Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Ecol Evol ; 14(3): e11006, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38500863

RESUMO

Annual antler growth begins in the spring and is completed by late summer for male caribou (Rangifer tarandus groenlandicus) from the Qamanirjuaq herd (Nunavut, Canada), aligned with both the spring migration and a seasonal dietary shift. Antlers may provide a non-lethal means of studying short- and long-term changes in caribou ecology through incorporated isotopes of carbon (δ13C) and nitrogen (δ15N). We sampled the antlers of 12 male caribou from the Qamanirjuaq herd culled in September 1967. We predicted that serial sampling of antlers would reflect the known seasonal dietary change from lichen to grass-like and shrub diet based on rumen contents from individuals culled during the same period. The δ13C and δ15N were analyzed in food sources and every 3 cm along each antler's length. The carbon isotope compositions of collagen (δ13Ccol) varied by ~0.5‰ among individuals and within antlers, while the carbon isotope compositions of antler bioapatite (δ13CCO3) increased by 1-1.5‰ from pedicle to tip. Values of δ15Ncol increased within antlers by 1-3‰ from pedicle to tip and varied by 3‰ among the individuals sampled. Antler collagen was lower in δ15Ncol by ~1‰ relative to bone collagen. Bayesian mixing models were conducted to test for changes in dietary proportions from antler isotope compositions. Mixing models did not indicate significant dietary shifts for any individual during antler formation, showing consistently mixed diets of fungi, horsetail, lichen, and woody plants. Increases in δ15Ncol in antler tissue could, therefore, correspond to subtle seasonal dietary changes and/or the physiological stress of antler tissue development.

2.
Chemosphere ; 355: 141816, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38556184

RESUMO

Over the last few decades, measurements of light stable isotope ratios have been increasingly used to answer questions across physiology, biology, ecology, and archaeology. The vast majority analyse carbon (δ13C) and nitrogen (δ15N) stable isotopes as the 'default' isotopes, omitting sulfur (δ34S) due to time, cost, or perceived lack of benefits and instrumentation capabilities. Using just carbon and nitrogen isotopic ratios can produce results that are inconclusive, uncertain, or in the worst cases, even misleading, especially for scientists that are new to the use and interpretation of stable isotope data. Using sulfur isotope values more regularly has the potential to mitigate these issues, especially given recent advancements that have lowered measurement barriers. Here we provide a review documenting case studies with real-world data, re-analysing different biological topics (i.e. niche, physiology, diet, movement and bioarchaeology) with and without sulfur isotopes to highlight the various strengths of this stable isotope for various applications. We also include a preliminary meta-analysis of the trophic discrimination factor (TDF) for sulfur isotopes, which suggest small (mean -0.4 ± 1.7 ‰ SD) but taxa-dependent mean trophic discrimination. Each case study demonstrates how the exclusion of sulfur comes at the detriment of the results, often leading to very different outputs, or missing valuable discoveries entirely. Given that studies relying on carbon and nitrogen stable isotopes currently underpin most of our understanding of various ecological processes, this has concerning implications. Collectively, these examples strongly suggest that researchers planning to use carbon and nitrogen stable isotopes for their research should incorporate sulfur where possible, and that the new 'default' isotope systems for aquatic science should now be carbon, nitrogen, and sulfur.


Assuntos
Carbono , Nitrogênio , Isótopos de Carbono , Isótopos de Nitrogênio , Isótopos de Enxofre
3.
Sci Rep ; 14(1): 4582, 2024 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-38403727

RESUMO

For many years, the rise of stratified societies along the Central Andean coast, known as the birthplace of Andean civilization, has been closely linked to a marine-oriented economy. This hypothesis has recently been challenged by increasing evidence of plant management and cultivation among Andean populations long before the emergence of complex societies and monumental architecture. The extent to which marine and plant-based economies were integrated and their contributions to early sedentism, population growth, and intra-community stratification, however, remain subjects of ongoing and contentious debate. Using Bayesian Mixing Models we reanalyze the previously published stable isotopes (δ15Ncollagen, δ13Ccollagen, δ13Capatite) values of 572 human individuals from 39 archaeological sites in the Central Andes dated between ca. 7000 BCE and 200 CE to reconstruct dietary regimes in probabilistic terms. Our results reveal that fish, terrestrial fauna, and cultivated plants variably contributed to the diet of prehistoric Andean populations; in coastal and middle valley settlements plant cultivation, not fishing, fueled the development of the earliest complex societies during the Formative Period (from 3000 BCE). Similarly, in the highlands the societies that built ceremonial centers show a plant-based economy. Our findings also show that maize only became a staple food (> 25% dietary contribution) in more recent phases of Andean prehistory, around 500 BCE.


Assuntos
Agricultura , Osso e Ossos , Animais , Humanos , Teorema de Bayes , Isótopos de Carbono , Isótopos de Nitrogênio , Dieta , Arqueologia , Colágeno
4.
Ecol Lett ; 26(12): 2122-2134, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37807844

RESUMO

The influence of aquatic resource-inputs on terrestrial communities is poorly understood, particularly in the tropics. We used stable isotope analysis of carbon and nitrogen to trace aquatic prey use and quantify the impact on trophic structure in 240 riparian arthropod communities in tropical and temperate forests. Riparian predators consumed more aquatic prey and were more trophically diverse in the tropics than temperate regions, indicating tropical riparian communities are both more reliant on and impacted by aquatic resources than temperate communities. This suggests they are more vulnerable to disruption of aquatic-terrestrial linkages. Although aquatic resource use declined strongly with distance from water, we observed no correlated change in trophic structure, suggesting trophic flexibility to changing resource availability within riparian predator communities in both tropical and temperate regions. Our findings highlight the importance of aquatic resources for riparian communities, especially in the tropics, but suggest distance from water is less important than resource diversity in maintaining terrestrial trophic structure.


Assuntos
Artrópodes , Cadeia Alimentar , Animais , Florestas , Carbono , Água , Ecossistema
5.
Sci Total Environ ; 904: 167097, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37716688

RESUMO

Dams have disrupted natural river systems worldwide and although population and community level effects on aquatic biota have been well documented, food web responses remain poorly understood and difficult to characterize. The application of stable isotope analysis (SIA) provides a means to assess the effect of dams on food webs. Here we review the effect of dams on aquatic food webs using SIA, aiming to detect knowledge gaps in the field of dam impacts on aquatic food webs and propose a conceptual framework to help formulate hypotheses about dam impacts on food webs guided by food web theory. Dams can affect aquatic food webs via two pathways: a bottom-up pathway with altered basal food sources and their transfer to consumers through changes in flow, nutrients, temperature and sediment, and a top-down pathway with consumer species composition altered mainly through habitat fragmentation and related physiochemical changes. Taking these mechanisms into consideration, the impact of dams on food web attributes derived from SIA was evaluated. These studies generally apply mixing models to determine how dams alter the dominant carbon sources supporting food webs, use δ15N to examine how dams alter food-chain length, or use Layman metrics of isotope variability to assess niche changes for invertebrate and fish assemblages. Most studies compare the patterns of SIA metrics spatially (e.g. upstream vs reservoir vs downstream of dams; regulated vs unregulated rivers) and temporally (before vs after dam construction), without explicit hypotheses and/or links to theoretical concepts of food webs. We propose several steps to make SIA studies of dam impacts more rigorous and enhance their potential for producing novel insights. Future studies should quantify the shape and strength of the effect of dams on SIA-measured food web response, be conducted at larger temporal and spatial scales (particularly along the river longitudinal continuum and the lateral connected ecosystems (e.g., floodplains)), and consider effects of dams on food web resilience and tipping points.


Assuntos
Ecossistema , Cadeia Alimentar , Animais , Invertebrados , Peixes , Isótopos de Nitrogênio/análise
6.
Mar Environ Res ; 192: 106178, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37776807

RESUMO

Reflecting the intense coastal upwelling and high primary productivity characteristic of the Humboldt Current System (HCS), the northern coast of Chile supports a diverse and productive community of marine consumers, including worldwide important pelagic fisheries resources. Although marine mammals are relatively understudied in the region, recent studies have demonstrated that fin whale (Balaenoptera physalus) is the most frequently encountered whale species, and forages in these waters year-round. However, a current lack of information limits our understanding of whether fin whales actively feed and/or remain resident in these waters or whether whales are observed feeding as they migrate along this part of the Pacific. Here, we use stable isotope ratios of carbon, nitrogen and sulphur of fin whale skin samples collected in early summer 2020 (n = 18) and in late winter 2021 (n = 22) to examine evidence of temporal isotopic shifts that could provide information on potential migratory movements and to estimate likely consumption patterns of putative prey (i.e. zooplankton, krill, pelagic fishes and Pleuroncodes sp.). We also analysed prey items in fin whale faecal plumes (n = 8) collected during the study period. Stable isotope data showed significant differences in the isotopic values of fin whales from summer and winter. On average, summer individuals were depleted in 15N and 34S relative to those sampled during winter. Whales sampled in summer showed greater isotopic variance than winter individuals, with several showing values that were atypical for consumers from the HCS. During winter, fin whales showed far less inter-individual variation in stable isotope values, and all individuals had values indicative of prey consumption in the region. Analysis of both stable isotopes and faeces indicated that fin whales sighted off the Mejillones Peninsula fed primarily on krill (SIA median contribution = 32%; IRI = 65%) and, to a lesser extent, zooplankton (SIA zooplankton = 29%; IRI copepod = 33%). These are the first isotopic-based data regarding the trophic ecology of fin whales in the north of Chile. They provide evidence that fin whales are seasonally resident in the area, including individuals with values that likely originated outside the study area. The information presented here serves as a baseline for future work. It highlights that many aspects of the ecology of fin whales in the Humboldt Current and wider SE Pacific still need to be clarified.


Assuntos
Baleia Comum , Humanos , Animais , Chile , Ecologia , Isótopos , Baleias
7.
PeerJ ; 11: e15422, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37304885

RESUMO

Mangroves are coastal wetlands with high biodiversity and productivity, with great interaction with coastal environments. In the face of worldwide mangrove loss, restoration projects attempt to recover ecosystem composition and functioning over time. Our objective was to examine and compare the food webs in mangrove areas with different restoration times and in a reference mangrove in Términos Lagoon, Mexico. We estimated the trophic structure, identified the carbon resources that maintain aquatic consumers through the analysis of stable isotopes, and compared the trophic niche of the restored mangroves with the reference mangrove. We analyzed environmental variables, trophic structure, and contributions of resources during three seasons: rainy, dry, and "nortes". Environmental changes and food structure changed in response to regional seasons. Bayesian mixing models indicated that food webs varied seasonally as a response to the primary productivity developed at Términos Lagoon. As expected, the assimilation of C3 plants in the reference mangrove was highest, as a primary ("nortes" season) and secondary resource (dry and rainy seasons). The restored mangroves depended mainly on allochthonous resources (seagrass, epiphytes, and phytoplankton). The assimilation of these resources highlighted the importance of connectivity and the input of sources of carbon from nearby coastal environments. Trophic niche analysis showed that the area with longer restoration time was more similar to the reference mangrove, which is evidence of the importance and efficacy of the restoration process, as well as the restoration of the ecosystem function over time.


Assuntos
Ecossistema , Cadeia Alimentar , Teorema de Bayes , Golfo do México , Carbono
8.
Environ Monit Assess ; 195(4): 531, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37004632

RESUMO

In this work, chloride ions were used as conservative tracers and supplemented with conservative amounts of chloroethenes (PCE, TCE, Cis-DCE, 1,1-DCE), chloroethanes (1,1,1-TCA, 1,1-DCA), and the carbon isotope ratios of certain compounds, the most representative on the sites studied, which is a novelty compared to the optimization methods developed in the scientific literature so far. A location of the potential missing sources is then proposed in view of the balances of the calculated mixing fractions. A test of the influence of measurement errors on the results shows that the uncertainties in the calculation of the mixture fractions are less than 11%, indicating that the source identification method developed is a robust tool for identifying sources of chlorinated solvents in groundwater.


Assuntos
Água Subterrânea , Tricloroetileno , Cloreto de Vinil , Poluentes Químicos da Água , Biodegradação Ambiental , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Solventes/análise
9.
Water Res ; 232: 119663, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36796152

RESUMO

In the European Union, nitrate vulnerable zone (NVZ) should be designed for the mitigation of nitrate (NO3-) contamination caused by agricultural practices. Before establishing new NVZ, the sources of NO3- must be recognized. A geochemical and multiple stable isotopes approach (hydrogen, oxygen, nitrogen, sulfur and boron) and statistical tools were applied to define the geochemical characteristics of groundwater (60 samples), calculate the local NO3- threshold and assess potential sources of NO3- contamination in two study areas (hereafter Northern and Southern), located in a Mediterranean environment (Sardinia, Italy). Results of the integrated approach applied to two case study, permits to highlight the strengths of integrating geochemical and statistical methods to provide nitrate source identification as a reference by decision makers to remediate and mitigate nitrate contamination in groundwater. Hydrogeochemical features in the two study areas were similar: near neutral to slightly alkaline pH, electrical conductivity in the range of 0.3 to 3.9 mS/cm, and chemical composition ranging from Ca-HCO3- at low salinity to Na-Cl- at high salinity. Concentrations of NO3- in groundwater were in the range of 1 to 165 mg/L, whereas the nitrogen reduced species were negligible, except few samples having NH4+ up to 2 mg/L. Threshold values in the studied groundwater samples were between 4.3 and 6.6 mg/L NO3-, which was in agreement with previous estimates in Sardinian groundwater. Values of δ34S and δ18OSO4 of SO42- in groundwater samples indicated different sources of SO42-. Sulfur isotopic features attributed to marine SO42- were consistent with groundwater circulation in marine-derived sediments. Other source of SO42- were recognize due to the oxidation of sulfide minerals, to fertilizers, manure, sewage fields, and SO42- derived from a mix of different sources. Values of δ15N and δ18ONO3 of NO3- in groundwater samples indicated different biogeochemical processes and NO3- sources. Nitrification and volatilization processes might have occurred at very few sites, and denitrification was likely to occur at specific sites. Mixing among various NO3- sources in different proportions might account for the observed NO3- concentrations and the nitrogen isotopic compositions. The SIAR modeling results showed a prevalent NO3- source from sewage/manure. The δ11B signatures in groundwater indicated the manure to be the predominant NO3- source, whereas NO3- from sewage was recognized at few sites. Geographic areas showing either a predominant process or a defined NO3- source where not recognize in the studied groundwater. Results indicate widespread contamination of NO3- in the cultivated plain of both areas. Point sources of contamination, due to agricultural practices and/or inadequate management of livestock and urban wastes, were likely to occur at specific sites.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Nitratos/análise , Esgotos , Esterco/análise , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Isótopos de Nitrogênio/análise , Nitrogênio/análise , Itália , Água Subterrânea/química , Enxofre , China
10.
Mar Environ Res ; 184: 105857, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36577309

RESUMO

We analyzed δ13C and δ15N values in different tooth portions (Growth Layer Groups, GLGs) of franciscanas, Pontoporia blainvillei, to investigate their effect on whole tooth (WT) isotopic values and the implications for dietary estimates. Tooth portions included the dentin deposited during the prenatal development (PND), the first year of life (GLG1) deposited during the nursing period and the central part of the tooth with no distinction amongst subsequent GLGs (Center). Isotopic mixing models estimating the contribution of PND, GLG1 and Center to WT showed that GLG1 has a strong effect on WT isotope values in juveniles, while Center only starts to affect WT isotopic values from age four. Isotopic mixing models estimating prey contribution to the diet of juveniles using WT vs Center tooth portions significantly differed in dietary outputs, demonstrating that GLG1 influence on WT isotope values affects dietary estimates in young franciscanas. As the small tooth size and narrowness of the last GLGs hinder the analysis of individual layers, we recommend excluding GLG1 in studies based on teeth isotope composition in franciscanas and caution when interpreting isotopic values from the WT of other small cetaceans.


Assuntos
Golfinhos , Animais , Isótopos de Carbono , Isótopos de Nitrogênio , Dieta , Cetáceos , Viés
11.
Environ Toxicol Chem ; 42(9): 1937-1945, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36263953

RESUMO

Although stable isotope analysis (SIA) is widely used to address ecological research questions, its application in an ecotoxicological context has been limited. Recent studies have proposed an effect of chemical stressors on an organism's isotope signature, questioning the use of SIA in food webs impacted by toxicants. Against this background, the present study investigates 1) whether trophic enrichment factors (TEFs; i.e., the offset in stable isotope signatures of a consumer to its diet) are altered by the neonicotinoid thiacloprid, and 2) whether tracking toxicant effects on an organism's diet composition (i.e., indirect effect) with SIA fits direct observations of consumption. To address the former, the amphipod Gammarus fossarum (Koch) was exposed to three levels (0, 0.75, and 5 µg L-1 ) of thiacloprid and fed with either black alder leaves or Baetis rhodani (Pictet) larvae over 6 weeks (n = 35). The thiacloprid-induced changes in TEFs that we found were statistically significant but small compared with other factors (e.g., resource quality, consumer, and physiological condition) and thus likely of minor importance. To address the latter issue, gammarids were exposed to two levels of thiacloprid (0 and 0.75 µg L-1 ) and fed with either black alder leaves, live B. rhodani larvae, or both over 2 weeks (n = 10). Dietary proportions as suggested by SIA were indeed in agreement with those derived from direct observation of consumption. The present study consequently suggests that SIA is as a robust tool to detect indirect toxicant effects especially if TEFs are assessed in parallel. Environ Toxicol Chem 2023;42:1937-1945. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Isótopos , Tiazinas , Neonicotinoides , Cadeia Alimentar , Substâncias Perigosas
12.
Glob Chang Biol ; 29(3): 780-793, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36308039

RESUMO

A small imbalance in plant productivity and decomposition accounts for the carbon (C) accumulation capacity of peatlands. As climate changes, the continuity of peatland net C storage relies on rising primary production to offset increasing ecosystem respiration (ER) along with the persistence of older C in waterlogged peat. A lowering in the water table position in peatlands often increases decomposition rates, but concurrent plant community shifts can interactively alter ER and plant productivity responses. The combined effects of water table variation and plant communities on older peat C loss are unknown. We used a full-factorial 1-m3 mesocosm array with vascular plant functional group manipulations (Unmanipulated Control, Sedge only, and Ericaceous only) and water table depth (natural and lowered) treatments to test the effects of plants and water depth on CO2 fluxes, decomposition, and older C loss. We used Δ14 C and δ13 C of ecosystem CO2 respiration, bulk peat, plants, and porewater dissolved inorganic C to construct mixing models partitioning ER among potential sources. We found that the lowered water table treatments were respiring C fixed before the bomb spike (1955) from deep waterlogged peat. Lowered water table Sedge treatments had the oldest dissolved inorganic 14 C signature and the highest proportional peat contribution to ER. Decomposition assays corroborated sustained high rates of decomposition with lowered water tables down to 40 cm below the peat surface. Heterotrophic respiration exceeded plant respiration at the height of the growing season in lowered water table treatments. Rates of gross primary production were only impacted by vegetation, whereas ER was affected by vegetation and water table depth treatments. The decoupling of respiration and primary production with lowered water tables combined with older C losses suggests that climate and land-use-induced changes in peatland hydrology can increase the vulnerability of peatland C stores.


Assuntos
Ecossistema , Água Subterrânea , Dióxido de Carbono/análise , Carbono , Plantas , Solo
13.
Sci Total Environ ; 854: 158540, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36113787

RESUMO

To assess the source characteristics of coastal aerosols and evaluate the contribution of atmospheric deposition to particulate organic matter in surface seawater, total suspended particulates (TSP) were collected at a shore-based site on the south coast of North Yellow Sea from December 2019 through November 2020. The samples were analyzed for total organic carbon (TOC) and nitrogen (TN) as well as stable carbon and nitrogen isotope (δ13C and δ15N). The results showed that the annual mean concentrations of TOC and TN were 5.36 ± 4.74 and 5.12 ± 6.52 µg m-3, respectively. δ13C fluctuated between -25.1 ‰ and -19.2 ‰ with an annual mean of -24.0 ± 1.0 ‰ and a significant seasonal variation (P < 0.05) characterizing by the enrichment in winter (-23.4 ± 0.6 ‰) compared to other seasons, which was probably related to the massive coal combustion. Besides, δ15N ranged from 7.9 ‰ to 21.1 ‰ with an annual mean of 12.5 ± 2.9 ‰ and a less pronounced seasonal pattern (P = 0.23). The Bayesian isotope-mixing model showed that, annually, the most important source of TSP was biogenic and biomass source (55.5 ± 10.8 %), followed by fossil fuel combustion (31.9 ± 9.0 %), while the marine contribution was less (12.6 ± 2.3 %). For TOC and TN, the dominated sources were fossil fuel combustion (47.7 ± 3.4 %) and biogenic and biomass source (57.3 ± 11.7 %), respectively. Furthermore, the model results indicated that the contribution of atmospheric deposition to suspended particulate matter in surface seawater was 18.0 ± 11.0 %, 17.1 ± 6.7 % and 10.2 ± 2.0 % in autumn, spring and summer, respectively. For particulate organic carbon in surface seawater, the contribution of atmospheric deposition was 35.2 ± 3.5 % in spring, highlighting the huge impact of atmospheric deposition on particulate carbon cycling in coastal waters.

14.
Mar Environ Res ; 181: 105737, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36075155

RESUMO

Stable isotope (SI) analysis is a standard tool to study marine food webs, usually based on the measurement of a few individuals from a small list of subjectively pre-defined species. The main objective of this study was to find out which species are significantly associated with the temporal variability of the SI composition of zooplankton in a tropical marine ecosystem. We investigated this by means of a novel species-biomass-isotopes-mixture (SBIM) approach that uses a relative biomass matrix to explain the SI signature of the zooplankton community. Furthermore, SBIM was applied to detect key taxa that can be considered bioindicators for important descriptors of ecosystem state (e.g., oligotrophy, carbon sources, mean trophic level). Plankton samples (64 µm mesh size) were obtained in Tamandaré Bay (northeastern Brazil) from June 2013 to August 2019. One aliquot of each sample was taken for stable isotope measurements and one for taxonomic identification and estimation of size and relative biomass. Total zooplankton biomass differed significantly between years, seasons and stations. Total zooplankton δ13C values ranged from -21.0 to -18.2‰ (mean ± standard deviation: -19.7 ± 0.7‰ in the dry season, and -19.4 ± 0.8‰ in the rainy season). Total zooplankton δ15N values ranged from 3.8 to 9.0‰ (7.0 ± 1.0‰ in the dry season, and 6.5 ± 1.2‰ rainy season). Total zooplankton C/N ratios ranged from 3.5 to 5.0 (4.2 ± 0.4 in the dry season and 4.2 ± 0.3 in the rainy season). The sparsely abundant and relatively large-sized copepod Pseudodiaptomus acutus was the most important species for explaining the variability in δ15N (22% of the total variability). Relative biomass (%) of P. acutus showed a strong positive correlation with δ15N, indicating a high trophic level (TL). Our results highlight the importance of less abundant taxa for marine food webs. Small-sized invertebrate larvae were negatively correlated with δ15N, indicating a TL below average. The copepod Dioithona oculata was the most important organism in explaining the δ13C of zooplankton (17.7% of the total variability, positive correlation with δ13C), indicating possible selective use of a13C-enriched food source (e.g., diatoms) by this cyclopoid copepod. Oithona spp. juveniles showed a negative relationship with zooplankton C/N ratio, which can be indicators of an oligotrophic ecosystem state and lipid-poor zooplankton. The tintinnid F. ehrenbergii showed a positive correlation with C/N, being an indicator for turbid "green waters'', during the rainy season, when the ecosystem was in a eutrophic state, with high lipid contents in the zooplankton community. The proposed SBIM approach opens up a novel pathway to understanding the factors and species that shape the temporal variability of food webs.


Assuntos
Copépodes , Ecossistema , Animais , Isótopos de Carbono/análise , Cadeia Alimentar , Lipídeos , Isótopos de Nitrogênio/análise , Fatores de Tempo , Zooplâncton/metabolismo
15.
Mol Ecol ; 31(21): 5635-5648, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36089910

RESUMO

While an increasing number of studies are adopting molecular and chemical methods for dietary characterization, these studies often employ only one of these laboratory-based techniques; this approach may yield an incomplete, or even biased, understanding of diet due to each method's inherent limitations. To explore the utility of coupling molecular and chemical techniques for dietary characterizations, we applied DNA metabarcoding alongside stable isotope analysis to characterize the dietary niche of breeding Louisiana waterthrush (Parkesia motacilla), a migratory songbird hypothesized to preferentially provision its offspring with pollution-intolerant, aquatic arthropod prey. While DNA metabarcoding was unable to determine if waterthrush provision aquatic and terrestrial prey in different abundances, we found that specific aquatic taxa were more likely to be detected in successive seasons than their terrestrial counterparts, thus supporting the aquatic specialization hypothesis. Our isotopic analysis added greater context to this hypothesis by concluding that breeding waterthrush provisioned Ephemeroptera and Plecoptera, two pollution-intolerant, aquatic orders, in higher quantities than other prey groups, and expanded their functional trophic niche when such prey were not abundantly provisioned. Finally, we found that the dietary characterizations from each approach were often uncorrelated, indicating that the results gleaned from a diet study can be particularly sensitive to the applied methodologies. Our findings contribute to a growing body of work indicating the importance of high-quality, aquatic habitats for both consumers and their pollution-intolerant prey, while also demonstrating how the application of multiple, laboratory-based techniques can provide insights not offered by either technique alone.


Assuntos
Aves Canoras , Animais , Aves Canoras/genética , Código de Barras de DNA Taxonômico , Ecossistema , Isótopos , Dieta , DNA
16.
Appl Plant Sci ; 10(4): e11486, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36034186

RESUMO

Premise: Invasive plants in wetlands are often ecosystem engineers, mediating changes in ecosystem functions like trophic support. We documented the impacts of Lepidium latifolium, an invasive plant, on the food web of omnivorous birds (Suisun song sparrows, Melospiza melodia maxillaris) in a tidal wetland of northern California, USA. Methods: We used analysis of natural abundance stable isotopes of 13C and 15N in song sparrow blood, invertebrate food sources, L. latifolium seeds, and other marsh plant seeds to inform Bayesian, concentration-dependent mixing models that predicted average song sparrow diets. Results: Season and plant phenology influenced food source incorporation and isotopic signatures. Song sparrows showed higher isotopic variability in the summer. The observed changes in song sparrow diets were driven by altered invertebrate communities related to seasonal L. latifolium presence and by shifts from seeds to consumption of invertebrate food sources during the breeding season in the spring and summer. Discussion: This study used stable isotope tools and modeling to demonstrate two mechanisms of isotopic influence by L. latifolium on omnivorous song sparrows. This study can inform site- and species-specific management strategies by demonstrating how changes to the plant community can impact entire trophic systems.

17.
R Soc Open Sci ; 9(8): 220470, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35991335

RESUMO

Understanding the foraging ecology of animals gives insights into their trophic relationships and habitat use. We used stable isotope analysis to understand the foraging ecology of a critically endangered marine predator, the Maui dolphin. We analysed carbon and nitrogen isotope ratios of skin samples (n = 101) collected from 1993 to 2021 to investigate temporal changes in diet and niche space. Genetic monitoring associated each sample with a DNA profile which allowed us to assess individual and population level changes in diet. Potential prey and trophic level indicator samples were also collected (n = 166; 15 species) and incorporated in Bayesian mixing models to estimate importance of prey types to Maui dolphin diet. We found isotopic niche space had decreased over time, particularly since the 2008 implementation of a Marine Mammal Sanctuary. We observed a decreasing trend in ∂13C and ∂15N values, but this was not linear and several fluctuations in isotope values occurred over time. The largest variation in isotope values occurred during an El Niño event, suggesting that prey is influenced by climate-driven oceanographic variables. Mixing models indicated relative importance of prey remained constant since 2008. The isotopic variability observed here is not consistent with individual specialization, rather it occurs at the population level.

18.
J Contam Hydrol ; 248: 104027, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35640423

RESUMO

We present the results of a lab-scaled feasibility study to assess the performance of electrical resistivity tomography for detection, characterization, and monitoring of fuel grade ethanol releases to the subsurface. Further, we attempt to determine the concentration distribution of the ethanol from the electrical resistivity tomography data using mixing-models. Ethanol is a renewable fuel source as well as an oxygenate fuel additive currently used to replace the known carcinogen methyl tert-butyl ether; however, ethanol is preferentially biodegraded and a cosolvent. When introduced to areas previously impacted by nonethanol-based fuels, it will facilitate the persistence of carcinogenic fuel compounds like benzene and ethylbenzene, as well as remobilize them to the ground water. These compounds would otherwise be retained in the soil column undergoing active or passive remediation processes such as soil vapor extraction or natural attenuation. Here, we introduce ethanol to a saturated Ottawa sand in a tank instrumented for four-dimensional geoelectrical measurements. Forward model results suggest pure phase ethanol released into a water saturated silica sand should present a detectable target for electrical resistivity tomography relative to a saturated silica sand only. We observe the introduction of ethanol to the closed hydraulic system and subsequent migration over the duration of the experiment. One-dimensional and three-dimensional temporal data are assessed for the detection, characterization, and monitoring of the ethanol release. Results suggest one-dimensional geoelectrical measurements may be useful for monitoring a release, while three-dimensional geoelectrical field imaging would be useful to characterize, monitor, and design effective remediation approaches for an ethanol release, assuming field conditions do not preclude the application of geoelectrical methods. We then attempt to use predictive mixing models to calculate the distribution of ethanol concentration within the measurement domain. For this study we examine four different models: a nested parallel mixing model, a nested cubic mixing model, the complex refractive index model (CRIM), and the Lichtenecker-Rother (L-R) model. The L-R model, modified to include an electrical formation factor geometry term, provided the best agreement with expected EtOH concentrations.


Assuntos
Biocombustíveis , Poluentes Químicos da Água , Monitoramento Ambiental/métodos , Etanol , Areia , Dióxido de Silício , Solo , Poluentes Químicos da Água/análise
19.
Ecol Evol ; 12(3): e8566, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35342606

RESUMO

Fungus-growing termites and their symbiotic Termitomyces fungi are critically important carbon and nutrient recyclers in arid and semiarid environments of sub-Saharan Africa. A major proportion of plant litter produced in these ecosystems is decomposed within nest chambers of termite mounds, where temperature and humidity are kept optimal for the fungal symbionts. While fungus-growing termites are generally believed to exploit a wide range of different plant substrates, the actual diets of most species remain elusive. We studied dietary niches of two Macrotermes species across the semiarid savanna landscape in the Tsavo Ecosystem, southern Kenya, based on carbon (C) and nitrogen (N) stable isotopes in Termitomyces fungus combs. We applied Bayesian mixing models to determine the proportion of grass and woody plant matter in the combs, these being the two major food sources available for Macrotermes species in the region. Our results showed that both termite species, and colonies cultivating different Termitomyces fungi, occupied broad and largely overlapping isotopic niches, indicating no dietary specialization. Including laser scanning derived vegetation cover estimates to the dietary mixing model revealed that the proportion of woody plant matter in fungus combs increased with increasing woody plant cover in the nest surroundings. Nitrogen content of fungus combs was positively correlated with woody plant cover around the mounds and negatively correlated with the proportion of grass matter in the comb. Considering the high N demand of large Macrotermes colonies, woody plant matter seems to thus represent a more profitable food source than grass. As grass is also utilized by grazing mammals, and the availability of grass matter typically fluctuates over the year, mixed woodland-grasslands and bushlands seem to represent more favorable habitats for large Macrotermes colonies than open grasslands.

20.
Molecules ; 27(3)2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-35164337

RESUMO

The skipjack tuna (Katsuwonus pelamis) is a mesopredator fish species with seasonal abundance in waters off Taiwan. Regional ecological and life-history information has been historically lacking for this species. In recent years, stable isotope analysis (SIA) of carbon and nitrogen has been used to assess predator feeding ecology and broader ecosystem trophic dynamics. This study evaluated comparative skipjack feeding ecology in distinct regions off Taiwan, combining traditional stomach content analysis with SIA of individuals off western (n = 43; 2020) and eastern (n = 347; 2012-2014 and n = 167; 2020) Taiwan. The stomach content analysis showed the most important prey to be ponyfish (Photopectoralis bindus) in western Taiwan and epipelagic squids (Myopsina spp.) and carangids (Decapterus macrosoma;) in eastern Taiwan from 2012 to 2014 and epipelagic carangids (Decapterus spp.) and flying fishes (Cheilopogon spp.) in eastern Taiwan in 2020, suggesting that the skipjack tuna is a generalist predator across regions. In contrast, time-integrated diet estimates from Bayesian mixing models indicated the importance of cephalopods and crustaceans as prey, potentially demonstrating more mesopelagic feeding in less productive waters during skipjack migrations outside the study regions. Skipjack off western Taiwan had a slightly higher estimated trophic position than in the waters off eastern Taiwan, potentially driven by the varying nutrient-driven pelagic food web structures. Skipjack SI values increased with body size off eastern Taiwan but not in western waters, suggesting that opportunistic predation can still result in different predator-prey size dynamics between regions.


Assuntos
Ração Animal/análise , Peixes/classificação , Conteúdo Gastrointestinal/química , Atum/fisiologia , Ração Animal/classificação , Animais , Teorema de Bayes , Decapodiformes/classificação , Cadeia Alimentar , Estado Nutricional , Comportamento Predatório , Taiwan
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...