Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.983
Filtrar
1.
J Hazard Mater ; 477: 135366, 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39088943

RESUMO

Deoxynivalenol-3-glucoside (D3G), the masked form of the important mycotoxin deoxynivalenol (DON), displays potential toxicity but is difficult to control owing to the lack of rapid detection methods. Herein, an innovative molecularly imprinted polymer (MIP)-based electrochemical sensor was developed for the rapid detection of D3G. MIP, an efficient recognition element for D3G, was electropolymerized using o-phenylenediamine based on a surface functional monomer-directing strategy for the first time. CeO2, which contains both Ce3+ and Ce4+ oxidation states, was introduced as a nanozyme to catalyze H2O2 reduction, while Mn doping generated more oxygen vacancies and considerably improved the catalytic activity. Mn-CeO2 also served as a promising substrate material because of its large surface area and excellent conductivity. Under optimal conditions, a good linear relationship was observed for D3G detection over the concentration range of 0.01-50 ng/mL. The proposed sensor could detect D3G down to 0.003 ng/mL with excellent selectivity, even distinguishing its precursor DON in complex samples. The sensor exhibited acceptable stability with high reproducibility and accuracy, and could successfully determine D3G in grain samples. To the best of our knowledge, this is the first electrochemical sensing platform for rapid D3G detection that can easily be expanded to other masked mycotoxins.

2.
Food Chem ; 460(Pt 2): 140660, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39089029

RESUMO

This study utilized computational simulation and surface molecular imprinting technology to develop a magnetic metal-organic framework molecularly imprinted polymer (Fe3O4@ZIF-8@SMIP) capable of selectively recognizing and detecting multiple fluoroquinolones (FQs). The Fe3O4@ZIF-8@SMIP material was synthesized using the "common" template-ofloxacin, identified by computational simulation, demonstrating notable adsorption capacity (88.61-212.93 mg g-1) and rapid mass-transfer features (equilibration time: 2-3 min) for all tested FQs, consistent with Langmuir adsorption model. Subsequently, this material was employed as a magnetic solid-phase-extraction adsorbent for adsorption and detection of multiple FQs by combining with high performance liquid chromatography. The developed method exhibited good linearity for various FQs within the concentration range of 0.1-500 µg L-1, with low limit of detection (0.0605-0.1529 µg L-1) and limit of quantitation (0.2017-0.5097 µg L-1). Satisfactory recoveries (88.38-103.44%) were obtained when applied to spiked food samples, demonstrating the substantial potential of this Fe3O4@ZIF-8@SMIP material for rapid enrichment and identification for multiple FQs residues.

3.
Food Chem ; 460(Pt 3): 140731, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39106757

RESUMO

17ß-E2 is used in animal growth regulation and agricultural fertilizer, and even ng L-1 mass concentration levels can show biological effects. In this work, Ag NPs was used as surface-enhanced Raman spectroscopy (SERS) source and WS2 was synthesized by a simple method to provide a uniform distribution platform for Ag NPs. The MIP was the shell, which can selectively enrich the target molecule, pull the distance between the target molecule and SERS source, and protect Ag NPs. A cyclable SERS substrate with high sensitivity for detecting 17ß-E2 in food was constructed. The optimized WS2/Ag@MIP as SERS substrate has the advantages of high Enhanced Factor (EF = 2.78 × 109), low detection limit (LOD = 0. 0958 pM), strong anti-interference ability, and good recycling performance. Moreover, the detection of 17ß-E2 in real samples still has good accuracy. This work provides a new possibility for the trace detection of 17ß-E2 in food.

4.
Angew Chem Int Ed Engl ; : e202409849, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39101665

RESUMO

Transition metal catalysts (TMCs) mediated bioorthogonal catalysis expand the chemical possibilities within cells. Developing synthetic TMCs tools that emulate the efficiency and specificity of natural metalloenzymes is a rewarding yet challenging endeavor. Here, we highlight the potential of molecularly imprinted enzyme mimics (MIEs) containing a Cu center and specific substrate binding domain, for conducing dimethylpropargyloxycarbonyl (DmProc) cleavage reactions within cells. Our studies reveal that the Cu-MIEs act as highly specific guides, precisely catalyzing target substrates, even in glutathione (GSH)-rich cellular environments. By adapting templates similar to the target substrates, we evolved Cu-MIEs activity to a high level and provided a method to broaden its scope to other unique substrates. This system was applied to a thyroid hormone (T3)-responsive gene switch model, inducing firefly luciferase expression by T3 in cells. This approach verifies that MIEs effectively rescue DmProc-bearing T3 prodrugs and seamlessly integrating themself into cellular biocatalytic networks.

5.
Food Chem ; 458: 140330, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38970953

RESUMO

Food safety is an important cornerstone of protecting human health and life. Therefore, it is of great significance to detect possible pollutants in food sensitively and efficiently. Molecularly imprinted polymers (MIPs) and metal-organic frameworks (MOFs) have been widely used in the adsorption and detection of food pollutants. However, traditional MIPs have problems such as uneven loading of the imprinted cavity and slow mass transfer efficiency. While the adsorption of MOFs has low specificity and cannot accurately identify target molecules. Therefore, some researchers have taken advantage of the high specific recognition abilities of MIPs and the large specific surface areas, high porosity and easy functionalization of MOFs to combine MOFs with MIPs, and have achieved a series of important results in the field of food safety detection. This paper reviews the research progress of the application of MOFs-MIPs in the field of food safety detection from 2019 to 2024. It furnishes researchers interested in this domain with a rapid and comprehensive grasp of the latest research status, it also offers them a chance to anticipate future development trends, thereby supporting the continuous advances of MOFs-MIPs in food safety detection.

6.
Spectrochim Acta A Mol Biomol Spectrosc ; 322: 124732, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38971083

RESUMO

Three functional magnetic nanocatalytic probe, which integrates recognition, catalytic amplification, and separation enrichment, is a new approach to construct a simple, fast, highly selective, and sensitive analytical method. In this article, a new magnetic nanosurface molecularly imprinted polymer nanoprobe (Fe3O4@MIP) with trifunctionality was rapidly prepared using a microwave-assisted method with magnetic Fe3O4 nanoparticles as a substrate, chloramphenicol (CAP) as a template molecule, and methacrylic acid as a functional monomer. The characterized nanoprobe was found that could specifically recognize CAP, strongly catalyze the new indicator nanoreaction of fructose (DF)-HAuCl4. The gold nanoparticles (AuNPs) exhibit strong resonance Rayleigh scattering (RRS) and surface enhanced Raman scattering (SERS) effects. Upon addition of CAP, the SERS/RRS signals were linearly weakened. Accordingly, a new SERS/RRS analysis platform for highly sensitive and selective determination of CAP was constructed. The SERS linear range was 0.0125-0.1 nmol/L, with detection limit (DL) of 0.004 nmol/L CAP. Furthermore, it could be combined with magnet-enriched separation to further improve the sensitivity, with a DL of 0.04 pmol/L CAP. The SERS method has been used for the determination of CAP in real samples, with relative standard deviations of 2.37-9.89 % and the recovery of 95.24-107.1 %.

7.
Anal Chim Acta ; 1316: 342876, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-38969434

RESUMO

BACKGROUND: Ofloxacin (OFL) is often abused in medicine and animal husbandry, which poses a great threat to human health and ecological environment. Therefore, it is necessary to establish efficient method to detect OFL. Electrochemical sensor has attracted widespread attention due to the advantages of low cost and fast response. However, most electrochemical sensors usually use one response signal to detect the target, which makes it sensitive to the variable background noise in the complex environment, resulting in low robustness and selectivity. The ratio detection mode and employing molecularly imprinted polymer (MIP) are two strategies to solve these problems. RESULTS: A novel molecular imprinting polymer-ratiometric electrochemical sensor (MIP-RECS) based on Fe-MOF-NH2/CNTs-NH2/MXene composite was prepared for the rapid and sensitive detection of OFL. The positively charged Fe-MOF-NH2 and CNTs-NH2 as interlayer spacers were introduced into the negatively charged MXene through a simple electrostatic self-assembly technique, which effectively prevented the agglomeration of MXene and increased the electrocatalytic activity. A glass carbon electrode was modified by the composite and a MIP film was electropolymerized on it using o-phenylenediamine and ß-cyclodextrin as bifunctional monomers and OFL as template. Then a MIP-RECS was designed by adding dopamine (DA) into the electrolyte solution as internal reference, and OFL was quantified by the response current ratio of OFL to DA. The current ratio and the concentration of OFL displayed a satisfying linear relationship in the range of 0.1 µM-100 µM, with a limit of detection (LOD) of 13.2 nM. SIGNIFICANCE: Combining molecular imprinting strategy and ratio strategy, the MIP-RECS has impressive selectivity compared with the non-imprinted polymer-RECS, and has better repeatability and reproducibility than non-ratiometric sensor. The MIP-RECS has high sensitivity and accuracy, which was applied for the detection of OFL in four different brands of milk and was verified by HPLC method with satisfactory results.


Assuntos
Técnicas Eletroquímicas , Estruturas Metalorgânicas , Polímeros Molecularmente Impressos , Ofloxacino , Ofloxacino/análise , Ofloxacino/química , Técnicas Eletroquímicas/métodos , Polímeros Molecularmente Impressos/química , Estruturas Metalorgânicas/química , Nanotubos de Carbono/química , Ferro/química , Ferro/análise , Limite de Detecção , Impressão Molecular , Animais , Eletrodos , Leite/química
8.
Mikrochim Acta ; 191(7): 436, 2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38954059

RESUMO

A fluorescence probe based on molecularly imprinted polymers on red emissive biomass-derived carbon dots (r-BCDs@MIPs) was developed to detect tyramine in fermented meat products. The red emissive biomass-derived carbon dots (r-BCDs) were synthesized by the one-step solvothermal method using discarded passion fruit shells as raw materials. The fluorescence emission peak of r-BCDs was at 670 nm, and the relative quantum yield (QY) was about 2.44%. Molecularly imprinted sensing materials were prepared with r-BCDs as fluorescent centers for the detection of trace tyramine, which showed a good linear response in the concentration range of tyramine from 1 to 40 µg L-1. The linear correlation coefficient was 0.9837, and the limit of detection was 0.77 µg L-1. The method was successfully applied to the determination of tyramine in fermented meat products, and the recovery was 87.17-106.02%. The reliability of the results was verified through high-performance liquid chromatography (HPLC). Furthermore, we combined the r-BCDs@MIPs with smartphone-assisted signal readout to achieve real-time detection of tyramine in real samples. Considering its simplicity and convenience, the method could be used as a rapid and low-cost promising platform with broad application prospects for on-site detection of trace tyramine with smartphone-assisted signal readout.


Assuntos
Carbono , Corantes Fluorescentes , Limite de Detecção , Produtos da Carne , Polímeros Molecularmente Impressos , Pontos Quânticos , Smartphone , Tiramina , Tiramina/análise , Tiramina/química , Carbono/química , Pontos Quânticos/química , Produtos da Carne/análise , Corantes Fluorescentes/química , Polímeros Molecularmente Impressos/química , Espectrometria de Fluorescência/métodos , Biomassa , Fermentação
9.
Talanta ; 278: 126510, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38981154

RESUMO

A novel and robust electrochemical sensing tool for the determination of vismodegib (VIS), an anticancer drug, has been developed by integrating the selective recognition capabilities of molecularly imprinted polymer (MIP) and the sensitivity enhancement capability of metal-organic framework (MOF). Prior to this step, the electrochemical behavior of VIS was investigated using a bare glassy carbon electrode (GCE). It was observed that in 0.5 M H2SO4 solution as electrolyte, VIS has an oxidation peak around 1.3 V and the oxidation mechanism is diffusion controlled. The determination of VIS in a standard solution using a bare GCE showed a linear response in the concentration range from 2.5 µM to 100 µM, with a limit of detection (LOD) of 0.75 µM. Since sufficient sensitivity and selectivity could not be achieved with bare GCE, a MIP sensor was developed in the next step of the study. For this purpose, the GCE surface was first modified by drop casting with as-synthesized Co-MOF. Subsequently, a MIP network was synthesized via a thermal polymerization approach using 2-acrylamido-2-methylpropanesulfonic acid (AMPS) as monomer and VIS as template. MOFs are ideal electrode materials due to their controllable and diverse morphologies and modifiable surface properties. These characteristics enable the development of MIPs with more homogeneous binding sites and high affinity for target molecules. Integrating MOFs could help the performance of sensors with the desired stability and reproducibility. Electrochemical analysis revealed an observable enhancement of the output signal by the incorporation of MOF molecules, which is consistent with the sensitivity-enhancing role of MOF by providing more anchoring sites for the attachment of the polymer texture to the electrode surface. This MOF-MIP sensor exhibited impressive linear dynamic ranges ranging from 0.1 to 1.0 pM for VIS, with detection limits in the low picomolar range. In addition, the MOF-MIP sensor offers high accuracy, selectivity and precision for the determination of VIS, with no interference observed from complex media of serum samples. Additionally, in this study, Analytical GREEnness metric (AGREE), Analytical GREEnness preparation (AGREEprep) and Blue Applicability Grade Index (BAGI) were used to calculate the green profile score.


Assuntos
Anilidas , Antineoplásicos , Técnicas Eletroquímicas , Eletrodos , Estruturas Metalorgânicas , Polímeros Molecularmente Impressos , Piridinas , Estruturas Metalorgânicas/química , Polímeros Molecularmente Impressos/química , Piridinas/química , Técnicas Eletroquímicas/métodos , Antineoplásicos/análise , Antineoplásicos/química , Antineoplásicos/sangue , Anilidas/química , Anilidas/análise , Anilidas/sangue , Limite de Detecção , Impressão Molecular , Polímeros/química
10.
Talanta ; 278: 126508, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39002255

RESUMO

The demand for plant-based protein sources in the food industry has significantly increased in recent years, leading to the introduction of legume-based products as meat substitutes. However, concerns regarding food quality have emerged, particularly related to the presence of mycotoxins. This study addresses the need for the sensitive detection of phomopsins (PHOs), a class of peptide-based toxins. A selective extraction method using molecularly imprinted polymer (MIP) coupled with ultra-high performance liquid chromatography and tandem mass spectrometry (UHPLC-MS/MS) was focused on the most toxic Phomopsin A (PHO-A). A rapid ultrasonochemical synthesis of MIP (5 min) was proposed and its performance was optimized in response to various factors, including the choice of dummy template and the selection of the monomer. The methacrylic acid-vinyl pyridine (MAA-VP) MIP exhibited high selectivity and affinity for PHO-A. The method was tested in lupin samples and the validation, according to SANTE/11312/2021 international guidelines, gave excellent recovery (80-90 %), low matrix effects, and high accuracy and precision. Real samples analysis confirmed the presence of PHO-A in artificially fungal inoculated lupins, with levels ranging from 0.377 to 0.576 mg kg-1. In order to identify further PHOs, a semi-untargeted approach using multiple reaction monitoring-information dependent acquisition-enhanced product ion (MRM-IDA-EPI) was developed. PHO-B, PHO-D, PHO-E and PHO-P, rarely previously reported in lupin matrix, were tentatively identified. This study accounts for the effectiveness of MIP-based extraction coupled with UHPLC-triple quadrupole with linear ionic trap-MS/MS (UHPLC-QqQ-LIT-MS/MS) for quantification of PHO-A and putative detection of other PHOs, offering a promising method for investigating this class of toxins in food.


Assuntos
Lupinus , Polímeros Molecularmente Impressos , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão/métodos , Polímeros Molecularmente Impressos/química , Lupinus/química , Contaminação de Alimentos/análise , Micotoxinas/análise , Micotoxinas/química , Impressão Molecular , Oligopeptídeos
11.
Biosensors (Basel) ; 14(7)2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39056634

RESUMO

Nanoparticles of molecularly imprinted polymers (nanoMIPs) combine the excellent recognition ability of imprinted polymers with specific properties related to the nanosize, such as a high surface-to-volume ratio, resulting in highly performing recognition elements with surface-exposed binding sites that promote the interaction with the target and, in turn, binding kinetics. Different synthetic strategies are currently available to produce nanoMIPs, with the possibility to select specific conditions in relation to the nature of monomers/templates and, importantly, to tune the nanoparticle size. The excellent sensing properties, combined with the size, tunability, and flexibility of synthetic protocols applicable to different targets, have enabled the widespread use of nanoMIPs in several applications, including sensors, imaging, and drug delivery. The present review summarizes nanoMIPs applications in sensors, specifically focusing on electrochemical detection, for which nanoMIPs have been mostly applied. After a general survey of the most widely adopted nanoMIP synthetic approaches, the integration of imprinted nanoparticles with electrochemical transducers will be discussed, representing a key step for enabling a reliable and stable sensor response. The mechanisms for electrochemical signal generation will also be compared, followed by an illustration of nanoMIP-based electrochemical sensor employment in several application fields. The high potentialities of nanoMIP-based electrochemical sensors are presented, and possible reasons that still limit their commercialization and issues to be resolved for coupling electrochemical sensing and nanoMIPs in an increasingly widespread daily-use technology are discussed.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Impressão Molecular , Nanopartículas , Nanopartículas/química , Polímeros/química , Polímeros Molecularmente Impressos/química
12.
Biomimetics (Basel) ; 9(7)2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39056867

RESUMO

Sensitivity in the sub-nanomolar concentration region is required to determine important protein biomarkers, e.g., ferritin. As a prerequisite for high sensitivity, in this paper, the affinity of the functional monomer to the macromolecular target ferritin in solution was compared with the value for the respective molecularly imprinted polymer (MIP)-based electrodes, and the influence of various surface modifications of the electrode was investigated. The analytical performance of ferritin sensing was investigated using three different carbon electrodes (screen-printed carbon electrodes, single-walled-carbon-nanotube-modified screen-printed carbon electrodes, and glassy carbon electrodes) covered with a scopoletin-based MIP layer. Regardless of the electrode type, the template molecule ferritin was mixed with the functional monomer scopoletin, and electropolymerization was conducted using multistep amperometry. All stages of MIP preparation were followed by evaluating the diffusional permeability of the redox marker ferricyanide/ferrocyanide through the polymer layer by differential pulse voltammetry. The best results were obtained with glassy carbon electrodes. The MIP sensor responded up to 0.5 µM linearly with a Kd of 0.30 µM. Similar results were also obtained in solution upon the interaction of scopoletin and ferritin using fluorescence spectroscopy, resulting in the quenching of the scopoletin signal, with a calculated Kd of 0.81 µM. Moreover, the binding of 1 µM ferritin led to 49.6% suppression, whereas human serum albumin caused 8.6% suppression.

13.
Pharmaceutics ; 16(7)2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39065644

RESUMO

Acne vulgaris, a prevalent skin condition, arises from an imbalance in skin flora, fostering bacterial overgrowth. Addressing this issue, clindamycin molecularly imprinted polymeric nanoparticles (Clin-MIP) loaded onto polyurethane nanofiber scaffolds were developed for acne treatment. Clin-MIP was synthesized via precipitation polymerization using methacrylic acid (MAA), ethylene glycol dimethacrylate (EGDMA), and azoisobutyronitrile (AIBN) as functional monomers, crosslinkers, and free-radical initiators, respectively. MIP characterization utilized Fourier-transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM) before being incorporated into polyurethane nanofibers through electrospinning. Further analysis involved FTIR, scanning electron microscopy (SEM), in vitro release studies, and an ex vivo study. Clin-MIP showed strong antibacterial activity against S. aureus, with inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of 0.39 and 6.25 µg/mL, respectively. It significantly dropped the bacterial count from 1 × 108 to 39 × 101 CFU/mL in vivo and has bactericidal activity within 180 min of incubation in vitro. The pharmacodynamic and histopathology studies revealed a significant decrease in infected animal skin inflammation, epidermal hypertrophy, and congestion upon treatment with Clin-MIP polyurethane nanofiber and reduced pro-inflammatory cytokines (NLRP3, TNF-α, IL-1ß, and IL-6) conducive to acne healing. Consequently, the recently created Clin-MIP polyurethane nanofibrous scaffold. This innovative approach offers insight into creating materials with several uses for treating infectious wounds caused by acne.

14.
Pharmaceutics ; 16(7)2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39065662

RESUMO

A molecularly imprinted polymer of Tenofovir (1), an FDA-approved acyclic nucleoside phosphonate with antiviral activity, was synthesized using a non-covalent approach. A pre-polymerization complex was formed between (1) and DMAEMA and in-house synthetic N1-[(2-methacryloyloxy)ethyl] thymine, with EGDMA as a cross-linker in an MeCN/H2O (9:1, 1:1) mixture as a porogen, giving an imprinting factor (IF) of 5.5 at 2.10-5 mol/L. Binding parameters were determined by the Freundlich-Langmuir model, Qmax and Ka, and well as the particle morphology for MIP and NIP. Finally, the release profiles, for MIP and NIP, were obtained at 25 °C and 37 °C, which is body temperature, in a phosphate buffer saline, pH 7.4, mimicking the blood pH value, to determine the potential sustained release of our polymeric materials.

15.
Mikrochim Acta ; 191(8): 492, 2024 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-39066907

RESUMO

The development and application of an electrochemical sensor is reported for detection of poly(3-hydroxybutyrate) (P3HB) - a bioplastic derived from agro-industrial residues. To overcome the challenges of molecular imprinting of macromolecules such as P3HB, this study employed methanolysis reaction to break down the P3HB biopolymer chains into methyl 3-hydroxybutyrate (M3HB) monomers. Thereafter, M3HB were employed as the target molecules in the construction of molecularly imprinted sensors. The electrochemical device was then prepared by electropolymerizing a molecularly imprinted poly (indole-3-acetic acid) thin film on a glassy carbon electrode surface modified with reduced graphene oxide (GCE/rGO-MIP) in the presence of M3HB. Electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), scanning electron microscopy with field emission gun (SEM-FEG), Raman spectroscopy, attenuated total reflection Fourier-transform infrared (ATR-FTIR) and X-ray Photoelectron Spectroscopy (XPS) were employed to characterize the electrode surface. Under ideal conditions, the MIP sensor exhibited a wide linear working range of 0.1 - 10 nM and a detection limit of 0.3 pM (n = 3). The sensor showed good repeatability, selectivity, and stability over time. For the sensor application, the bioproduction of P3HB was carried out in a bioreactor containing the Burkholderia glumae MA13 strain and sugarcane byproducts as a supplementary carbon source. The analyses were validated through recovery assays, yielding recovery values between 102 and 104%. These results indicate that this MIP sensor can present advantages in the monitoring of P3HB during the bioconversion process.


Assuntos
Burkholderia , Técnicas Eletroquímicas , Eletrodos , Grafite , Hidroxibutiratos , Polímeros Molecularmente Impressos , Poliésteres , Grafite/química , Poliésteres/química , Hidroxibutiratos/química , Burkholderia/química , Burkholderia/metabolismo , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Polímeros Molecularmente Impressos/química , Limite de Detecção , Oxirredução , Poli-Hidroxibutiratos
16.
J Chromatogr A ; 1730: 465151, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39002509

RESUMO

Onion peels (OP) are byproduct of food processing industries that poses economic and environmental challenges. However, being rich source of bioactive compounds like Quercetin (Qt), a polyphenolic antioxidant with potential health benefits, harnessing value from such waste can imbibe sustainable practices and protect environment. With this view, the present study targets selective recovery of Qt from OP waste using rationally designed molecularly imprinted polymer (MIP). Density Functional Theory (DFT) was used for the theoretical selection of the best conformer of Qt (template), methacrylic acid (MAA) as functional monomer, ratio of Qt-MAA for getting stable pre-polymerization complex, and to avoid hit and trial experiments. The theoretical results were validated experimentally by synthesizing MIP/ control polymer (NIP) using MAA as functional monomer, EGDMA as a cross-linker and AIBN as initiator. Synthesized MIP/NIP were characterized using various characterization techniques to confirm successful imprinting. Prepared MIP and NIP could effectively rebind the Qt molecule with binding capacity of 46.67 and 20.89 mg g-1 respectively. Furthermore, synthesized MIP could selectively recover 62.81 % of Qt from 1 g of dry onion peel powder. This study can be effectually used for sustainable recovery of Qt in large scale for various foods, cosmetic and pharmaceutical applications.


Assuntos
Polímeros Molecularmente Impressos , Cebolas , Quercetina , Quercetina/química , Quercetina/isolamento & purificação , Cebolas/química , Polímeros Molecularmente Impressos/química , Impressão Molecular , Resíduos Sólidos/análise , Teoria da Densidade Funcional , Extração em Fase Sólida/métodos , Antioxidantes/química , Antioxidantes/isolamento & purificação , Metacrilatos/química , Polímeros/química , Cromatografia Líquida de Alta Pressão
17.
Mikrochim Acta ; 191(8): 444, 2024 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-38955823

RESUMO

Transferrin (TRF), recognized as a glycoprotein clinical biomarker and therapeutic target, has its concentration applicable for disease diagnosis and treatment monitoring. Consequently, this study developed boronic acid affinity magnetic surface molecularly imprinted polymers (B-MMIPs) with pH-responsitivity as the "capture probe" for TRF, which have high affinity similar to antibodies, with a dissociation constant of (3.82 ± 0.24) × 10-8 M, showing 7 times of reusability. The self-copolymerized imprinted layer synthesized with dopamine (DA) and 3-Aminophenylboronic acid (APBA) as double monomers avoided nonspecific binding sites and produced excellent adsorption properties. Taking the gold nanostar (AuNS) with a branch tip "hot spot" structure as the core, the silver-coated AuNS functionalized with the biorecognition element 4-mercaptophenylboronic acid (MPBA) was employed as a surface-enhanced Raman scattering (SERS) nanotag (AuNS@Ag-MPBA) to label TRF, thereby constructing a double boronic acid affinity "sandwich" SERS biosensor (B-MMIPs-TRF-SERS nanotag) for the highly sensitive detection of TRF. The SERS biosensor exhibited a detection limit for TRF of 0.004 ng/mL, and its application to spiked serum samples confirmed its reliability and feasibility, demonstrating significant potential for clinical TRF detection. Moreover, the SERS biosensor designed in this study offers advantages in stability, detection speed (40 min), and cost efficiency. The portable Raman instrument for SERS detection fulfills the requirements for point-of-care testing.


Assuntos
Técnicas Biossensoriais , Ácidos Borônicos , Ouro , Análise Espectral Raman , Ácidos Borônicos/química , Técnicas Biossensoriais/métodos , Ouro/química , Humanos , Análise Espectral Raman/métodos , Prata/química , Nanopartículas Metálicas/química , Limite de Detecção , Transferrina/análise , Transferrina/química , Impressão Molecular , Polímeros Molecularmente Impressos/química , Glicoproteínas/sangue , Glicoproteínas/química , Materiais Biomiméticos/química , Dopamina/sangue , Dopamina/análise , Compostos de Sulfidrila
18.
Int J Biol Macromol ; 277(Pt 2): 134137, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39067725

RESUMO

Monitoring bovine serum albumin (BSA) at ultra-low levels is crucial for clinical and food safety applications, as it plays a significant role in identifying various health conditions and potential risks, necessitating fast, trace-level detection of BSA. This study proposes an approach to address these challenges by employing molecularly imprinted polymer (MIP) to develop an ultra-trace-level and cost-effective BSA sensing platform. The MIP electrochemical sensor was developed using polyaniline (PANI) combined with the protein crosslinker glutaraldehyde (GA) to optimize BSA surface imprinting in the MIP. As a result, the sensor achieves a sensitivity of 1.24 µA/log(pg/mL), with a picomolar detectable limit of 2.3 pg/mL (0.035 pM) and a wide detection range from 20 pg/mL to 200,000 pg/mL (0.303 pM to 3030 pM), making it suitable for clinical and food safety applications. Additionally, the study explores the interaction between an acidic surfactant protein eluent (acetic acid with sodium dodecyl sulfate, AcOH-SDS) and BSA vacant sites, enhancing recognition and re-binding. The PANI-based MIP sensor demonstrates initial feasibility and practicality in commercial milk and real human serum, opening avenues for early disease detection and ensuring food safety in BSA-related immune responses.

19.
Compr Rev Food Sci Food Saf ; 23(4): e13399, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39072953

RESUMO

Milk, as a widely consumed nutrient-rich food, is crucial for bone health, growth, and overall nutrition. The persistent application of veterinary drugs for controlling diseases and heightening milk yield has imparted substantial repercussions on human health and environmental ecosystems. Due to the high demand, fresh consumption, complex composition of milk, and the potential adverse impacts of drug residues, advanced greener analytical methods are necessitated. Among them, functional materials-based analytical methods attract wide concerns. The magnetic molecularly imprinted polymers (MMIPs), as a kind of typical functional material, possess excellent greenification characteristics and potencies, and they are easily integrated into various detection technologies, which have offered green approaches toward analytes such as veterinary drugs in milk. Despite their increasing applications and great potential, MMIPs' use in dairy matrices remains underexplored, especially regarding ecological sustainability. This work reviews recent advances in MMIPs' synthesis and application as efficient sorbents for veterinary drug extraction in milk followed by chromatographic analysis. The uniqueness and effectiveness of MMIPs in real milk samples are evaluated, current limitations are addressed, and greenification opportunities are proposed. MMIPs show promise in revolutionizing green analytical procedures for veterinary drug detection, aligning with the environmental goals of modern food production systems.


Assuntos
Resíduos de Drogas , Química Verde , Leite , Polímeros Molecularmente Impressos , Drogas Veterinárias , Leite/química , Resíduos de Drogas/análise , Resíduos de Drogas/química , Polímeros Molecularmente Impressos/química , Animais , Drogas Veterinárias/análise , Drogas Veterinárias/química , Química Verde/métodos , Contaminação de Alimentos/análise , Impressão Molecular/métodos , Cromatografia/métodos
20.
Turk J Chem ; 48(2): 387-401, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39050507

RESUMO

The purpose of this study is to synthesize a highly selective adsorbent to remove cholesterol, one of the most important causes of cardiovascular diseases, from the intestinal mimic solution (IMS). For this purpose, cholesterol imprinted polymers were synthesized by suspension polymerization method using the molecular imprinting technique. In the first step, the functional monomer MATyr with hydrophobic character was synthesized. Then, the cholesterol-MATyr monomer precomplex was formed and the polymerization process was carried out by adding cross-linkers with the comonomer HEMA. The synthesized polymer poly(2-hydroxyethyl methacrylate-N-methacryloyl-(L)-tyrosine methylester) poly(HEMA-MATyr) was characterized by FTIR and SEM. The cholesterol adsorbing behavior of the synthesized poly(HEMA-MATyr) microbeads adsorbent was investigated at different initial concentrations, different temperatures, and adsorption times. The maximum adsorption capacity of microbeads was determined as 56.67 mg/g at a concentration of 2.5 mg/L. The amount of cholesterol adsorbed in the IMS was found as 83.07 mg/g polymer, which indicates that 92% of the cholesterol in the medium was adsorbed. The selectivity behavior of the cholesterol imprinted polymer was carried out with the stigmasterol and estradiol molecules, which are similar in structure, molecular weight, and character to the cholesterol molecule. The chol-imprinted polymeric beads were 21.38 and 10.08 fold more selective for cholesterol compared to estradiol and stigmasterol steroids used as competitor agents respectively. Kinetic and isotherm calculations of the synthesized cholesterol imprinted polymer were made and reusability experiments were carried out.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...