Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Hear Res ; 447: 109028, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38733711

RESUMO

Amplitude modulation is an important acoustic cue for sound discrimination, and humans and animals are able to detect small modulation depths behaviorally. In the inferior colliculus (IC), both firing rate and phase-locking may be used to detect amplitude modulation. How neural representations that detect modulation change with age are poorly understood, including the extent to which age-related changes may be attributed to the inherited properties of ascending inputs to IC neurons. Here, simultaneous measures of local field potentials (LFPs) and single-unit responses were made from the inferior colliculus of Young and Aged rats using both noise and tone carriers in response to sinusoidally amplitude-modulated sounds of varying depths. We found that Young units had higher firing rates than Aged for noise carriers, whereas Aged units had higher phase-locking (vector strength), especially for tone carriers. Sustained LFPs were larger in Young animals for modulation frequencies 8-16 Hz and comparable at higher modulation frequencies. Onset LFP amplitudes were much larger in Young animals and were correlated with the evoked firing rates, while LFP onset latencies were shorter in Aged animals. Unit neurometric thresholds by synchrony or firing rate measures did not differ significantly across age and were comparable to behavioral thresholds in previous studies whereas LFP thresholds were lower than behavior.


Assuntos
Envelhecimento , Percepção Auditiva , Colículos Inferiores , Colículos Inferiores/fisiologia , Animais , Ratos Endogâmicos F344 , Medida de Potenciais de Campo Local/métodos , Estimulação Acústica/métodos
2.
Nanotechnology ; 35(31)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38758958

RESUMO

A novel way to enhance modulation performance is through the design of a hybrid plasmonic optical modulator that integrates multi-layer graphene and TiO2on silicon waveguides. In this article, a design is presented of a proposed modulator based on the use of the two-dimensional finite difference eigenmode solver, the three-dimensional eigenmode expansion solver, and the CHARGE solver. Leveraging inherent graphene properties and utilizing the subwavelength confinement capabilities of hybrid plasmonic waveguides (HPWs), we achieved a modulator design that is both compact and highly efficient. The electrical bandwidthf3dBis at 460.42 GHz and it reduces energy consumption to 12.17 fJ/bit with a modulator that functions at a wavelength of 1.55µm. According to our simulation results, our innovation was the optimization of the third dielectric layer's thickness, setting the stage to achieve greater modulation depths. This synergy between graphene and HPWs not only augments subwavelength confinement, but also optimizes light-graphene interaction, culminating in a markedly enhanced modulation efficiency. As a result, our modulator presents a high extinction ratio and minimized insertion loss. Furthermore, it exhibits polarization insensitivity and a greater bandwidth. Our work sets a new benchmark in optical communication systems, emphasizing the potential for the next generation of chip-scale with high-efficiency optical modulators that significantly outpace conventional graphene-based designs.

3.
CoDAS ; 36(2): e20220261, 2024. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1534251

RESUMO

ABSTRACT Purpose The inter-aural time difference (ITD) and inter-aural level difference (ILD) are important acoustic cues for horizontal localization and spatial release from masking. These cues are encoded based on inter-aural comparisons of tonotopically matched binaural inputs. Therefore, binaural coherence or the interaural spectro-temporal similarity is a pre-requisite for encoding ITD and ILD. The modulation depth of envelope is an important envelope characteristic that helps in encoding the envelope-ITD. However, inter-aural difference in modulation depth can result in reduced binaural coherence and poor representation of binaural cues as in the case with reverberation, noise and compression in cochlear implants and hearing aids. This study investigated the effect of inter-aural modulation depth difference on the ITD thresholds for an amplitude-modulated noise in normal hearing young adults. Methods An amplitude modulated high pass filtered noise with varying modulation depth differences was presented sequentially through headphones. In one ear, the modulation depth was retained at 90% and in the other ear it varied from 90% to 50%. The ITD thresholds for modulation frequencies of 8 Hz and 16 Hz were estimated as a function of the inter-aural modulation depth difference. Results The Friedman test findings revealed a statistically significant increase in the ITD threshold with an increase in the inter-aural modulation depth difference for 8 Hz and 16 Hz. Conclusion The results indicate that the inter-aural differences in the modulation depth negatively impact ITD perception for an amplitude-modulated high pass filtered noise.

4.
Micromachines (Basel) ; 14(6)2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37374822

RESUMO

All-optical terahertz (THz) modulators have received tremendous attention due to their significant role in developing future sixth-generation technology and all-optical networks. Herein, the THz modulation performance of the Bi2Te3/Si heterostructure is investigated via THz time-domain spectroscopy under the control of continuous wave lasers at 532 nm and 405 nm. Broadband-sensitive modulation is observed at 532 nm and 405 nm within the experimental frequency range from 0.8 to 2.4 THz. The modulation depth reaches 80% under the 532 nm laser illumination with a maximum power of 250 mW and 96% under 405 nm illumination with a high power of 550 mW. The mechanism of the largely enhanced modulation depth is attributed to the construction of a type-II Bi2Te3/Si heterostructure, which could promote photogenerated electron and hole separation and increase carrier density dramatically. This work proves that a high photon energy laser can also achieve high-efficiency modulation based on the Bi2Te3/Si heterostructure, and the UV-Visible control laser may be more suitable for designing advanced all-optical THz modulators with micro-level sizes.

5.
Micromachines (Basel) ; 13(10)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36295991

RESUMO

Terahertz (THz) technology offers unparalleled opportunities in a wide variety of applications, ranging from imaging and spectroscopy to communications and quality control, where lack of efficient modulation devices poses a major bottleneck. Spatial modulation allows for dynamically encoding various spatial information into the THz wavefront by electrical or optical control. It plays a key role in single-pixel imaging, beam scanning and wavefront shaping. Although mature techniques from the microwave and optical band are not readily applicable when scaled to the THz band, the rise of metasurfaces and the advance of new materials do inspire new possibilities. In this review, we summarize the recent progress of THz spatial light modulators from the perspective of functional materials and analyze their modulation principles, specifications, applications and possible challenges. We envision new advances of this technique in the near future to promote THz applications in different fields.

6.
J Assoc Res Otolaryngol ; 23(2): 285-299, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35080684

RESUMO

Cochlear implants (CIs) convey the amplitude envelope of speech by modulating high-rate pulse trains. However, not all of the envelope may be necessary to perceive amplitude modulations (AMs); the effective envelope depth may be limited by forward and backward masking from the envelope peaks. Three experiments used modulated pulse trains to measure which portions of the envelope can be effectively processed by CI users as a function of AM frequency. Experiment 1 used a three-interval forced-choice task to test the ability of CI users to discriminate less-modulated pulse trains from a fully modulated standard, without controlling for loudness. The stimuli in experiment 2 were identical, but a two-interval task was used in which participants were required to choose the less-modulated interval, ignoring loudness. Catch trials, in which judgements based on level or modulation depth would give opposing answers, were included. Experiment 3 employed novel stimuli whose modulation envelope could be modified below a variable point in the dynamic range, without changing the loudness of the stimulus. Overall, results showed that substantial portions of the envelope are not accurately encoded by CI users. In experiment 1, where loudness cues were available, participants on average were insensitive to changes in the bottom 30% of their dynamic range. In experiment 2, where loudness was controlled, participants appeared insensitive to changes in the bottom 50% of the dynamic range. In experiment 3, participants were insensitive to changes in the bottom 80% of the dynamic range. We discuss potential reasons for this insensitivity and implications for CI speech-processing strategies.


Assuntos
Implante Coclear , Implantes Cocleares , Surdez , Estimulação Acústica , Implante Coclear/métodos , Sinais (Psicologia) , Surdez/reabilitação , Humanos
7.
Spectrochim Acta A Mol Biomol Spectrosc ; 267(Pt 2): 120553, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34742147

RESUMO

At present, gas sensors are extremely susceptible to interference from background gases in the field environment, which leads to greatly reduced accuracy. For this reason, we propose an improved method of recovering integral absorbance (IA) using Y component of first harmonic to achieve accurate prediction of the full range of concentration (not reaching absorption saturation). This approach can eliminate the interference of background gas at a low modulation depth (m < 0.25). When the background gas is pure nitrogen and a mixture of nitrogen and carbon dioxide, the recovery effect of this method on methane is both close to the theoretical value when the background gas is air. The linear fitting coefficients for the methane concentration range of 2000-7000 ppm are all greater than 0.999. The prediction effect is satisfactory regardless of the background gas, with a relative error of less than 1%. In summary, this method has considerable application prospects.


Assuntos
Dióxido de Carbono , Metano , Nitrogênio
8.
Neuroimage ; 246: 118745, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34808364

RESUMO

Temporal modulations in the envelope of acoustic waveforms at rates around 4 Hz constitute a strong acoustic cue in speech and other natural sounds. It is often assumed that the ascending auditory pathway is increasingly sensitive to slow amplitude modulation (AM), but sensitivity to AM is typically considered separately for individual stages of the auditory system. Here, we used blood oxygen level dependent (BOLD) fMRI in twenty human subjects (10 male) to measure sensitivity of regional neural activity in the auditory system to 4 Hz temporal modulations. Participants were exposed to AM noise stimuli varying parametrically in modulation depth to characterize modulation-depth effects on BOLD responses. A Bayesian hierarchical modeling approach was used to model potentially nonlinear relations between AM depth and group-level BOLD responses in auditory regions of interest (ROIs). Sound stimulation activated the auditory brainstem and cortex structures in single subjects. BOLD responses to noise exposure in core and belt auditory cortices scaled positively with modulation depth. This finding was corroborated by whole-brain cluster-level inference. Sensitivity to AM depth variations was particularly pronounced in the Heschl's gyrus but also found in higher-order auditory cortical regions. None of the sound-responsive subcortical auditory structures showed a BOLD response profile that reflected the parametric variation in AM depth. The results are compatible with the notion that early auditory cortical regions play a key role in processing low-rate modulation content of sounds in the human auditory system.


Assuntos
Córtex Auditivo/fisiologia , Percepção Auditiva/fisiologia , Mapeamento Encefálico/métodos , Tronco Encefálico/fisiologia , Imageamento por Ressonância Magnética/métodos , Estimulação Acústica , Adulto , Córtex Auditivo/diagnóstico por imagem , Tronco Encefálico/diagnóstico por imagem , Feminino , Humanos , Masculino , Adulto Jovem
9.
Hear Res ; 409: 108309, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34340022

RESUMO

Early signs of noise-induced hearing damage are difficult to identify, as they are often confounded by factors such as age, audiometric thresholds, or even music experience. Much previous research has focused on deficits observed at high intensity levels. In contrast, the present study was designed to test the hypothesis that noise exposure causes a degradation in low-sound-level auditory processing in humans, as a consequence of dysfunction of the inner hair cell pathway. Frequency difference limens (FDLs) and amplitude modulation depth discrimination (MDD) were measured for five center frequencies (0.75, 1, 3, 4 and 6 kHz) at 15 and 25 dB sensation level (SL), as a function of noise exposure, age, audiometric hearing loss, and music experience. Forty participants, aged 33-75 years, with normal hearing up to 1 kHz and mild-to-moderate hearing loss above 2 kHz, were tested. Participants had varying degrees of self-reported noise exposure, and varied in music experience. FDL worsened as a function of age. Participants with music experience outperformed the non-experienced in both the FDL and MDD tasks. MDD thresholds were significantly better for high-noise-exposed, than for low-noise-exposed, participants at 25 dB SL, particularly at 6 kHz. No effects of age or hearing loss were observed in the MDD. It is possible that the association between MDD thresholds and noise exposure was not causal, but instead was mediated by other factors that were not measured in the study. The association is consistent, qualitatively, with a hypothesized loss of compression due to outer hair cell dysfunction.


Assuntos
Ruído , Percepção Auditiva , Limiar Auditivo , Audição , Perda Auditiva Provocada por Ruído/diagnóstico , Perda Auditiva Provocada por Ruído/etiologia , Humanos , Ruído/efeitos adversos
10.
F1000Res ; 9: 115, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32765838

RESUMO

Background: The temporal envelope (ENV) plays a vital role in conveying inter-aural time difference (ITD) in many clinical populations. However, the presence of background noise and electronic features, such as compression, reduces the modulation depth of ENV to a different degree in both ears. The effect of ENV modulation depth differences between the ears on ITD thresholds is unknown; therefore, this was the aim of the current study's investigation. Methods: Six normally hearing young adults (age range 20-30 years) participated in the current study. Six vowel-consonant-vowel (VCV) (/aka/, /aga/, /apa/, /aba/, /ata/, /ada/) tokens were used as the probe stimuli. ENV depth of VCV tokens was smeared by 0%, 29%, and 50%, which results in 100%, 71%, and 50% of the original modulation depth. ITD thresholds were estimated as a function of the difference in temporal ENV depth between the ears, wherein in one ear the modulation depth was retained at 100% and in the other ear, the modulation depth was changed to 100%, 71%, and 50%. Results: Repeated measures of ANOVA revealed a significant main effect of interaural modulation depth differences on the ITD threshold (F(2,10)= 9.04, p= 0.006). ITD thresholds increased with an increase in the inter-aural modulation depth difference. Conclusion: Inter-aural ENV depth is critical for ITD perception.


Assuntos
Percepção da Fala , Fala , Adulto , Humanos , Fatores de Tempo , Adulto Jovem
11.
Nanomaterials (Basel) ; 10(2)2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-32013141

RESUMO

Multiple Fano resonances (FRs) can be produced by destroying the symmetry of structure or adding additional nanoparticles without changing the spatial symmetry, which has been proved in noble metal structures. However, due to the disadvantages of low modulation depth, large damping rate, and broadband spectral responses, many resonance applications are limited. In this research paper, we propose a graphene plasmonic metamolecule (PMM) by adding an additional 12 nanodiscs around a graphene heptamer, where two Fano resonance modes with different wavelengths are observed in the extinction spectrum. The competition between the two FRs as well as the modulation depth of each FR is investigated by varying the materials and the geometrical parameters of the nanostructure. A simple trimer model, which emulates the radical distribution of the PMM, is employed to understand the electromagnetic field behaviors during the variation of the parameters. Our proposed graphene nanostructures might find significant applications in the fields of single molecule detection, chemical or biochemical sensing, and nanoantenna.

12.
J Biomed Opt ; 23(3): 1-6, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29549668

RESUMO

Line-scan focal modulation microscopy (LSFMM) is an emerging imaging technique that affords high imaging speed and good optical sectioning at the same time. We present a systematic investigation into optimal design of the pupil filter for LSFMM in an attempt to achieve the best performance in terms of spatial resolutions, optical sectioning, and modulation depth. Scalar diffraction theory was used to compute light propagation and distribution in the system and theoretical predictions on system performance, which were then compared with experimental results.


Assuntos
Microscopia de Fluorescência/instrumentação , Microscopia de Fluorescência/métodos , Desenho de Equipamento , Processamento de Imagem Assistida por Computador
13.
ACS Appl Mater Interfaces ; 9(44): 38943-38949, 2017 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-29043771

RESUMO

Gold hollow nanodomes arranged in hexagonal lattices support surface plasmon polaritons (SPPs) propagating at air-Au interface. The cross-sectional heights of the continuous and hierarchical hexagonal nanodome arrays can be altered by a simple thermal treatment, and the change in nanodome size leads to a significant linewidth narrowing of plasmon resonance because of reduced scattering loss. Taking the variation in the SPP intensities into account, the surface modulation depth is found to be around 100 nm for achieving a longer propagation length of SPP.

14.
J Biophotonics ; 10(9): 1198-1207, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27774782

RESUMO

Fluorescence lifetime imaging microscopy (FLIM) is an essential tool in many scientific fields such as biology and medicine thanks to the known advantages of the fluorescence lifetime (FLT) over the classical fluorescence intensity (FI). However, the frequency domain (FD) FLIM technique suffers from its strong dependence on the reference and its compliance to the sample. In this paper, we suggest a new way to calculate the FLT by using the crossing point (CRPO) between the modulation and phase FLTs measured over several light emitting diode (LED) DC currents values instead of either method alone. This new technique was validated by measuring homogeneous substances with known FLT, where the CRPO appears to be the optimal measuring point. Furthermore, the CRPO method was applied in heterogeneous samples. It was found that the CRPO in known mixed solutions is the weighted average of the used solutions. While measuring B16 and lymphocyte cells, the CRPO of the DAPI compound in single FLT regions was measured at 3.5 ± 0.06 ns and at 2.83 ± 0.07 ns, respectively, both of which match previous reports and multi-frequency analyses. This paper suggests the CRPO as a new method to extract the FLT in problematic cases such as high MCP gains and heterogeneous environments. In traditional FD FLIM measurements, the variation in phase angle and modulation are measured. By measuring over varying DC currents, another variation is detected in the FLT determined through the phase and modulation methods, with the CRPO indicating the true FLT.


Assuntos
Microscopia de Fluorescência , Imagem Óptica , Animais , Células Cultivadas , Linfócitos , Melanoma Experimental
15.
Nano Lett ; 16(12): 7726-7730, 2016 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-27960520

RESUMO

A superconducting quantum interference device (SQUID) miniaturized into the nanoscale is promising in the inductive detection of a single electron spin. A nano-SQUID with a strong spin coupling coefficient, a low flux noise, and a wide working magnetic field range is highly desired in a single spin resonance measurement. Nano-SQUIDs with Dayem bridge junctions excel in a high working field range and in the direct coupling from spins to the bridge. However, the common planar structure of nano-SQUIDs is known for problems such as a shallow flux modulation depth and a troublesome hysteresis in current-voltage curves. Here, we developed a fabrication process for creating three-dimensional (3-D) niobium (Nb) nano-SQUIDs with nanobridge junctions that can be tuned independently. Characterization of the device shows up to 45.9% modulation depth with a reversible current-voltage curve. Owning to the large modulation depth, the measured flux noise is as low as 0.34 µΦ0/Hz1/2. The working field range of the SQUID is greater than 0.5 T parallel to the SQUID plane. We believe that 3-D Nb nano-SQUIDs provide a promising step toward effective single-spin inductive detection.

16.
J Magn Reson ; 269: 70-77, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27243966

RESUMO

Pulsed Electron-electron Double Resonance (PELDOR) is commonly used to measure distances between native paramagnetic centers or spin labels attached to complex biological macromolecules. In PELDOR the energies of electron magnetic dipolar interactions are measured by analyzing the oscillation frequencies of the recorded time resolved signal. Since PELDOR is an ensemble method, the detected signal contains contributions from intramolecular, as well as intermolecular electron spin interactions. The intramolecular part of the signal contains the information about the structure of the studied molecules, thus it is very important to accurately separate intra- and intermolecular contributions to the total signal. This separation can become ambiguous, when the length of the PELDOR signal is not much longer than twice the oscillation period of the signal. In this work we suggest a modulation depth scaling method, which can use short PELDOR signals in order to extract the intermolecular contribution. Using synthetic data we demonstrate the advantages of the new approach and analyze its stability with regard to signal noise. The method was also successfully tested on experimental data of three systems measured at Q-Band frequencies, two model compounds in deuterated and protonated solvents and one biological sample, namely BetP. The application of the new method with an assigned value of the signal modulation depth enables us to determine the interspin distances in all cases. This is especially interesting for the model compound with an interspin distance of 5.2nm in the protonated solvent and the biological sample, since an accurate separation of the intra- and intermolecular PELDOR signal contributions would be difficult with the standard approach in those cases.

17.
Nano Lett ; 15(11): 7604-9, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26438977

RESUMO

The relationship between photostability and conformation of 2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene (MEH-PPV) conjugated polymers was studied via excitation polarization modulation depth (M) measurements. Upon partial photobleaching, M distributions of collapsed, highly ordered MEH-PPV molecules shifted toward lower values. Conversely, M distributions of MEH-PPV molecules with random coil conformations moved toward higher values after partial photobleaching. Monte Carlo simulations of randomly distributed dipole moments along polymer chains subjected to partial photobleaching revealed that a statistical effect leads to an increase in peak M value. Decreases in M values seen experimentally in the population of MEH-PPV molecules with high M values, however, are due to conformation-dependent photostability within single MEH-PPV polymers. We show that, while folded MEH-PPV molecules are relatively more photostable than extended MEH-PPV molecules in an ensemble, extended portions of particular molecules are more photostable than folded domains within single MEH-PPV molecules.

18.
Nano Lett ; 15(7): 4393-400, 2015 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-26042835

RESUMO

Graphene opens up for novel optoelectronic applications thanks to its high carrier mobility, ultralarge absorption bandwidth, and extremely fast material response. In particular, the opportunity to control optoelectronic properties through tuning of the Fermi level enables electro-optical modulation, optical-optical switching, and other optoelectronics applications. However, achieving a high modulation depth remains a challenge because of the modest graphene-light interaction in the graphene-silicon devices, typically, utilizing only a monolayer or few layers of graphene. Here, we comprehensively study the interaction between graphene and a microring resonator, and its influence on the optical modulation depth. We demonstrate graphene-silicon microring devices showing a high modulation depth of 12.5 dB with a relatively low bias voltage of 8.8 V. On-off electro-optical switching with an extinction ratio of 3.8 dB is successfully demonstrated by applying a square-waveform with a 4 V peak-to-peak voltage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...