RESUMO
The current millennium brought up a revolutionary paradigm shift in molecular biology: many operative proteins, rather than being quasi-rigid polypeptide chains folded into unique configurations - as believed throughout most of the past century - are now known to be intrinsically disordered, dynamic, pleomorphic, and multifunctional structures with stochastic behaviors. Yet, part of this knowledge, including suggestions about possible mechanisms and plenty of evidence for the same, became available by the 1950s and 1960s to remain then nearly forgotten for over 40 years. Here, we review the main steps toward the classic notions about protein structures, as well as the neglected precedents of present views, discuss possible explanations for such long oblivion, and offer a sketch of the current panorama in this field.
Assuntos
Proteínas Intrinsicamente Desordenadas , Proteínas Intrinsicamente Desordenadas/química , Dobramento de Proteína , Peptídeos , Biologia Molecular , Conformação ProteicaRESUMO
The release of contaminants in aquatic ecosystems can be influenced by humic acids. In this study, toxicity tests using environmentally relevant concentrations of arsenic and cobalt were conducted both in the presence and absence of aquatic humic substances (AHS) and the fractions of different molecular sizes in the range of (<5, 5-10;10-30; 30-100 and >100kDa) using the microcrustacean Ceriodaphnia dubia. AHS together with arsenic reduced the toxicity, and the toxicity decreased in fractions of larger molecular size AHS. Despite the presence of cobalt, the reduction in toxicity was not observed and that depended on the molecular size of AHS. There was a trend of enhanced toxicity for Co in fractions of larger molecular sizes, opposed to that found for arsenic. Thus, the humic substances alter toxicity of trace elements, and this effect varies depending on the size of the humic substances.