Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Ergonomics ; : 1-21, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953513

RESUMO

This study proposes a systematic approach to address ergonomic factors, including physical, environmental and psychosocial aspects, in solving assembly line balancing problems. A three-stage framework is developed, starting with determining weights for ergonomic risk assessment methods using the interval-valued spherical fuzzy analytical hierarchy process. In the second stage, a fuzzy logic model for integrated ergonomic risk assessment is constructed based on these weights, and the integrated ergonomic risk score is determined. In the third stage, a mathematical model is formulated to minimise the cycle time while balancing the ergonomic risk level. A case study conducted in a wire harness factory validated the effectiveness of the proposed approach, showing a 10-11% improvement in line efficiency and a 12-25% enhancement in ergonomic risk balancing performance. These findings underscore the potential benefits of implementing this approach, which can significantly improve occupational safety and overall performance.


This article presents a practical and systematic approach for enhancing ergonomic conditions in assembly lines. The proposed approach aims to balance the ergonomic risk level while minimising the cycle time by considering physical, environmental and psychosocial risk factors. A case study conducted in a wire harness factory demonstrated significant improvements in balancing ergonomic risks, highlighting the real-world applicability of this research.

2.
Sci Rep ; 14(1): 7231, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538681

RESUMO

Generally, when optimizing a rolling stock schedule, the locations of the depots, or places in the network where the composition changes and maintenance occurs, are assumed known. The locations where maintenance is performed naturally influence the quality of any resulting rolling stock schedules. In this paper, the problem of selecting new depot locations and their corresponding capacities is considered. A two-stage mixed integer programming approach for rolling stock scheduling with maintenance requirements is extended to account for depot selection. First, a conventional flow-based model is solved, ignoring maintenance requirements, to obtain a variety of rolling stock schedules with multiple depot locations and capacity options. Then, a maintenance feasible rolling stock schedule can be obtained by solving a series of assignment problems by using the schedules found in the first stage. The proposed methodology is tested on real-life instances, and the numerical experiments of different operational scenarios are discussed.

3.
Waste Manag ; 175: 12-21, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38118300

RESUMO

Food waste contributes significantly to greenhouse emissions and represents a substantial portion of overall waste within hospital facilities. Furthermore, uneaten food leads to a diminished nutritional intake for patients, that typically are vulnerable and ill. Therefore, this study developed mathematical models for constructing patient meals in a 1000-bed hospital located in Florida. The objective is to minimize food waste and meal-building costs while ensuring that the prepared meals meet the required nutrients and caloric content for patients. To accomplish these objectives, four mixed-integer programming models were employed, incorporating binary and continuous variables. The first model establishes a baseline for how the system currently works. This model generates the meals without minimizing waste or cost. The second model minimizes food waste, reducing waste up to 22.53 % compared to the baseline. The third model focuses on minimizing meal-building costs and achieves a substantial reduction of 37 %. Finally, a multi-objective optimization model was employed to simultaneously reduce both food waste and cost, resulting in reductions of 19.70 % in food waste and 32.66 % in meal-building costs. The results demonstrate the effectiveness of multi-objective optimization in reducing waste and costs within large-scale food service operations.


Assuntos
Eliminação de Resíduos , Gerenciamento de Resíduos , Humanos , Hospitais , Modelos Teóricos , Refeições , Florida
4.
Netw Spat Econ ; : 1-29, 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37361415

RESUMO

Tourism generates huge amounts of waste. It has been estimated that about half of the waste generated by hotels is food and garden bio-waste. This bio-waste can be used to make compost and pellets. In turn, pellets can be used as an absorbent material in composters and as an energy source. In this paper, we consider the problem of locating composting and pellet-making facilities so that the bio-waste generated by a chain of hotels can be managed at or close to the generation points. The general objective is twofold: i) to avoid waste transportation from generation to treatment points and product transportation from production to demand points, and ii) to implement a circular model in which the hotels themselves become the suppliers of the products they need (compost and pellets) by transforming the bio-waste that they generate. Any bio-waste not processed by the hotels has to be treated at private or state-run plants. A mathematical optimization model is presented to locate the facilities and allocate the waste and products. The application of the proposed location-allocation model is illustrated with an example.

