fat deposition. The CCAAT/enhancer-binding protein beta (C/EBPb) plays an important role in adipogenesis, which is well-characterized in mice, but little known in bovine so far. RESULTS: In this study, real-time qPCR revealed that the level of C/EBPb was increased during the developmental stages of bovine and adipogenesis process of preadipocytes. Overexpression of C/EBPb promoted bovine fibroblast proliferation through mitotic clonal expansion (MCE), a necessary process for initiating adipogenesis, by significantly downregulating levels of p21 and p27 (p < 0.01). Also, the PPARc expression was inhibited during the MCE stage (p < 0.01). 31.28% of transfected fibroblasts adopted lipid-laden adipocyte morphology after 8 d. Real-time qPCR showed that C/EBPb activated the transcription of early stage adipogenesis markers C/EBPa and PPARc. Expression of ACCa, FASN, FABP4 and LPL was also significantly upregulated, while the expression of LEPR was weakened. CONCLUSIONS: It was concluded C/EBPb can convert bovine fibroblasts into adipocytes without hormone induction by initiating the MCE process and promoting adipogenic genes expression, which may provide new insights into the potential functions of C/EBPb in regulating intramuscular fat deposition in beef cattle.


Assuntos
Bovinos/metabolismo , Adipócitos/metabolismo , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Fibroblastos/metabolismo , Tecido Adiposo/metabolismo , Células Clonais , Proliferação de Células , Adipogenia , Reação em Cadeia da Polimerase em Tempo Real , Mitose , Músculos
20.
Food Chem Toxicol ; 152: 112205, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33864839

RESUMO

PCB 180 is a typical non-dioxin-like polychlorinated biphenyl (NDL-PCB). It is one of the most prevalent PCB-congeners found in human adipose tissue. However, the role of PCB 180 in obesity remains poorly understood. The aim of this study was to explore the adipogenic effect and mechanism of PCB 180. Significant enhancement in adipogenesis was observed when differentiating murine 3T3-L1 preadipocytes or human preadipocytes-visceral (HPA-v) that were exposed to PCB 180. Furthermore, exposure to PCB 180 during the first two days was critical to the adipogenic effect. According to results from sequential cell cycle analyses, cell counting, BrdU incorporation, and cyclin D1, cyclin B1, and p27 protein quantification, PCB 180 was found to enhance mitotic clonal expansion (MCE) during early adipogenic differentiation. Molecular mechanistic investigation revealed that PCB 180 promoted accumulation of the C/EBPß protein, a key regulator that controls MCE. Finally, it was found that PCB 180 mitigated degradation of the C/EBPß protein by repressing the SUMOylation and subsequent ubiquitination of C/EBPß by the upregulation of SENP2. In summary, it was shown for the first time that PCB 180 facilitated adipogenesis by alleviating C/EBPß protein SUMOylation. This result provides novel evidence regarding obesogenic effect of PCB 180.


Assuntos
Adipócitos/efeitos dos fármacos , Adipogenia/efeitos dos fármacos , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Diferenciação Celular/efeitos dos fármacos , Bifenilos Policlorados/toxicidade , Sumoilação/efeitos dos fármacos , Células 3T3-L1 , Animais , Ciclo Celular/efeitos dos fármacos , Cisteína Endopeptidases/metabolismo , Humanos , Camundongos , Ubiquitinação/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...