Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.244
Filtrar
1.
Anal Chim Acta ; 1316: 342876, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-38969434

RESUMO

BACKGROUND: Ofloxacin (OFL) is often abused in medicine and animal husbandry, which poses a great threat to human health and ecological environment. Therefore, it is necessary to establish efficient method to detect OFL. Electrochemical sensor has attracted widespread attention due to the advantages of low cost and fast response. However, most electrochemical sensors usually use one response signal to detect the target, which makes it sensitive to the variable background noise in the complex environment, resulting in low robustness and selectivity. The ratio detection mode and employing molecularly imprinted polymer (MIP) are two strategies to solve these problems. RESULTS: A novel molecular imprinting polymer-ratiometric electrochemical sensor (MIP-RECS) based on Fe-MOF-NH2/CNTs-NH2/MXene composite was prepared for the rapid and sensitive detection of OFL. The positively charged Fe-MOF-NH2 and CNTs-NH2 as interlayer spacers were introduced into the negatively charged MXene through a simple electrostatic self-assembly technique, which effectively prevented the agglomeration of MXene and increased the electrocatalytic activity. A glass carbon electrode was modified by the composite and a MIP film was electropolymerized on it using o-phenylenediamine and ß-cyclodextrin as bifunctional monomers and OFL as template. Then a MIP-RECS was designed by adding dopamine (DA) into the electrolyte solution as internal reference, and OFL was quantified by the response current ratio of OFL to DA. The current ratio and the concentration of OFL displayed a satisfying linear relationship in the range of 0.1 µM-100 µM, with a limit of detection (LOD) of 13.2 nM. SIGNIFICANCE: Combining molecular imprinting strategy and ratio strategy, the MIP-RECS has impressive selectivity compared with the non-imprinted polymer-RECS, and has better repeatability and reproducibility than non-ratiometric sensor. The MIP-RECS has high sensitivity and accuracy, which was applied for the detection of OFL in four different brands of milk and was verified by HPLC method with satisfactory results.


Assuntos
Técnicas Eletroquímicas , Estruturas Metalorgânicas , Polímeros Molecularmente Impressos , Ofloxacino , Ofloxacino/análise , Ofloxacino/química , Técnicas Eletroquímicas/métodos , Polímeros Molecularmente Impressos/química , Estruturas Metalorgânicas/química , Nanotubos de Carbono/química , Ferro/química , Ferro/análise , Limite de Detecção , Impressão Molecular , Animais , Eletrodos , Leite/química
2.
Mikrochim Acta ; 191(8): 444, 2024 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-38955823

RESUMO

Transferrin (TRF), recognized as a glycoprotein clinical biomarker and therapeutic target, has its concentration applicable for disease diagnosis and treatment monitoring. Consequently, this study developed boronic acid affinity magnetic surface molecularly imprinted polymers (B-MMIPs) with pH-responsitivity as the "capture probe" for TRF, which have high affinity similar to antibodies, with a dissociation constant of (3.82 ± 0.24) × 10-8 M, showing 7 times of reusability. The self-copolymerized imprinted layer synthesized with dopamine (DA) and 3-Aminophenylboronic acid (APBA) as double monomers avoided nonspecific binding sites and produced excellent adsorption properties. Taking the gold nanostar (AuNS) with a branch tip "hot spot" structure as the core, the silver-coated AuNS functionalized with the biorecognition element 4-mercaptophenylboronic acid (MPBA) was employed as a surface-enhanced Raman scattering (SERS) nanotag (AuNS@Ag-MPBA) to label TRF, thereby constructing a double boronic acid affinity "sandwich" SERS biosensor (B-MMIPs-TRF-SERS nanotag) for the highly sensitive detection of TRF. The SERS biosensor exhibited a detection limit for TRF of 0.004 ng/mL, and its application to spiked serum samples confirmed its reliability and feasibility, demonstrating significant potential for clinical TRF detection. Moreover, the SERS biosensor designed in this study offers advantages in stability, detection speed (40 min), and cost efficiency. The portable Raman instrument for SERS detection fulfills the requirements for point-of-care testing.


Assuntos
Técnicas Biossensoriais , Ácidos Borônicos , Ouro , Análise Espectral Raman , Ácidos Borônicos/química , Técnicas Biossensoriais/métodos , Ouro/química , Humanos , Análise Espectral Raman/métodos , Prata/química , Nanopartículas Metálicas/química , Limite de Detecção , Transferrina/análise , Transferrina/química , Impressão Molecular , Polímeros Molecularmente Impressos/química , Glicoproteínas/sangue , Glicoproteínas/química , Materiais Biomiméticos/química , Dopamina/sangue , Dopamina/análise , Compostos de Sulfidrila
3.
J Chromatogr A ; 1730: 465138, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38970874

RESUMO

In this study, an enhanced selective recognition strategy was employed to construct a novel solid-phase microextraction fiber coating for the detection of 17ß-estradiol, characterized by the combination of aptamer biorecognition and molecularly imprinted polymer recognition. Benefiting from the combination of molecularly imprinted and aptamer, aptamer-molecularly imprinted (Apt-MIP) fiber coating had synergistic recognition effect. The effects of pH, ion concentration, extraction time, desorption time and desorption solvent on the adsorption capacity of Apt-MIP were investigated. The adsorption of 17ß-estradiol on Apt-MIP followed pseudo-second order kinetic model, and the Freundlich isotherm. The process was exothermic and thermodynamically spontaneous. Compared with polymers that only rely on imprinted recognition, non-imprinted recognition or aptamer affinity, Apt-MIP had the best recognition performance, which was 1.30-2.20 times that of these three materials. Furthermore, the adsorption capacity of Apt-MIP for 17ß-estradiol was 885.36-1487.52 times than that of polyacrylate and polydimethylsiloxane/divinylbenzone commercial fiber coatings. Apt-MIP fiber coating had good stability and could be reused for more than 15 times. Apt-MIP solid-phase microextraction coupled with high-performance liquid chromatography was successfully applied to the determination of 17ß-estradiol in pork, chicken, fish and shrimp samples, with satisfactory recoveries of 79.61 %-105.70 % and low limits of detection (0.03 µg/kg). This work provides new perspectives and strategies for sample pretreatment techniques based on molecular imprinting technology and improves analytical performance.

4.
Spectrochim Acta A Mol Biomol Spectrosc ; 322: 124732, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38971083

RESUMO

Three functional magnetic nanocatalytic probe, which integrates recognition, catalytic amplification, and separation enrichment, is a new approach to construct a simple, fast, highly selective, and sensitive analytical method. In this article, a new magnetic nanosurface molecularly imprinted polymer nanoprobe (Fe3O4@MIP) with trifunctionality was rapidly prepared using a microwave-assisted method with magnetic Fe3O4 nanoparticles as a substrate, chloramphenicol (CAP) as a template molecule, and methacrylic acid as a functional monomer. The characterized nanoprobe was found that could specifically recognize CAP, strongly catalyze the new indicator nanoreaction of fructose (DF)-HAuCl4. The gold nanoparticles (AuNPs) exhibit strong resonance Rayleigh scattering (RRS) and surface enhanced Raman scattering (SERS) effects. Upon addition of CAP, the SERS/RRS signals were linearly weakened. Accordingly, a new SERS/RRS analysis platform for highly sensitive and selective determination of CAP was constructed. The SERS linear range was 0.0125-0.1 nmol/L, with detection limit (DL) of 0.004 nmol/L CAP. Furthermore, it could be combined with magnet-enriched separation to further improve the sensitivity, with a DL of 0.04 pmol/L CAP. The SERS method has been used for the determination of CAP in real samples, with relative standard deviations of 2.37-9.89 % and the recovery of 95.24-107.1 %.

5.
Talanta ; 278: 126510, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38981154

RESUMO

A novel and robust electrochemical sensing tool for the determination of vismodegib (VIS), an anticancer drug, has been developed by integrating the selective recognition capabilities of molecularly imprinted polymer (MIP) and the sensitivity enhancement capability of metal-organic framework (MOF). Prior to this step, the electrochemical behavior of VIS was investigated using a bare glassy carbon electrode (GCE). It was observed that in 0.5 M H2SO4 solution as electrolyte, VIS has an oxidation peak around 1.3 V and the oxidation mechanism is diffusion controlled. The determination of VIS in a standard solution using a bare GCE showed a linear response in the concentration range from 2.5 µM to 100 µM, with a limit of detection (LOD) of 0.75 µM. Since sufficient sensitivity and selectivity could not be achieved with bare GCE, a MIP sensor was developed in the next step of the study. For this purpose, the GCE surface was first modified by drop casting with as-synthesized Co-MOF. Subsequently, a MIP network was synthesized via a thermal polymerization approach using 2-acrylamido-2-methylpropanesulfonic acid (AMPS) as monomer and VIS as template. MOFs are ideal electrode materials due to their controllable and diverse morphologies and modifiable surface properties. These characteristics enable the development of MIPs with more homogeneous binding sites and high affinity for target molecules. Integrating MOFs could help the performance of sensors with the desired stability and reproducibility. Electrochemical analysis revealed an observable enhancement of the output signal by the incorporation of MOF molecules, which is consistent with the sensitivity-enhancing role of MOF by providing more anchoring sites for the attachment of the polymer texture to the electrode surface. This MOF-MIP sensor exhibited impressive linear dynamic ranges ranging from 0.1 to 1.0 pM for VIS, with detection limits in the low picomolar range. In addition, the MOF-MIP sensor offers high accuracy, selectivity and precision for the determination of VIS, with no interference observed from complex media of serum samples. Additionally, in this study, Analytical GREEnness metric (AGREE), Analytical GREEnness preparation (AGREEprep) and Blue Applicability Grade Index (BAGI) were used to calculate the green profile score.

6.
Biosens Bioelectron ; 261: 116487, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38870829

RESUMO

A new di-recognition nitrogen-doped carbon dot nanosurface aptamer molecularly imprinted polymer (CDNAg@MIPApt) nanocatalytic di-functional probe was prepared by microwave irradiation. The probe was utilized nitrogen-doped silver carbon dots (CDNAg) as the matrix, glyphosate (Gly) as the template molecule, α-methyl acrylate as the monomer, ethylene glycol dimethacrylate as the cross-linker, and aptamer as the biorecognition element. It could not only recognize Gly but also exhibits catalytic amplification function. It was found that CDNAg@MIPApt catalyzed the redox reaction of polyethylene glycol 400 (PEG400)-AgNO3 to generate silver nanoparticles (AgNPs). The AgNPs indicator component exhibit the effects of surface-enhanced Raman scattering (SERS), resonance Rayleigh scattering (RRS) and surface plasmon resonance absorption (Abs). In the presence of Gly, it binds to the surface imprinted site of CDNAg@MIPApt, to reduce AgNPs generation due to the catalytic activity of CDNAg@MIPApt decreasing. Thus, the SERS/RRS/Abs signal values decreased linearly. The linear ranges of SERS/RRS/Abs assay were 0.1-2.5 nM, 0.25-2.75 nM and 0.5-5 nM respectively. The detection limits were 0.034 nM, 0.071 nM and 0.18 nM Gly.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Glicina , Glifosato , Limite de Detecção , Nanopartículas Metálicas , Polímeros Molecularmente Impressos , Prata , Análise Espectral Raman , Glicina/química , Glicina/análogos & derivados , Prata/química , Polímeros Molecularmente Impressos/química , Aptâmeros de Nucleotídeos/química , Nanopartículas Metálicas/química , Técnicas Biossensoriais/métodos , Ressonância de Plasmônio de Superfície/métodos , Herbicidas/análise , Herbicidas/química , Carbono/química
7.
Food Chem ; 455: 139773, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38833856

RESUMO

A molecularly imprinted polymer (MIP) based microfiber differential demodulation sensing system for sodium benzoate (SB) concentration detection is proposed. The specific binding of MIP on the surface of microfibers with SB can lead to changes in local refractive index (RI). RI change induces a drift in the interference wavelength, which can be monitored by the power difference between two fiber Bragg gratings (FBGs). The sensing system can detect SB in the concentration range of 0.1-50 µg/ml, and interference wavelength and FBG power difference sensitivities are 0.55 nm/(µg/ml) and 2.64 dB/(µg/ml) in the low concentration range of 0.1-1 µg/ml, respectively, with a limit of detection (LOD) of 0.1 µg/ml. This microfiber differential demodulation sensing system is not only simple to fabricate, but also simplifies the demodulation equipment to reduce the cost, which providing a simple, reliable and low-cost technique for the quantitative detection of SB concentration in beverages and flavoured foods.


Assuntos
Polímeros Molecularmente Impressos , Benzoato de Sódio , Benzoato de Sódio/análise , Benzoato de Sódio/química , Polímeros Molecularmente Impressos/química , Fibras Ópticas , Limite de Detecção , Contaminação de Alimentos/análise , Impressão Molecular , Polímeros/química
8.
Food Chem ; 456: 140007, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38861864

RESUMO

Developing an efficient method for screening Ochratoxin A (OTA) in agriculture products is vital to ensure food safety and human health. However, the complex food matrix seriously affects the sensitivity and accuracy. To address this issue, we designed a novel molecularly imprinted polymer (MIP) electrochemical sensor based on multiwalled carbon nanotube-modified niobium carbide (Nb2C-MWCNTs) with the aid of the density functional theory (DFT). In this design, a glassy carbon electrode (GCE) was first modified by Nb2C-MWCNTs heterostructure. Afterward, the MIP layer was prepared, with ortho-toluidine as a functional monomer selected via DFT and OTA acting as a template on the surface of Nb2C-MWCNTs/GCE using in-situ electropolymerization. Electrochemical tests and physical characterization revealed that Nb2C-MWCNTs improved the sensor's active surface area and electron transmission capacity. Nb2C-MWCNTs had a good synergistic effect on MIP, endowing the sensor with high sensitivity and specific recognition of OTA in complex food matrix systems. The MIP sensor showed a wide linear range from 0.04 to 10.0 µM with a limit of detection (LOD) of 3.6 nM. Moreover, it presented good repeatability and stability for its highly antifouling effect on OTA. In real sample analysis, the recoveries, ranging from 89.77% to 103.70%, agreed well with the results obtained by HPLC methods, suggesting the sensor has good accuracy and high potential in practical applications.

9.
J Pharm Biomed Anal ; 248: 116283, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38850885

RESUMO

This study presented a new method to design a MIP-based electrochemical sensor that could improve the selective and sensitive detection of ipratropium bromide (IPR). The polymeric film was designed using 2-hydroxyethyl methacrylate (HEMA) as the basic monomer, 2-hydroxy-2-methylpropiophenone as the initiator, ethylene glycol dimethacrylate (EGDMA) as the crosslinking agent, and N-methacryloyl-L-aspartic acid (MAAsp) as the functional monomer. The presence of MAAsp results in the functional groups in imprinting binding sites, while the presence of poly(vinyl alcohol) (PVA) allows the generation of porous materials not only for sensitive sensing but also for avoiding electron transport limitations. Electrochemical characterizations of the changes at each stage of the MIP preparation process were confirmed using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). In addition, morphological characterizations of the developed sensor were performed using scanning electron microscopy (SEM), attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), and contact angle measurements. Theoretical calculations were also performed to explain/confirm the experimental results better. It was found that the results of the calculations using the DFT approach agreed with the experimental data. The MAAsp-IPR@MIP/GCE sensor was developed using the photopolymerization method, and the sensor surface was obtained by exposure to UV lamp radiation at 365 nm. The improved MIP-based electrochemical sensor demonstrated the ability to measure IPR for standard solutions in the linear operating range of 1.0 × 10-12-1.0 × 10-11 M under optimized conditions. For standard solutions, the limit of detection (LOD) and limit of quantification (LOQ) were obtained as 2.78 × 10-13 and 9.27 × 10-13 M, respectively. The IPR recovery values for the inhalation form were calculated as 101.70 % and 100.34 %, and the mean relative standard deviations (RSD) were less than 0.76 % in both cases. In addition, the proposed modified sensor demonstrated remarkable sensitivity and selectivity for rapid assessment of IPR in inhalation forms. The sensor's unique selectivity is demonstrated by its successful performance even in the presence of IPR impurities.

10.
J Chromatogr A ; 1729: 465016, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-38852266

RESUMO

This research, described ultrasound-assisted dispersive magnetic solid-phase microextraction, which is efficient for the enrichment and determination of sulfamethoxazole, based on magnetic molecularly imprinted polymer (USA-DMSPME-MIP). Meanwhile, the initial characterization of Fe3O4-MIP was completed by conventional methods and well-known protocols to obtain recognition and adsorbing performance at pre-specified optimum conditions. Fe3O4-MIP exhibited information regarding its selective recognition pattern towards sulfamethoxazole. The USA-DMSPME-MIP parameters were optimized by response surface methodology, and based on optimum conditions, this efficient method for the extraction and enrichment of sulfamethoxazole from spiked water samples and quantification by HPLC-UV was used. The enhanced technique indicates the limit of detection is 2 ng mL-1 for sulfamethoxazole, along with excellent linear range with coefficients of determination >0.99 and good recoveries for spiked water samples (94.2 and 98.2 %) with RSDs less than 3.5 %.


Assuntos
Limite de Detecção , Polímeros Molecularmente Impressos , Microextração em Fase Sólida , Sulfametoxazol , Poluentes Químicos da Água , Sulfametoxazol/análise , Sulfametoxazol/isolamento & purificação , Microextração em Fase Sólida/métodos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/isolamento & purificação , Poluentes Químicos da Água/química , Polímeros Molecularmente Impressos/química , Cromatografia Líquida de Alta Pressão/métodos , Nanopartículas de Magnetita/química , Adsorção , Impressão Molecular , Concentração de Íons de Hidrogênio , Reprodutibilidade dos Testes , Polímeros/química
11.
Nanomaterials (Basel) ; 14(11)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38869573

RESUMO

This study addresses the necessity to monitor the presence of glyphosate (Gly) in waters, highlighting the need for on-site detection of Gly by using electrochemical sensors in environmental and agricultural monitoring programs. Two approaches were employed: (1) modification with graphene decorated with gold nanoparticles (AuNPs-Gr) and dispersed in either dimethylformamide (DMF) or a solution containing Nafion and isopropanol (NAF), and (2) molecularly imprinted polymers (MIPs) based on polypyrrole (PPy) deposited on gold SPEs (AuSPE). Electrochemical characterization revealed that sensors made of AuNPs-Gr/SPCE exhibited enhanced conductivity, larger active area, and improved charge transfer kinetics compared to unmodified SPEs and SPEs modified with graphene alone. However, the indirect detection mechanism of Gly via complex formation with metallic cations in AuNPs-Gr-based sensors introduces complexities and compromises sensitivity and selectivity. In contrast, MIPPy/AuSPE sensors demonstrated superior performance, offering enhanced reliability and sensitivity for Gly analysis. The MIPPy/AuSPE sensor allowed the detection of Gly concentrations as low as 5 ng/L, with excellent selectivity and reproducibility. Moreover, testing in real surface water samples from the Olt River in Romania showed recovery rates ranging from 90% to 99%, highlighting the effectiveness of the detection method. Future perspectives include expanding the investigation to monitor Gly decomposition in aquatic environments over time, providing insights into the decomposition's long-term effects on water quality and ecosystem health, and modifying regulatory measures and agricultural practices for mitigating its impact. This research contributes to the development of robust and reliable electrochemical sensors for on-site monitoring of Glyphosate in environmental and agricultural settings.

12.
Talanta ; 277: 126404, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38879945

RESUMO

In this work, a novel molecularly imprinted electrochemical aptasensor (MIEAS) was developed for highly selective detection of dexamethasone (Dex) in natural water environment. Gold nanoparticles (AuNPs) modified by nitrogen doped molybdenum carbide-graphene (N-Mo2C-Gr) were employed as the supports, where N-Mo2C-Gr improved the conductivity of the electrode and provided a larger specific surface area to polymerize more active substances. Using Dex as template molecule, o-phenylenediamine (o-PD) as the chemical functional monomer and aptamer as the biofunctional monomer, a molecularly imprinted polymer (MIP) membrane with Dex specific recognition sites was formed by electropolymerization. Due to the synergistic effect of MIP and aptamers, the as-prepared MIEAS exhibited a decent linear relationship to Dex detection within a relatively wide range of 10-13 - 10-5 M, and the detection limit was 1.79 × 10-14 M. The recovery in actual water and tablet samples is satisfactory, which confirms the potential application prospects of this sensor in the determination of Dex.

13.
Se Pu ; 42(6): 508-523, 2024 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-38845512

RESUMO

Given continuous improvements in industrial production and living standards, the analysis and detection of complex biological sample systems has become increasingly important. Common complex biological samples include blood, serum, saliva, and urine. At present, the main methods used to separate and recognize target analytes in complex biological systems are electrophoresis, spectroscopy, and chromatography. However, because biological samples consist of complex components, they suffer from the matrix effect, which seriously affects the accuracy, sensitivity, and reliability of the selected separation analysis technique. In addition to the matrix effect, the detection of trace components is challenging because the content of the analyte in the sample is usually very low. Moreover, reasonable strategies for sample enrichment and signal amplification for easy analysis are lacking. In response to the various issues described above, researchers have focused their attention on immuno-affinity technology with the aim of achieving efficient sample separation based on the specific recognition effect between antigens and antibodies. Following a long period of development, this technology is now widely used in fields such as disease diagnosis, bioimaging, food testing, and recombinant protein purification. Common immuno-affinity technologies include solid-phase extraction (SPE) magnetic beads, affinity chromatography columns, and enzyme linked immunosorbent assay (ELISA) kits. Immuno-affinity techniques can successfully reduce or eliminate the matrix effect; however, their applications are limited by a number of disadvantages, such as high costs, tedious fabrication procedures, harsh operating conditions, and ligand leakage. Thus, developing an effective and reliable method that can address the matrix effect remains a challenging endeavor. Similar to the interactions between antigens and antibodies as well as enzymes and substrates, biomimetic molecularly imprinted polymers (MIPs) exhibit high specificity and affinity. Furthermore, compared with many other biomacromolecules such as antigens and aptamers, MIPs demonstrate higher stability, lower cost, and easier fabrication strategies, all of which are advantageous to their application. Therefore, molecular imprinting technology (MIT) is frequently used in SPE, chromatographic separation, and many other fields. With the development of MIT, researchers have engineered different types of imprinting strategies that can specifically extract the target analyte in complex biological samples while simultaneously avoiding the matrix effect. Some traditional separation technologies based on MIP technology have also been studied in depth; the most common of these technologies include stationary phases used for chromatography and adsorbents for SPE. Analytical methods that combine MIT with highly sensitive detection technologies have received wide interest in fields such as disease diagnosis and bioimaging. In this review, we highlight the new MIP strategies developed in recent years, and describe the applications of MIT-based separation analysis methods in fields including chromatographic separation, SPE, diagnosis, bioimaging, and proteomics. The drawbacks of these techniques as well as their future development prospects are also discussed.


Assuntos
Impressão Molecular , Humanos , Cromatografia de Afinidade/métodos , Extração em Fase Sólida/métodos , Ensaio de Imunoadsorção Enzimática
14.
Adv Colloid Interface Sci ; 331: 103233, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38924801

RESUMO

A substantial development in nanoscale materials possessing catalytic activities comparable with natural enzymes has been accomplished. Their advantages were owing to the excellent sturdiness in an extreme environment, possibilities of their large-scale production resulting in higher profitability, and easy manipulation for modification. Despite these advantages, the main challenge for artificial enzyme mimetics is the lack of substrate selectivity where natural enzymes flourish. This review addresses this vital problem by introducing substrate selectivity strategies to three classes of artificial enzymes: molecularly imprinted polymers, nanozymes (NZs), and DNAzymes. These rationally designed strategies enhance the substrate selectivity and are discussed and exemplified throughout the review. Various functional mechanisms associated with applying enzyme mimetics in biosensing and bioassays are also given. Eventually, future directives toward enhancing the substrate selectivity of biomimetics and related challenges are discussed and evaluated based on their efficiency and convenience in biosensing and bioassays.

15.
Am J Chin Med ; 52(4): 1137-1154, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38879746

RESUMO

Flavonol and flavonoid compounds are important natural compounds with various biomedical activities. Therefore, it is of great significance to develop a strategy for the specific extraction of flavonol and flavonoid compounds. Quercetin is a well-studied flavonoid possessing many health benefits. This compound is a versatile antioxidant known to possess protective abilities against body tissue injury induced by pathological situations and various drug toxicities. Although quercetin is widely distributed in many plants, its content generally is not very high. Therefore, the specific extraction of quercetin as well as other flavonol and flavonoid compounds has profound significance. In this work, the quercetin molecularly imprinting polymer (QMIP) was successfully prepared, in which a typical flavonol quercetin was selected as the template molecule. QMIP was synthesized by performing the surface molecular imprinting technology on the surface of NH2-MIL-101(Fe). Our study results showed that QMIP exhibited quick binding kinetic behavior, a high adsorption capacity (57.04[Formula: see text]mg/g), and the specific recognition ability toward quercetin compared with structurally distinct compounds (selective [Formula: see text]). The specific adsorption ability of quercetin by QMIP was further explained using computation simulation that molecules with non-planar 3D conformations hardly entered the molecularly imprinted cavities on QMIP. Finally, QMIP was successfully used for the specific extraction of quercetin and five other flavonol and flavonoid compounds in the crude extracts from Sapium sebiferum. This study proposes a new strategy to synthesize the molecularly imprinted polymer based on a single template for enriching and loading a certain class of active ingredients with similar core structures from variable botanicals.


Assuntos
Flavonoides , Flavonóis , Impressão Molecular , Polímeros Molecularmente Impressos , Quercetina , Quercetina/isolamento & purificação , Quercetina/química , Flavonoides/isolamento & purificação , Flavonoides/química , Flavonóis/isolamento & purificação , Flavonóis/química , Polímeros Molecularmente Impressos/química , Antioxidantes/isolamento & purificação , Adsorção , Polímeros/química
16.
Sci Rep ; 14(1): 10293, 2024 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704412

RESUMO

In this study, a sensitive and selective fluorescent chemosensor was developed for the determination of pirimicarb pesticide by adopting the surface molecular imprinting approach. The magnetic molecularly imprinted polymer (MIP) nanocomposite was prepared using pirimicarb as the template molecule, CuFe2O4 nanoparticles, and graphene quantum dots as a fluorophore (MIP-CuFe2O4/GQDs). It was then characterized using X-ray diffraction (XRD) technique, Fourier transforms infrared (FT-IR) spectroscopy, scanning electron microscope (SEM), and transmission electron microscopy (TEM). The response surface methodology (RSM) was also employed to optimize and estimate the effective parameters of pirimicarb adsorption by this polymer. According to the experimental results, the average particle size and imprinting factor (IF) of this polymer are 53.61 nm and 2.48, respectively. Moreover, this polymer has an excellent ability to adsorb pirimicarb with a removal percentage of 99.92 at pH = 7.54, initial pirimicarb concentration = 10.17 mg/L, polymer dosage = 840 mg/L, and contact time = 6.15 min. The detection of pirimicarb was performed by fluorescence spectroscopy at a concentration range of 0-50 mg/L, and a sensitivity of 15.808 a.u/mg and a limit of detection of 1.79 mg/L were obtained. Real samples with RSD less than 2 were measured using this chemosensor. Besides, the proposed chemosensor demonstrated remarkable selectivity by checking some other insecticides with similar and different molecular structures to pirimicarb, such as diazinon, deltamethrin, and chlorpyrifos.


Assuntos
Praguicidas , Pirimidinas , Praguicidas/análise , Carbamatos/análise , Carbamatos/química , Pontos Quânticos/química , Polímeros Molecularmente Impressos/química , Polímeros/química , Espectrometria de Fluorescência/métodos , Grafite/química , Impressão Molecular/métodos , Adsorção , Limite de Detecção , Espectroscopia de Infravermelho com Transformada de Fourier , Nanocompostos/química , Nanocompostos/ultraestrutura
17.
J Chromatogr A ; 1725: 464876, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38718697

RESUMO

Herein, 2,4-dichlorophenoxyacetic acid (2,4-D) was used as a model template in a rational design strategy to produce water-compatible noncovalent imprinted microspheres. The proposed approach involved computational modelling for screening functional monomers and a simple method for preparing monodisperse and highly cross-linked microspheres. The fabricated non-imprinted polymer (NIP) and 2,4-d-imprinted polymer (2,4-d-MIP) were characterised, and their adsorption capabilities in an aqueous environment were evaluated. Results reveal that the pseudo-second-order kinetics model was appropriate for representing the adsorption of 2,4-D on NIP and 2,4-d-MIP, with R2 values of 0.97 and 0.99, respectively. The amount of 2,4-D adsorbed on 2,4-d-MIP (97.75 mg g-1) was considerably higher than those of phenoxyacetic acid (35.77 mg g-1), chlorogenic acid (9.72 mg g-1), spiramycin (1.56 mg g-1) and tylosin (1.67 mg g-1). Furthermore, it exhibited strong resistance to protein adsorption in an aqueous medium. These findings confirmed the feasibility of the proposed approach, providing a reference for the development of water-compatible noncovalent imprinted polymers.


Assuntos
Ácido 2,4-Diclorofenoxiacético , Microesferas , Impressão Molecular , Água , Adsorção , Água/química , Ácido 2,4-Diclorofenoxiacético/análise , Ácido 2,4-Diclorofenoxiacético/química , Polímeros/química , Cinética , Polímeros Molecularmente Impressos/química
18.
Polymers (Basel) ; 16(10)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38794587

RESUMO

This work presents an electrochemical sensor detecting a fungicide-azoxystrobin (AZO) in aqueous environments. This AZO sensor utilizes a thin-film metal electrode (TFME) combined with an AZO-selective molecularly imprinted polymer (AZO-MIP). The AZO-MIP was directly generated on TFME through electrochemical polymerization from the solution containing two functional monomers: aniline (Ani) and m-phenylenediamine (mPD), and the template: AZO, which was afterwards removed to form AZO-selective cavities in the polymer matrix. The AZO-MIP preparation was characterized by electrochemical and ellipsometry measurements. Optimization of the synthesis parameters, including the charge density applied during electrodeposition, the monomer-to-template ratio, was performed to enhance the sensor's performance. The results demonstrated that the AZO sensor achieved a low limit of detection (LOD) of 3.6 nM and a limit of quantification (LOQ) of 11.8 nM in tap water, indicating its sensitivity in a complex aqueous environment. The sensor also exhibited satisfactory selectivity for AZO in both ultrapure and tap-water samples and achieved a good recovery (94-119%) for the target analyte. This study highlights the potential of MIP-based electrochemical sensors for the rapid and accurate detection of fungicide contaminants in water, contributing to the advancement of analytical tools for water-quality monitoring and risk assessment.

19.
Foods ; 13(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38731768

RESUMO

In this study, a novel magnetic molecularly imprinted polymeric material (Fe3O4@MOF@MIP-160) with a metal-organic backbone (Fe3O4@MOF) carrier was prepared using dibutyl phthalate (DBP) as a template. The material can be used for the efficient, rapid, and selective extraction of trace amounts of phthalic acid esters (PAEs) in food and can detect them via gas chromatography-mass spectrometry (GC-MS). The synthesis conditions of the materials were optimized to prepare the Fe3O4@MOF@MIP160 with the highest adsorption performance. Transmission electron microscopy (TEM), Fourier Transform Infrared Spectra (FT-IR), Vibration Sample Magnetic (VSM), and the Brunauer-Emmett-Teller (BET) method were used to characterize the materials. Compared with Fe3O4@MOF and the magnetic non-imprinted polymeric material (Fe3O4@MOF@NIP), Fe3O4@MOF@MIP-160 possesses the advantages of easy and rapid manipulation of magnetic materials, the advantages of high specific surface area and the stability of metal-organic frameworks, and the advantages of high selectivity of molecularly imprinted polymers. Fe3O4@MOF@MIP-160 has good recognition and adsorption capacity for di-butyl phthalate (DBP) and diethylhexyl phthalate (DEHP): the adsorption capacity for DBP and DEHP is 260 mg·g-1 and 240.2 mg·g-1, and the adsorption rate is fast (reaching equilibrium in about 20 min). Additionally, Fe3O4@MOF@MIP160 could be recycled six times, making it cost-effective, easy to operate, and time-saving as compared to traditional solid-phase extraction materials. The phthalate ester content in drinking water, fruit juice, and white wine was analyzed, with recoveries ranging from 70.3% to 100.7%. This proved that Fe3O4@MOF@MIP160 was suitable for detecting and removing PAEs from food matrices.

20.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731823

RESUMO

This study presents the initial attempt at introducing a magnetic molecularly imprinted polymer (MIP) designed specifically for lamotrigine with the purpose of functioning as a drug carrier. First, the composition of the magnetic polymer underwent optimization based on bulk polymer adsorption studies and theoretical analyses. The magnetic MIP was synthesized from itaconic acid and ethylene glycol dimethacrylate exhibiting a drug loading capacity of 3.4 ± 0.9 µg g-1. Structural characterization was performed using powder X-ray diffraction analysis, vibrating sample magnetometry, and Fourier transform infrared spectroscopy. The resulting MIP demonstrated controlled drug released characteristics without a burst effect in the phospahe buffer saline at pH 5 and 8. These findings hold promise for the potential nasal administration of lamotrigine in future applications.


Assuntos
Portadores de Fármacos , Lamotrigina , Polímeros Molecularmente Impressos , Lamotrigina/química , Portadores de Fármacos/química , Polímeros Molecularmente Impressos/química , Polímeros Molecularmente Impressos/síntese química , Impressão Molecular/métodos , Espectroscopia de Infravermelho com Transformada de Fourier , Liberação Controlada de Fármacos , Difração de Raios X , Adsorção , Concentração de Íons de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...