5.
Stud Health Technol Inform ; 305: 381-384, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37387045

RESUMO

Nurse scheduling is still an unsolved issue, as it is NP-hard and highly context-dependent. Despite this fact, the practice needs guidance on how to tackle this problem without using costly commercial tools. Concretely, we have the following use case: a Swiss hospital is planning a new station designed for nurse training. The capacity planning is finished, and the hospital wants to assess whether shift planning with known constraints leads to valid solutions. Here, a mathematical model is combined with a genetic algorithm. We trust the solution of the mathematical model more, but if it does not provide a valid solution, we try out an alternative. Our solutions indicate that actual capacity planning together with the hard constraints cannot lead to valid staff schedules. The central conclusion is that more degrees of freedom are necessary and that open-source tools OMPR and DEAP are valuable alternatives to commercial products such as Wrike or Shiftboard, in which the degree of freedom of customization is reduced in favor of easiness of use.


Assuntos
Etnicidade , Hospitais , Humanos , Confiança
6.
BMC Nutr ; 9(1): 51, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36941679

RESUMO

BACKGROUND: In Brazil, institutional foodservices are required to meet the recommendations of the Workers? Food Program (WFP), a national public policy used to plan collective menus. The current study aimed to propose a mathematical model to generate a one-month menu that meets the nutritional recommendations of the WFP, with low cost and good quality. METHODS: We considered aspects related to the eating habits of the Brazilian population, spacing of repetitions between the dishes, texture combination, and monotonicity of colors of the dishes served. A mixed integer programming model was built to formulate daily menus for an institutional foodservice for one month. The menu consisted of a base dish, a base dish option, salads (2 options), a protein dish, a protein dish option, a side dish, and a dessert. RESULTS: The model ensured compliance with the recommendations proposed by the WFP and the provision of healthy and nutritionally balanced meals. The menu generated met the recommendations of the WFP, with an average of 716.97 kcal/meal, including on average 58.28% carbohydrates, 17.89% proteins, and 24.88% total fats/meal. CONCLUSION: The model used can help in the menu elaboration dynamics of institutional foodservices, optimizing the work of the nutritionist in charge.

7.
Waste Manag Res ; 41(7): 1267-1279, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36912470

RESUMO

Municipal solid waste management is a paramount activity in modern cities due to environmental, social and economic problems that can arise when mishandled. In this work, the sequencing of micro-routes in the Argentine city of Bahía Blanca is addressed, which is modelled as a vehicle routing problem with travel time limit and the vehicle's capacity. Particularly, we propose two mathematical formulations based on mixed integer programming and we solve a set of instances of the city of Bahía Blanca based on real data. Moreover, with this model, we estimate the total distance and travel time of the waste collection and use this data to analyse the possibility of installing a transfer station. The results demonstrate the competitiveness of the approach to resolve realistic instances of the target problem and suggest the convenience of installing a transfer station in the city considering the reduction of the travelled distance.


Assuntos
Eliminação de Resíduos , Gerenciamento de Resíduos , Eliminação de Resíduos/métodos , Gerenciamento de Resíduos/métodos , Resíduos Sólidos , Cidades
8.
J Environ Manage ; 332: 117071, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36796114

RESUMO

The threat of climate change continues to grow, which calls for strategies to reduce emissions. Carbon emissions from transportation are among the highest in the world, so it is essential to improve its efficiency. Cross-docking is a smart way to improve the efficiency of transportation operations through the optimal use of truck capacity. This paper develops a novel bi-objective mixed integer linear programming (MILP) model to determine which products should be shipped together, select the most appropriate truck among the available ones, and schedule them. It reveals a new class of cross-dock truck scheduling problems, in which products are not interchangeable and are sent to different destinations. The first objective is to minimize overall system costs, while the second is to minimize total carbon emissions. To deal with uncertainties in factors, such as costs, time, and emission rate, these parameters are considered interval numbers. Furthermore, innovative uncertain approaches are introduced under interval uncertainty based on optimistic and pessimistic Pareto solutions for solving MILP problems via epsilon-constraint and weighting methods. The proposed model and solution procedures are used for planning an operational day at a regional distribution center (RDC) of a real food and beverage company, and results are compared. The results show that the proposed epsilon-constraint method outperforms the other implemented methods in terms of quantity and variety of optimistic and pessimistic Pareto solutions. Using the newly developed procedure, the amount of carbon produced by trucks could decrease by 18% under optimistic assumptions and 44% under pessimistic assumptions. As a result of the proposed solution approaches, managers can observe how their optimism level and the importance of objective functions influence their decisions.


Assuntos
Carbono , Veículos Automotores , Incerteza , Meios de Transporte , Bebidas
9.
J Clean Prod ; 389: 135985, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36647542

RESUMO

A safe and effective medical waste transport network is beneficial to control the COVID-19 pandemic and at least decelerate the spread of novel coronavirus. Seldom studies concentrated on a two-phase COVID-19 medical waste transport in the presence of multi-type vehicle selection, sustainability, and infection probability, which is the focus of this paper. This paper aims to identify the priority of sustainable objectives and observe the impacts of multi-phase and infection probability on the results. Thus, such a problem is formulated as a mixed-integer programming model to minimise total potential infection risks, minimise total environmental risks, and maximise total economic benefits. Then, a hybrid solution strategy is designed, incorporating a lexicographic optimisation approach and a linear weighted sum method. A real-world case study from Chongqing is used to illustrate this methodology. Results indicate that the solution strategy guides a good COVID-19 medical waste transport scheme within 1 min. The priority of sustainable objectives is society, economy, and environment in the first and second phases because the total Gap of case No.35 is 3.20%. A decentralised decision mode is preferred to design a COVID-19 medical waste transport network at the province level. Whatever the infection probability is, infection risk is the most critical concern in the COVID-19 medical waste clean-up activities. Environmental and economic sustainability performance also should be considered when infection probability is more than a certain threshold.

10.
Eur J Oper Res ; 304(1): 255-275, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34866765

RESUMO

This study presents a new risk-averse multi-stage stochastic epidemics-ventilator-logistics compartmental model to address the resource allocation challenges of mitigating COVID-19. This epidemiological logistics model involves the uncertainty of untested asymptomatic infections and incorporates short-term human migration. Disease transmission is also forecasted through a new formulation of transmission rates that evolve over space and time with respect to various non-pharmaceutical interventions, such as wearing masks, social distancing, and lockdown. The proposed multi-stage stochastic model overviews different scenarios on the number of asymptomatic individuals while optimizing the distribution of resources, such as ventilators, to minimize the total expected number of newly infected and deceased people. The Conditional Value at Risk (CVaR) is also incorporated into the multi-stage mean-risk model to allow for a trade-off between the weighted expected loss due to the outbreak and the expected risks associated with experiencing disastrous pandemic scenarios. We apply our multi-stage mean-risk epidemics-ventilator-logistics model to the case of controlling COVID-19 in highly-impacted counties of New York and New Jersey. We calibrate, validate, and test our model using actual infection, population, and migration data. We also define a new region-based sub-problem and bounds on the problem and then show their computational benefits in terms of the optimality and relaxation gaps. The computational results indicate that short-term migration influences the transmission of the disease significantly. The optimal number of ventilators allocated to each region depends on various factors, including the number of initial infections, disease transmission rates, initial ICU capacity, the population of a geographical location, and the availability of ventilator supply. Our data-driven modeling framework can be adapted to study the disease transmission dynamics and logistics of other similar epidemics and pandemics.

11.
J Air Transp Manag ; 106: 102258, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35892062

RESUMO

The timely handling of passengers is critical to efficient airport and airline operations. The pandemic requirements mandate adapted process designs and handling procedures to maintain and improve operational performance. Passenger activities in the confined aircraft cabin must be evaluated for potential virus transmission, and boarding procedures should be designed to minimize the negative impact on passengers and operations. In our approach, we generate an optimized seat allocation that considers passengers' physical activities when they store their hand luggage items in the overhead compartment. We proposed a mixed-integer programming formulation including the concept of shedding rates to determine and minimize the risk of virus transmission by solving the NP-hard seat assignment problem. We are improving the already efficient outside-in boarding, where passengers in the window seat board first and passengers in the aisle seat board last, taking into account COVID-19 regulations and the limited capacity of overhead compartments. To demonstrate and evaluate the improvements achieved in aircraft boarding, a stochastic agent-based model is used in which three operational scenarios with seat occupancy of 50%, 66%, and 80% are implemented. With our optimization approach, the average boarding time and the transmission risk are significantly reduced already for the general case, i.e., when no specific boarding order is specified (random boarding). If the already efficient outside-in boarding is used as a reference, the boarding time can be reduced by more than 30% by applying our approach, while keeping the transmission risk at the lowest level.

12.
Ocean Coast Manag ; 232: 106422, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36407122

RESUMO

Since the COVID-19 ravaged the global terminals, the Automated Container Terminal (ACT) has become one of important approach to promote the stronger quick response capacity to deal with the uncertainty that COVID-19 brought to the terminal. This research takes Automated Guided Vehicle (AGV) and their effects into account the multi-resource collaborative scheduling model to tradeoff ACT operational efficiency and energy savings. Firstly, the dual-cycle strategy of QC and the pooling strategy of AGV are given, which coordinates the scheduling of Quay Cranes (QCs), Yard Cranes (YCs) and other equipment. Furthermore, a multi-resource collaborative scheduling optimization model is proposed which roots from the principle of the Blocking-type Hybrid Flow Shop Problem (B-HFSP) with the objectives of minimizing the makespan of QC and the transportation energy consumption. And simultaneously, a mixed algorithm SA-GA is designed for solving this mixed integer programming model by an optimizing effect of Simulated Annealing on Genetic algorithms. Numerical experiments show that the model in this research is effective. The convergence of SA-GA is effective for small-scale cases and superior for large-scale cases. Considering both goals of high efficiency and energy saving, the Pareto solution set and collaborative scheduling solution take a priority to ensure that the bottlenecked QC runs efficiently. Here and now the average idle rate of QC is about [14%, 35%] lower than that of other equipment. The collaborative scheduling model constructed above not only has reference value for other multi-device and multi-stage scheduling problem, but also enhance the integrated decision-making ability of the ACT in the post-epidemic era.

13.
Socioecon Plann Sci ; 86: 101472, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36438929

RESUMO

While different control strategies in the early stages of the COVID-19 pandemic have helped decrease the number of infections, these strategies have had an adverse economic impact on businesses. Therefore, optimal timing and scale of closure and reopening strategies are required to prevent both different waves of the pandemic and the negative economic impact of control strategies. This paper proposes a novel multi-objective mixed-integer linear programming (MOMILP) formulation, which results in the optimal timing of closure and reopening of states and industries in each state to mitigate the economic and epidemiological impact of a pandemic. The three objectives being pursued include: (i) the epidemiological impact, (ii) the economic impact on the local businesses, and (iii) the economic impact on the trades between industries. The proposed model is implemented on a dataset that includes 11 states, the District of Columbia, and 19 industries in the US. The solved by augmented ε-constraint approach is used to solve the multi-objective model, and a final strategy is selected from the set of Pareto-optimal solutions based on the least cubic distance of the solution from the optimal value of each objective. The Pareto-optimal solutions suggest that for any control decision (state and industry closure or reopening), the economic impact and the epidemiological impact change in the opposite direction, and it is more effective to close most states while keeping the majority of industries open during the planning horizon.

14.
Health Care Manag Sci ; 26(1): 21-45, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36197537

RESUMO

We use a real Nurse Rostering Problem and a validated model of human sleep to formulate the Nurse Rostering Problem with Fatigue. The fatigue modelling includes individual biologies, thus enabling personalised schedules for every nurse. We create an approximation of the sleep model in the form of a look-up table, enabling its incorporation into nurse rostering. The problem is solved using an algorithm that combines Mixed-Integer Programming and Constraint Programming with a Large Neighbourhood Search. A post-processing algorithm deals with errors, to produce feasible rosters minimising global fatigue. The results demonstrate the realism of protecting nurses from highly fatiguing schedules and ensuring the alertness of staff. We further demonstrate how minimally increased staffing levels enable lower fatigue, and find evidence to suggest biological complementarity among staff can be used to reduce fatigue. We also demonstrate how tailoring shifts to nurses' biology reduces the overall fatigue of the team, which means managers must grapple with the issue of fairness in rostering.


Assuntos
Algoritmos , Admissão e Escalonamento de Pessoal , Humanos
15.
Health Care Manag Sci ; 26(1): 117-137, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36319888

RESUMO

In this paper, we use a fixed template of slots for the online scheduling of appointments. The template is a link between planning the service capacity at a tactical level and online scheduling at an operational level. We develop a detailed heuristic for the case of drug administration appointments in outpatient chemotherapy. However, the approach can be applied to online scheduling in other application areas as well. The desired scheduling principles are incorporated into the cost coefficients of the objective function of a binary integer program for booking appointments in the template, as requests arrive. The day and time of appointments are decided simultaneously, rather than sequentially, where optimal solutions may be eliminated from the search. The service that we consider in this paper is an example to show the versatility of a fixed template online scheduling model. It requires two types of resource, one of which is exclusively assigned for the whole appointment duration, and the other is shared among multiple appointments after setting up the service. There is high heterogeneity among appointments on a day of this service. The appointments may range from fifteen minutes to more than eight hours. A fixed template gives a pattern for the scheduling of possibly required steps before the service. Instead of maximizing the fill-rate of the template, the objective of our heuristic is to have high performance in multiple indicators pertaining to various stakeholders (patients, nurses, and the clinic). By simulation, we illustrate the performance of the fixed template model for the key indicators.


Assuntos
Agendamento de Consultas , Pacientes Ambulatoriais , Humanos , Eficiência Organizacional , Simulação por Computador , Instituições de Assistência Ambulatorial
16.
Phys Med Biol ; 67(24)2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36541505

RESUMO

Objective. Proton arc therapy (PAT) is a new delivery technique that exploits the continuous rotation of the gantry to distribute the therapeutic dose over many angular windows instead of using a few static fields, as in conventional (intensity-modulated) proton therapy. Although coming along with many potential clinical and dosimetric benefits, PAT has also raised a new optimization challenge. In addition to the dosimetric goals, the beam delivery time (BDT) needs to be considered in the objective function. Considering this bi-objective formulation, the task of finding a good compromise with appropriate weighting factors can turn out to be cumbersome.Approach. We have computed Pareto-optimal plans for three disease sites: a brain, a lung, and a liver, following a method of iteratively choosing weight vectors to approximate the Pareto front with few points. Mixed-integer programming (MIP) was selected to state the bi-criteria PAT problem and to find Pareto optimal points with a suited solver.Main results. The trade-offs between plan quality and beam irradiation time (staticBDT) are investigated by inspecting three plans from the Pareto front. The latter are carefully picked to demonstrate significant differences in dose distribution and delivery time depending on their location on the frontier. The results were benchmarked against IMPT and SPArc plans showing the strength of degrees of freedom coming along with MIP optimization.Significance. This paper presents for the first time the application of bi-criteria optimization to the PAT problem, which eventually permits the planners to select the best treatment strategy according to the patient conditions and clinical resources available.


Assuntos
Terapia com Prótons , Radioterapia de Intensidade Modulada , Humanos , Terapia com Prótons/métodos , Prótons , Planejamento da Radioterapia Assistida por Computador/métodos , Radiometria , Radioterapia de Intensidade Modulada/métodos , Dosagem Radioterapêutica
17.
Vaccine ; 40(49): 7073-7086, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36404425

RESUMO

This paper considers the problem of patient scheduling and capacity planning for the vaccination process during the COVID-19 pandemic. The proposed solution is based on a non-linear mathematical modeling approach representing the dynamics of an open Jackson Network and a Generalized Network. To test these models, we proposed three objective functions and analyzed different configurations of the process corresponding to various levels of the models' parameters as well as the conditions present in the case study. To assess the computational performance of the models, we also experimented with larger instances in terms of number of steps or stations used and number of patients scheduled. The computational results show how parameters such as the minimum percentage of patients served, the maximum occupation allowed per station and the objective functions used have an impact on the configuration of the process. The proposed approach can support the decision-making process in vaccination centers to efficiently assign human and material resources to maximize the number of patients vaccinated while ensuring reasonable waiting times, number of patients in queue and servers' utilization rates, which in turn are key to avoid overcrowding and other negative conditions in the system that could increase the risk of infections.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , COVID-19/prevenção & controle , Colômbia/epidemiologia , Pandemias/prevenção & controle , Vacinação
18.
Proc Natl Acad Sci U S A ; 119(42): e2205772119, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36215503

RESUMO

The power grid is going through significant changes with the introduction of renewable energy sources and the incorporation of smart grid technologies. These rapid advancements necessitate new models and analyses to keep up with the various emergent phenomena they induce. A major prerequisite of such work is the acquisition of well-constructed and accurate network datasets for the power grid infrastructure. In this paper, we propose a robust, scalable framework to synthesize power distribution networks that resemble their physical counterparts for a given region. We use openly available information about interdependent road and building infrastructures to construct the networks. In contrast to prior work based on network statistics, we incorporate engineering and economic constraints to create the networks. Additionally, we provide a framework to create ensembles of power distribution networks to generate multiple possible instances of the network for a given region. The comprehensive dataset consists of nodes with attributes, such as geocoordinates; type of node (residence, transformer, or substation); and edges with attributes, such as geometry, type of line (feeder lines, primary or secondary), and line parameters. For validation, we provide detailed comparisons of the generated networks with actual distribution networks. The generated datasets represent realistic test systems (as compared with standard test cases published by Institute of Electrical and Electronics Engineers (IEEE)) that can be used by network scientists to analyze complex events in power grids and to perform detailed sensitivity and statistical analyses over ensembles of networks.


Assuntos
Fontes de Energia Elétrica
19.
Sensors (Basel) ; 22(18)2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-36146203

RESUMO

Wireless sensor networks are fundamental for technologies related to the Internet of Things. This technology has been constantly evolving in recent times. In this paper, we consider the problem of minimising the cost function of covering a sewer network. The cost function includes the acquisition and installation of electronic components such as sensors, batteries, and the devices on which these components are installed. The problem of sensor coverage in the sewer network or a part of it is presented in the form of a mixed-integer programming model. This method guarantees that we obtain an optimal solution to this problem. A model was proposed that can take into account either only partial or complete coverage of the considered sewer network. The CPLEX solver was used to solve this problem. The study was carried out for a practically relevant network under selected scenarios determined by artificial and realistic datasets.

20.
Ann Oper Res ; : 1-47, 2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-36035452

RESUMO

After the outbreak of COVID-19 pandemic, devising an effective reverse logistics supply chain to clean up disaster medical waste is conducive to controlling and containing novel coronavirus transmission. Thus, the focus of this paper concentrates on multi-period multi-type disaster medical waste location-transportation integrated optimization problem with the concern of sustainability, which is formulated as a tri-objective mixed-integer programming model with the goals of maximizing total economic benefits, minimizing total carbon emissions and total potential social risks. Then, a real-world case from Wuhan using CPLEX solver is used to validate the developed model. Results indicate that constructing DMWTTSs with flexible capacity in different periods is encouraged to handle the sharply increasing disaster medical waste. The multi-period decision model outperforms the single-period one in disaster medical waste supply chains because the former has the capability of handling the uncertainties in the future periods. Increasingly, since the increase of budget doesn't always work well and social resources are limited, the estimation of minimum budget to obtain optimum overall performance is of great importance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA