Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 678(Pt A): 560-571, 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39214008

RESUMO

Oral mucosal ulcer is the most prevalent oral mucosal lesion, affecting over 25 % of general population. The current treatment regimens lack efficacy in addressing challenges such as wound bleeding, bacterial infection and inflammation on a continuous basis. Hence, a multi-functional oral gel (termed MPCST) with a long-acting duration is designed. It is based on a tannic acid-thioctic acid (TATA) supramolecular hydrogel which absorbs tissue exudate while exhibiting robust tissue adhesion properties. To form MPCST, TATA is loaded with MPCS, which are composed of polydopamine (PDA)-coated molybdenum disulfide (MoS2) nanoflakes (MoS2@PDA) with high photothermal conversion efficiency, nitric oxide (NO) precursor nitroprusside (SNP) and cerium oxide (CeO2) with high reactive oxygen species (ROS) scavenging rate. Upon exposure to 808 nm near-infrared (NIR) irradiation, MPCS rapidly heats up and releases NO to promote angiogenesis, while exhibiting strong ROS scavenging, antibacterial (including oral common Streptococcus mutans), and anti-inflammatory properties. Animal experiments show that the MPCST oral gel, composed of MPCS and TATA hydrogel, exhibits superior therapeutic efficacy compared to the commonly used dexamethasone patch.

2.
ACS Appl Mater Interfaces ; 16(34): 44678-44688, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39153008

RESUMO

Transition metal sulfides (TMSs) show the potential to be competitive candidates as next-generation anode materials for Li-ion batteries (LIBs) due to their high theoretical specific capacity. However, sluggish ionic/electronic transportation and huge volume change upon lithiation/delithiation remain major challenges in developing practical TMS anodes. We rationally combine structural design and interface engineering to fabricate a tubular-like nanocomposite with embedded crystalline Cu9S5 nanoparticles and amorphous MoSx in a carbon matrix (C/Cu9S5-MoSx NTs). On the one hand, the hybrid integrated the advantages of 1D hollow nanostructures and carbonaceous materials, whose high surface-to-volume ratios, inner void, flexibility, and high electronic conductivity not only enhance ion/electron transfer kinetics but also effectively buffer the volume changes of metal sulfides during charge/discharge. On the other hand, the formation of crystalline-amorphous heterostructures between Cu9S5 and MoSx could further boost charge transfer due to an induced built-in electric field at the interface and the presence of a long-range disorder phase. In addition, amorphous MoSx offers an extra elastic buffer layer to release the fracture risk of Cu9S5 crystalline nanoparticles during repetitive electrochemical reactions. Benefiting from the above synergistic effect, the C/Cu9S5-MoSx electrode as an LIB anode in an ether-based electrolyte achieves a high-rate capability (445 mAh g-1 at 6 A g-1) and superior ultralong-term cycling stability, which delivers an initial discharge capacity of 561 mAh g-1 at 2 A g-1 and its retention capacity after 3600 cycles (376 mAh g-1) remains higher than that of commercial graphite (372 mAh g-1).

3.
Sci Rep ; 14(1): 17255, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39060418

RESUMO

In this study, we investigate the catalytic performance of molybdenum sulfide (MoS2) modified with either nickel (Ni) or platinum (Pt) nanoparticles as catalysts for the hydrogen evolution reaction (HER). The MoS2 was prepared on the TiO2 nanotube substrates via a facile hydrothermal method, followed by the deposition by magnetron sputtering of Ni or Pt nanoparticles on the MoS2 surface. Structural and morphological characterization confirmed the successful incorporation of Ni or Pt nanoparticles onto the MoS2 support. Electrochemical measurements revealed that Ni- and Pt-modified MoS2 catalysts exhibited enhanced HER activity compared to pristine MoS2. Obtained catalysts demonstrated a low onset potential, reduced overpotential, and increased current density, indicating efficient electrocatalytic performance. Furthermore, the Ni or Pt-modified MoS2 catalyst exhibited remarkable stability during prolonged HER operation. The improved catalytic activity can be attributed to the synergistic effect between metal nanoparticles and MoS2, facilitating charge transfer kinetics and promoting hydrogen adsorption and desorption. Incorporating Ni and Pt nanoparticles also provided additional active sites on the MoS2 surface, enhancing the catalytic activity.

4.
ACS Appl Mater Interfaces ; 16(25): 32357-32366, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38877995

RESUMO

Metal-semiconductor junctions play an important role in the development of electronic and optoelectronic devices. A Schottky junction photodetector based on two-dimensional (2D) materials is promising for self-powered photodetection with fast response speed and large signal-to-noise ratio. However, it usually suffers from an uncontrolled Schottky barrier due to the Fermi level pinning effect arising from the interface states. In this work, all-2D Schottky junctions with near-ideal Fermi level depinning are realized, attributed to the high-quality interface between 2D semimetals and semiconductors. We further demonstrate asymmetric diodes based on multilayer graphene/MoS2/PtSe2 with a current rectification ratio exceeding 105 and an ideality factor of 1.2. Scanning photocurrent mapping shows that the photocurrent generation mechanism in the heterostructure switches from photovoltaic effect to photogating effect at varying drain biases, indicating both energy conversion and optical sensing are realized in a single device. In the photovoltaic mode, the photodetector is self-powered with a response time smaller than 100 µs under the illumination of a 405 nm laser. In the photogating mode, the photodetector exhibits a high responsivity up to 460 A/W originating from a high photogain. Finally, the photodetector is employed for single-pixel imaging, demonstrating its high-contrast photodetection ability. This work provides insight into the development of high-performance self-powered photodetectors based on 2D Schottky junctions.

5.
Talanta ; 277: 126382, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38852347

RESUMO

Owing to the adverse effects of oxytetracycline (OTC) residues on human health, it is of great importance to construct a rapid and effective strategy for OTC detection. Herein, we developed a dual-response fluorescence sensing platform based on molybdenum sulfide quantum dots (MoS2 QDs) and europium ions (Eu3+) for ratiometric detection of OTC. The MoS2 QDs, synthesized through an uncomplicated one-step hydrothermal approach, upon OTC integration into the MoS2 QDs/Eu3+ sensing system, exhibit a significant quenching of blue fluorescence due to the inner filter effect (IFE), simultaneously enhancing the distinct red emission of Eu3+ at 624 nm, a phenomenon attributed to the antenna effect (AE). This sensor demonstrates exceptional selectivity and sensitivity towards OTC, characterized by a linear detection range of 0.2-10 µM and a notably low detection limit of 2.21 nM. Furthermore, we achieved a visual semi-quantitative assessment of OTC through the discernible fluorescence color transition from blue to red under a 365 nm ultraviolet lamp. The practical applicability of this sensor was validated through the successful detection of OTC in milk and mutton samples, underscoring its potential as a robust tool for OTC monitoring in foodstuffs to safeguard food safety.


Assuntos
Európio , Corantes Fluorescentes , Leite , Molibdênio , Oxitetraciclina , Pontos Quânticos , Espectrometria de Fluorescência , Oxitetraciclina/análise , Leite/química , Pontos Quânticos/química , Molibdênio/química , Animais , Európio/química , Espectrometria de Fluorescência/métodos , Corantes Fluorescentes/química , Dissulfetos/química , Contaminação de Alimentos/análise , Limite de Detecção , Fluorescência
6.
Acta Crystallogr E Crystallogr Commun ; 80(Pt 5): 472-475, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38721433

RESUMO

The title compound, [Mo3(C9H18NS2)3(S2)3S]2S, crystallizes on a general position in the monoclinic space group P21/n (No. 14). The cationic [Mo3S7(S2CNiBu2)3]+ fragments are joined by a mono-sulfide dianion that forms close S⋯S contacts to each of the di-sulfide ligands on the side of the Mo3 plane opposite the µ3 2- ligand. The two Mo3 planes are inclined at an angle of 40.637 (15)°, which gives the assembly an open clamshell-like appearance. One µ6-S2-⋯S2 2- contact, at 2.4849 (14) Å, is appreciably shorter than the remaining five, which are in the range 2.7252 (13)-2.8077 (14) Å.

7.
ACS Nano ; 18(21): 13652-13661, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38751043

RESUMO

In contemporary autonomous driving systems relying on sensor fusion, traditional digital processors encounter challenges associated with analogue-to-digital conversion and iterative vector-matrix operations, which are encumbered by limitations in terms of response time and energy consumption. In this study, we present an analogue Kalman filter circuit based on molybdenum disulfide (MoS2) memtransistor, designed to accelerate sensor fusion for precise localization in autonomous vehicle applications. The nonvolatile memory characteristics of the memtransistor allow for the storage of a fixed Kalman gain, which eliminates the data convergence and thus accelerates the processing speeds. Additionally, the modulation of multiple conductance states by the gate terminal enables fast adaptability to diverse autonomous driving scenarios by tuning multiple Kalman filter gains. Our proposed analogue Kalman filter circuit accurately estimates the position coordinates of target vehicles by fusing sensor data from light detection and ranging (LiDAR), millimeter-wave radar (Radar), and camera, and it successfully solves real-word problems in a signal-free crossroad intersection. Notably, our system achieves a 1000-fold improvement in energy efficiency compared to that of digital circuits. This work underscores the viability of a memtransistor for achieving fast, energy-efficient real-time sensing, and continuous signal processing in advanced sensor fusion technology.

8.
Chem Asian J ; 19(12): e202400166, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38664856

RESUMO

In this study, we demonstrate the influence of crystallinity and morphology on the analytical performance of various Cu2MoS4 (CMS) nanocatalysts-based electrochemical sensors for the high-efficiency detection of Ofloxacin (OFX) antibiotic. The electrochemical kinetics parameters including peak current response (ΔIp), peak-to-peak separation (ΔEp), electrochemically active surface area (ECSA), electron-transfer resistance (Rct), were obtained through the electrochemical analyses, which indicate the single-crystalline nature of CMS nanomaterials (NMs) is beneficial for enhanced electron-transfer kinetics. The morphological features and the electrochemical results for OFX detection substantiate that by tuning the tube-like to plate-like structures of the CMS NMs, it might noticeably enhance multiple adsorption sites and more intrinsic active catalytic sites due to the diffusion of analytes into the interstitial spaces between CMS nanoplates. As results, highly single-crystalline and plate-shaped morphology structures of CMS NMs would significantly enhance the electrocatalytic OFX oxidation in terms of onset potential (Eonset), Tafel slope, catalytic rate constant (kcat), and adsorption capacity (Γ). The CMS NMs-based electrochemical sensing platform showed excellent analytical performance toward the OFX detection with two ultra-wide linear detection concentration ranges from 0.25-100 and 100-1000 µM, a low detection limit of 0.058 µM, and an excellent electrochemical sensitivity (0.743 µA µM-1 cm-2).

9.
J Colloid Interface Sci ; 665: 60-67, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38513408

RESUMO

Molybdenum sulfide materials have long been considered as attractive non-precious-metal electrocatalysts for the hydrogen evolution reaction (HER). However, comparing with the crystalline counterpart, amorphous MoSx has been less investigated previously. We here propose to increase the catalytical activity of a-MoSx by raising the reactant concentration at the catalytic interface via a chemical doping approach. The reconstruction of coordination structure of a-MoSx via Pd doping induces the formation of abundant unsaturated S atoms. Moreover, the reactant friendly catalytic interface is constructed through introducing hydrophilic groups to a-MoSx. The doped a-MoSx catalyst exhibits significantly enhanced HER activity in both acid and alkaline media.

10.
Nanotechnology ; 35(32)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38306698

RESUMO

Two-dimensional transition metal dichalcogenide (TMDC) thin films have been extensively employed in microelectronics research. Molybdenum disulfide (MoS2), as one of prominent candidates of this class, has been applied in photodetectors, integrated electronic devices, gas sensing, and electrochemical catalysis, owing to its extraordinary optoelectronic, chemical, and mechanical properties. Synthesis of MoS2crystal film is the key to its application. However, the reported technology revealed several drawbacks, containing limited surface area, prolonged high-temperature environment, and unsatisfying crystallinity. In order to enhance the convenience of MoS2applications, there is a pressing need for optimized fabrication technology, which could be quicker, with a large area, with adequate crystallinity and heat-saving. In this work, we presented an ultraviolet laser-assisted synthesis technology, accomplishing rapid growth (with the growth rate of about 40µm s-1) of centimeter-scale MoS2films at room temperature. To achieve this, we self-assembled a displaceable reaction chamber system, coupled with krypton fluoride ultraviolet pulse laser. The laser motion speed and trajectory could be customized in the software, allowing the maskless patterning of crystal films. As application, we exhibited a photodetector with the integration of synthesized MoS2and lead sulfide colloidal quantum dots (PbS CQDs), displaying broadband photodetection from ultraviolet, visible to near-infrared spectrum (365-1550 nm), with the detectivity of 109-1010Jones, and the rising time of 0.2-0.3 s. This work not only demonstrated a high-process-efficiency synthesis of TMDC materials, but also has opened up new opportunities for ultraviolet laser used in optoelectronics.

11.
ACS Nano ; 18(3): 2149-2161, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38190453

RESUMO

Molybdenum sulfide (MoS2) is a promising electrode material for supercapacitors; however, its limited Mo/S edge sites and intrinsic inert basal plane give rise to sluggish active electronic states, thus constraining its electrochemical performance. Here we propose a hierarchical confinement strategy to develop ethylene molecule (EG)-intercalated Co-doped sulfur-deficient MoS2 (Co-EG/SV-MoS2) for efficient and durable K-ion storage. Theoretical analyses suggest that the intercalation-confined EG and lattice-confined Co can enhance the interfacial K-ion storage capacity while reducing the K-ion diffusion barrier. Experimentally, the intercalated EG molecules with mildly reducing properties induced the creation of sulfur vacancies, expanded the interlayer spacing, regulated the 2H-1T phase transition, and strengthened the structural grafting between layers, thereby facilitating ion diffusion and ensuring structural durability. Moreover, the Co dopants occupying the initial Mo sites initiated charge transfer, thus activating the basal plane. Consequently, the optimized Co-EG/SV-MoS2 electrode exhibited a substantially improved electrochemical performance. Flexible supercapacitors assembled with Co-EG/SV-MoS2 delivered a notable areal energy density of 0.51 mW h cm-2 at 0.84 mW cm-2 with good flexibility. Furthermore, supercapacitor devices were integrated with a strain sensor to create a self-powered system capable of real-time detection of human joint motion.

12.
Chemistry ; 30(5): e202302565, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-37877539

RESUMO

Lix MoS2 is not only a lithium battery material, but is also an important precursor for the synthesis of MoS2 nanomaterials. Current syntheses of MoS2 , such as in n-butyllithium/LiBH4 or electrochemically, are not satisfying in terms of defined stoichiometry and crystallinity, so an accurate experimental crystal structure determination of this important and widely used material has been long awaited. A high-pressure/high-temperature synthesis yielded highly crystalline 1T''-Lix MoS2 (x=1, 1.333). 1T''-LiMoS2 crystallizes in the space group P 1 ‾ $\bar 1$ with a=6.2482(3) Å, b=6.6336(3) Å, c=6.7480(3) Å, α=119.321(2)°, ß=90.010(2)° and γ=90.077(2)°. The arrangement of Mo atoms within the b-c-plane confirmed a predicted Peierls distortion. A similar atom distribution pattern to that of Mo is also observed for the lithium atoms. Calculation of bond valence site energies gave an activation barrier of 1.244 eV for 2D lithium-ion migration. For x=1.333, a phase-pure synthesis was achieved.

13.
Adv Mater ; 36(6): e2309637, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37985136

RESUMO

Molybdenum disulfide (MoS2 ) with high theoretical capacity is viewed as a promising anode for sodium-ion batteries but suffers from inferior rate capability owing to the polaron-induced slow charge transfer. Herein, a polaron collapse strategy induced by electron-rich insertions is proposed to effectively solve the above issue. Specifically, 1D [MoS] chains are inserted into MoS2 to break the symmetry states of 2D layers and induce small-polaron collapse to gain fast charge transfer so that the as-obtained thermodynamically stable Mo2 S3 shows metallic behavior with 107 times larger electrical conductivity than that of MoS2 . Theoretical calculations demonstrate that Mo2 S3 owns highly delocalized anions, which substantially reduce the interactions of Na-S to efficiently accelerate Na+ diffusion, endowing Mo2 S3 lower energy barrier (0.38 vs 0.65 eV of MoS2 ). The novel Mo2 S3 anode exhibits a high capacity of 510 mAh g-1 at 0.5 C and a superior high-rate stability of 217 mAh g-1 at 40 C over 15 000 cycles. Further in situ and ex situ characterizations reveal the in-depth reversible redox chemistry in Mo2 S3 . The proposed polaron collapse strategy for intrinsically facilitating charge transfer can be conducive to electrode design for fast-charging batteries.

14.
Adv Mater ; 36(7): e2305730, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37899494

RESUMO

Thiomolybdates are molecular molybdenum-sulfide clusters formed from Mo centers and sulfur-based ligands. For decades, they have attracted the interest of synthetic chemists due to their unique structures and their relevance in biological systems, e.g., as reactive sites in enzymes. More recently, thiomolybdates are explored from the catalytic point of view and applied as homogeneous and molecular mimics of heterogeneous molybdenum sulfide catalysts. This review summarizes prominent examples of thiomolybdate-based electro- and photocatalysis and provides a comprehensive analysis of their reactivities under homogeneous and heterogenized conditions. Active sites of thiomolybdates relevant for the hydrogen evolution reaction are examined, aiming to shed light on the link between cluster structure and performance. The shift from solution-phase to surface-supported thiomolybdates is discussed with a focus on applications in electrocatalysis and photocatalysis. The outlook highlights current trends and emerging areas of thiomolybdate research, ending with a summary of challenges and key takeaway messages based on the state-of-the-art research.

15.
Angew Chem Int Ed Engl ; 62(48): e202313845, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37815533

RESUMO

Highly efficient hydrogen evolution reaction (HER) electrocatalyst will determine the mass distributions of hydrogen-powered clean technologies, while still faces grand challenges. In this work, a synergistic ligand modulation plus Co doping strategy is applied to 1T-MoS2 catalyst via CoMo-metal-organic frameworks precursors, boosting the HER catalytic activity and durability of 1T-MoS2 . Confirmed by Cs corrected transmission electron microscope and X-ray absorption spectroscopy, the polydentate 1,2-bis(4-pyridyl)ethane ligand can stably link with two-dimensional 1T-MoS2 layers through cobalt sites to expand interlayer spacing of MoS2 (Co-1T-MoS2 -bpe), which promotes active site exposure, accelerates water dissociation, and optimizes the adsorption and desorption of H in alkaline HER processes. Theoretical calculations indicate the promotions in the electronic structure of 1T-MoS2 originate in the formation of three-dimensional metal-organic constructs by linking π-conjugated ligand, which weakens the hybridization between Mo-3d and S-2p orbitals, and in turn makes S-2p orbital more suitable for hybridization with H-1s orbital. Therefore, Co-1T-MoS2 -bpe exhibits excellent stability and exceedingly low overpotential for alkaline HER (118 mV at 10 mA cm-2 ). In addition, integrated into an anion-exchange membrane water electrolyzer, Co-1T-MoS2 -bpe is much superior to the Pt/C catalyst at the large current densities. This study provides a feasible ligand modulation strategy for designs of two-dimensional catalysts.

16.
Artigo em Inglês | MEDLINE | ID: mdl-37874903

RESUMO

If magnesium-ion batteries (MIBs) are to be seriously considered for next-generation energy storage, then a number of major obstacles need to be overcome. The lack of reversible cathode materials with sufficient capacity and cycle life is one of these challenges. Here, we report a new MIB cathode constructed of vertically stacked vanadium molybdenum sulfide (VMS) nanosheets toward addressing this challenge. The integration of vanadium within molybdenum sulfide nanostructures acts so as to improve the total conductivity, enhancing charge transfer, and to produce abundant lattice defects, improving both the accommodation and transport of Mg2+. Additionally, electrolyte additive-induced interlayer expansion provides a means to admit Mg2+ cations into the electrode structure and thus enhance their diffusion. The VMS nanosheets are capable of exhibiting capacities of 211.3 and 128.2 mA h g-1 at current densities of 100 and 1000 mA g-1, respectively. The VMS nanosheets also demonstrate long-term cycling stability, retaining 82.7% of the maximum capacity after 500 cycles at a current density of 1000 mA h g-1. These results suggest that VMS nanosheets could be promising candidates for high-performance cathodes in MIBs.

17.
Nanotechnology ; 35(3)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37827143

RESUMO

Two-dimensional (2D) 1H molybdenum disulfide (1H-MoS2) is hard to be directly used in energy storage devices due to its inert basal plane and unfavorable 2D stacking. This work demonstrated how the basal plane of 1H MoS2nanocrystals (NCs) can be activated to offer doubled specific capacitance by simple surface S depletions. Building on the expanded graphene with three-dimensional (3D) structures, as-prepared NCs were chemically grafted on the graphene surface to deliver stable energy storage and high capacitance, which overcame above challenges of 1H-MoS2. Aside from the mostly focused metastable phase, this work confirmed that the stable 1H Mo-S material is also promising in energy storage applications.

18.
Nanomaterials (Basel) ; 13(17)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37686972

RESUMO

In this study, various two-dimensional (2D) materials were used as supporting materials for the bimetallic Co and Mo sulfide/oxide (CMSO) heterostructure. The water electrolysis activity of CMSO supported on reduced graphene oxide (rGO), graphite carbon nitride (gC3N4), and siloxene (SiSh) was better than that of pristine CMSO. In particular, rGO-supported CMSO (CMSO@rGO) exhibited a large surface area and a low interface charge-transfer resistance, leading to a low overpotential and a Tafel slope of 259 mV (10 mA/cm2) and 85 mV/dec, respectively, with excellent long-term stability over 40 h of continuous operation in the oxygen evolution reaction.

19.
Mikrochim Acta ; 190(10): 406, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37730928

RESUMO

The present research was conducted to design and construct an electrochemical aptasensor for evaluating carbohydrate antigen 15-3 (CA15-3) as a biomarker for breast cancer. The aptasensor has been fabricated by a gold thin film (AuTF) electrodeposited on a cauliflower-like reduced graphene oxide-molybdenum sulfide nanocomposite (rGO-MoS2). The modified electrode's surface was used to immobilize the thiolated aptamer, which was subsequently treated with CA 15-3 antigen. The aptasensor fabrication process was assessed using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). This research also applied EIS to the quantitative measurement of CA 15-3 antigen by the proposed aptasensor. The interfacial charge transfer resistance (Rct) alteration before and after incubation of CA 15-3 by the immobilized aptamer was considered a signal for the quantitative measurement of CA 15-3. A linear concentration ranging from 5.0 to 200.0 U mL-1 with a detection limit of 3.0 × 10-1 U mL-1 was obtained for CA 15-3 using the EIS method. This designed aptasensor indicates satisfactory repeatability and stability, good selectivity, and high sensitivity. Moreover, clinical samples were assayed by the prepared aptasensor and compared with the ELISA method, yielding acceptable results. The recovery and relative standard deviation (RSD) of CA 15-3 in human serum samples were in the range 95.0 to 107.0% and 3.5 to 7.5%, respectively.


Assuntos
Nanocompostos , Neoplasias , Humanos , Biomarcadores Tumorais , Galvanoplastia , Mucina-1 , Molibdênio , Oligonucleotídeos
20.
Food Chem ; 425: 136472, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37267787

RESUMO

A novel self-enhancement molecularly imprinted electrochemiluminescence (ECL) sensor (MIP/M-Ag@MoS2-QDs/GCE) was constructed to detect thiabendazole (TBZ) in food. Melamine was used as template to chelate Ag+ to prepare composite nanomaterials (M-Ag). M-Ag possesses both ECL properties and coreactant catalytic properties, which can realize the self-enhancement of ECL luminophore. MoS2-QDs with excellent edge activity and electrochemical reaction catalytic activity were used to accelerate the reaction rate of the microsystem and further enhance the ECL intensity. The specific detection method of TBZ was established by investigating the ECL response mechanism and specific recognition mechanism of MIP/M-Ag@MoS2-QDs/GCE. The ECL intensity was proportioned to the lg C(TBZ) in the linear range 5 × 10-8 mol L-1-5 × 10-5 mol L-1 with a limit detection of 1.42 × 10-8 mol L-1. The satisfactory recovery rate (83.57%-101.03%) was obtained in sample analysis, which was in good agreement with the analysis result of HPLC.


Assuntos
Técnicas Biossensoriais , Pontos Quânticos , Tiabendazol , Molibdênio/química , Medições Luminescentes/métodos , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Pontos Quânticos/química , Limite de Detecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA