Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25.631
Filtrar
1.
J Environ Sci (China) ; 147: 617-629, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003076

RESUMO

The manganese-cobalt mixed oxide nanorods were fabricated using a hydrothermal method with different metal precursors (KMnO4 and MnSO4·H2O for MnOx and Co(NO3)2⋅6H2O and CoCl2⋅6H2O for Co3O4). Bamboo-like MnO2⋅Co3O4 (B-MnO2⋅Co3O4 (S)) was derived from repeated hydrothermal treatments with Co3O4@MnO2 and MnSO4⋅H2O, whereas Co3O4@MnO2 nanorods were derived from hydrothermal treatment with Co3O4 nanorods and KMnO4. The study shows that manganese oxide was tetragonal, while the cobalt oxide was found to be cubic in the crystalline arrangement. Mn surface ions were present in multiple oxidation states (e.g., Mn4+ and Mn3+) and surface oxygen deficiencies. The content of adsorbed oxygen species and reducibility at low temperature declined in the sequence of B-MnO2⋅Co3O4 (S) > Co3O4@MnO2 > MnO2 > Co3O4, matching the changing trend in activity. Among all the samples, B-MnO2⋅Co3O4 (S) showed the preeminent catalytic performance for the oxidation of toluene (T10% = 187°C, T50% = 276°C, and T90% = 339°C). In addition, the B-MnO2⋅Co3O4 (S) sample also exhibited good H2O-, CO2-, and SO2-resistant performance. The good catalytic performance of B-MnO2⋅Co3O4 (S) is due to the high concentration of adsorbed oxygen species and good reducibility at low temperature. Toluene oxidation over B-MnO2⋅Co3O4 (S) proceeds through the adsorption of O2 and toluene to form O*, OH*, and H2C(C6H5)* species, which then react to produce benzyl alcohol, benzoic acid, and benzaldehyde, ultimately converting to CO2 and H2O. The findings suggest that B-MnO2⋅Co3O4 (S) has promising potential for use as an effective catalyst in practical applications.


Assuntos
Cobalto , Compostos de Manganês , Oxirredução , Óxidos , Tolueno , Óxidos/química , Compostos de Manganês/química , Catálise , Cobalto/química , Tolueno/química , Poluentes Atmosféricos/química
2.
Int J Fertil Steril ; 18(3): 240-247, 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38973277

RESUMO

BACKGROUND: Age, smoking, sleep duration, sleep quality, and obesity are risk factors that can affect the amount of sperm concentration, morphology, and motility. The aim of this study is to assess the lifestyle effects: of age, smoking, sleep duration, sleep quality, and obesity on the amount of concentration, morphology, and motility of sperm. MATERIALS AND METHODS: The study utilized an analytical observational approach with a cross-sectional design. The study subjects comprised 70 male partners of infertile couples admitted to the Sekar Fertility Clinic at the Dr. Moewardi General Hospital between March and August 2022. The study assessed variables including age, body mass index (BMI), smoking status, sleep duration, sleep quality, sperm concentration, sperm morphology, and sperm motility. Furthermore, the data were analyzed using univariate, bivariate, and multivariate methods with SPSS 25 software. RESULTS: The research findings demonstrate that obesity is significantly associated with abnormal sperm concentration [odds ratio (OR)=40.07, confidence interval (CI)=3.90-411.67, P=0.002]. Furthermore, moderate or heavy smoking is significantly associated with abnormal sperm concentration (OR=17.45, CI=1.83-166.15, P=0.013) and sleep quality with severe disorders (OR=5.73, CI=1.12-29.21, P=0.036). Moreover, obesity is significantly associated with abnormal sperm motility (OR=12.97, CI=2.66-63.15, P=0.002), while moderate or heavy smoking (OR=5.89, CI=1.23- 28.20, P=0.026) and poor sleep duration (OR=6.21, CI=1.43-26.92, P=0.015) also exhibit significant associations with abnormal sperm motility. However, no significant findings were observed regarding sperm morphology. CONCLUSION: The findings of this study indicate that obesity, moderate or heavy smoking, and sleep quality have statistically significant effects on sperm concentration, while obesity, moderate or heavy smoking, and sleep duration have statistically significant effects on sperm motility. However, no statistically significant influence was observed on sperm morphology. Further research with larger sample sizes and more diverse populations is needed to validate these findings and explore other potential factors that may impact male fertility.

3.
Psychiatry Res ; 339: 116027, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38954892

RESUMO

Given the shared ectodermal origin and integrated development of the face and the brain, facial biomarkers emerge as potential candidates to assess vulnerability for disorders in which neurodevelopment is compromised, such as schizophrenia (SZ) and bipolar disorder (BD). The sample comprised 188 individuals (67 SZ patients, 46 BD patients and 75 healthy controls (HC)). Using a landmark-based approach on 3D facial reconstructions, we quantified global and local facial shape differences between SZ/BD patients and HC using geometric morphometrics. We also assessed correlations between facial and brain cortical measures. All analyses were performed separately by sex. Diagnosis explained 4.1 % - 5.9 % of global facial shape variance in males and females with SZ, and 4.5 % - 4.1 % in BD. Regarding local facial shape, we detected 43.2 % of significantly different distances in males and 47.4 % in females with SZ as compared to HC, whereas in BD the percentages decreased to 35.8 % and 26.8 %, respectively. We detected that brain area and volume significantly explained 2.2 % and 2 % of facial shape variance in the male SZ - HC sample. Our results support facial shape as a neurodevelopmental marker for SZ and BD and reveal sex-specific pathophysiological mechanisms modulating the interplay between the brain and the face.

4.
Biol Lett ; 20(7): 20240106, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38955226

RESUMO

Feather moulting is a crucial process in the avian life cycle, which evolved to maintain plumage functionality. However, moulting involves both energetic and functional costs. During moulting, plumage function temporarily decreases between the shedding of old feathers and the full growth of new ones. In flying taxa, a gradual and sequential replacement of flight feathers evolved to maintain aerodynamic capabilities during the moulting period. Little is known about the moult strategies of non-avian pennaraptoran dinosaurs and stem birds, before the emergence of crown lineage. Here, we report on two Early Cretaceous pygostylian birds from the Yixian Formation (125 mya), probably referable to Confuciusornithiformes, exhibiting morphological characteristics that suggest a gradual and sequential moult of wing flight feathers. Short primary feathers interpreted as immature are symmetrically present on both wings, as is typical among extant flying birds. Our survey of the enormous collection of the Tianyu Museum confirms previous findings that evidence of active moult in non-neornithine pennaraptorans is rare and likely indicates a moult cycle greater than one year. Documenting moult in Mesozoic feathered dinosaurs is critical for understanding their ecology, locomotor ability and the evolution of this important life-history process in birds.


Assuntos
Evolução Biológica , Aves , Plumas , Fósseis , Muda , Animais , Plumas/anatomia & histologia , Fósseis/anatomia & histologia , Aves/fisiologia , Aves/anatomia & histologia , Muda/fisiologia , Dinossauros/anatomia & histologia , Dinossauros/fisiologia , Voo Animal , China , Asas de Animais/anatomia & histologia
5.
Biol Lett ; 20(7): 20240171, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38955224

RESUMO

Arboreality has evolved in all major vertebrate lineages and is often associated with morphological adaptations and increased diversification concomitant with accessing novel niche space. In squamate reptiles, foot, claw, and tail morphology are well-studied adaptations shown to be associated with transitions to arboreality. Here, we examined a less well understood trait-the keeled scale-in relation to microhabitat, climate, and diversification dynamics across a diverse lizard radiation, Agamidae. We found that the ancestral agamid had keeled dorsal but not ventral scales; further, dorsal and ventral keels are evolutionarily decoupled. Ventral keeled scales evolved repeatedly in association with arboreality and may be advantageous in reducing wear or by promoting interlocking when climbing. We did not find an association between keeled scales and diversification, suggesting keels do not allow finer-scale microhabitat partitioning observed in other arboreal-associated traits. We additionally found a relationship between keeled ventral scales and precipitation in terrestrial species where we posit that the keels may function to reduce scale degradation. Our results suggest that keeled ventral scales facilitated transitions to arboreality across agamid lizards, and highlight a need for future studies that explore their biomechanical function in relation to microhabitat and climate.


Assuntos
Evolução Biológica , Ecossistema , Lagartos , Animais , Lagartos/fisiologia , Lagartos/anatomia & histologia , Escamas de Animais/anatomia & histologia , Escamas de Animais/fisiologia , Filogenia , Clima
6.
Cureus ; 16(7): e63597, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38957510

RESUMO

This study describes an unusual case of multiple myeloma that progressed to anaplastic multiple myeloma in the pleural fluid. The Wright-stained cytospin of the pleural fluid showed a predominant population of mononuclear plasma cells with pleomorphic nuclei, characterized by both small and large nuclei, which is typical of anaplastic multiple myeloma. However, there were also more binuclear plasma cells with pleomorphic nuclei. Morphometric analysis showed that the mean nuclear length was 1.9-fold and 2.3-fold higher in the large nuclei compared to the small nuclei for the mononuclear plasma cells and binuclear plasma cells, respectively (p<0.001). The patient received B cell maturation antigen chimeric antigen receptor T cell (CAR-T) therapy for relapsed disease, with a significant reduction of the serum monoclonal paraprotein level at day 51 post-therapy. Pathologists should be aware that pleomorphic binuclear plasma cells can be part of the morphologic spectrum in anaplastic multiple myeloma.

7.
Front Plant Sci ; 15: 1397686, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38957607

RESUMO

The artificial cultivation and management were extensively carried out in Dendrocalamus brandisii stands. However, the influences of artificial management on the anatomical and chemical characteristics of the bamboo culms were unknown. In this study, the fiber morphology, chemical composition and sugar accumulation of the D. brandisii culms with management and without management were compared in order to determine the influences of artificial management on bamboo culms. The results indicated that artificial management had a significant influence on the fiber morphology, resulting in shorter fiber length, larger L/T ratio, and smaller W/Lu value. However, the management not only increased the contents of moisture, ash, SiO2, and extractive, but also increased the holocellulose contents and decreased the lignin contents, as compared to those without management. Moreover, the management significantly increased the endogenous carbohydrates storage in the culms so as to improve the shoot production. The bamboos under management conditions could still be utilized as a raw material for papermaking. This provided a theoretical basis for the artificial management of D. brandisii stands.

8.
Front Plant Sci ; 15: 1393803, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38957608

RESUMO

The cultivation of medical cannabis (Cannabis sativa L.) is expanding in controlled environments, driven by evolving governmental regulations for healthcare supply. Increasing inflorescence weight and plant specialized metabolite (PSM) concentrations is critical, alongside maintaining product consistency. Medical cannabis is grown under different spectra and photosynthetic photon flux densities (PPFD), the interaction between spectrum and PPFD on inflorescence weight and PSM attracts attention by both industrialists and scientists. Plants were grown in climate-controlled rooms without solar light, where four spectra were applied: two low-white spectra (7B-20G-73R/Narrow and 6B-19G-75R/2Peaks), and two high-white (15B-42G-43R/Narrow and 17B-40G-43R/Broad) spectra. The low-white spectra differed in red wavelength peaks (100% 660 nm, versus 50:50% of 640:660 nm), the high-white spectra differed in spectrum broadness. All four spectra were applied at 600 and 1200 µmol m-2 s-1. Irrespective of PPFD, white light with a dual red peak of 640 and 660 nm (6B-19G-75R/2Peaks) increased inflorescence weight, compared to white light with a single red peak of 660 nm (7B-20G-73R/Narrow) (tested at P = 0.1); this was associated with higher total plant dry matter production and a more open plant architecture, which likely enhanced light capture. At high PPFD, increasing white fraction and spectrum broadness (17B-40G-43R/Broad) produced similar inflorescence weights compared to white light with a dual red peak of 640 and 660 nm (6B-19G-75R/2Peaks). This was caused by an increase of both plant dry matter production and dry matter partitioning to the inflorescences. No spectrum or PPFD effects on cannabinoid concentrations were observed, although at high PPFD white light with a dual red peak of 640 and 660 nm (6B-19G-75R/2Peaks) increased terpenoid concentrations compared to the other spectra. At low PPFD, the combination of white light with 640 and 660 nm increased photosynthetic efficiency compared with white light with a single red peak of 660nm, indicating potential benefits in light use efficiency and promoting plant dry matter production. These results indicate that the interaction between spectrum and PPFD influences plant dry matter production. Dividing the light energy in the red waveband over both 640 and 660 nm equally shows potential in enhancing photosynthesis and plant dry matter production.

9.
Anat Histol Embryol ; 53(4): e13085, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38965917

RESUMO

At the top of many ecosystems, raptors, also known as birds of prey, hold major influence. They shape their surroundings through their powerful hunting skills and complex interactions with their environment. This study investigates the beak morphology of four prominent raptor species, Golden eagle (Aquila chrysaetos), Common buzzard (Buteo buteo), Peregrine falcon (Falco peregrinus) and Common kestrel (Falco tinnunculus), found in Türkiye. By employing geometric morphometric methods, we investigate shape variations in the beaks of these species to unravel the adaptive significance of their cranial structures. This analysis reveals distinct beak morphologies among the studied raptors, reflecting adaptations to their feeding habits, hunting techniques and ecological niches. The results from Principal component analysis and Canonical variate analysis demonstrate significant differences in beak morphology between the Falconiformes and Accipitriformes clades, as well as among all three groups. The overall mean beak shapes of Golden Eagles are quite similar to Common Buzzards, with both species having longer beaks. In contrast, Falcons exhibit a distinctly different beak morphology, characterized by wider and shorter beaks. Changes in beak shape can lead to changes depending on the skull. It is thought that skull shape variations among predator families may have an impact on beak shape. These findings highlight the importance of integrating morphometric analyses with ecological insights to enhance our understanding of the evolutionary processes shaping raptor beak morphology.


Assuntos
Bico , Falconiformes , Animais , Bico/anatomia & histologia , Falconiformes/anatomia & histologia , Falconiformes/fisiologia , Aves Predatórias/anatomia & histologia , Crânio/anatomia & histologia , Análise de Componente Principal , Águias/anatomia & histologia , Águias/fisiologia , Comportamento Predatório/fisiologia , Especificidade da Espécie
10.
Small ; : e2404734, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38966904

RESUMO

The morphology of the active layer is crucial for highly efficient organic solar cells (OSCs), which can be regulated by selecting a rational third component. In this work, the highly crystalline nonfullerene acceptor BTP-eC9 is selected as the morphology regulator in OSCs with PM6:BTP-BO-4Cl as the main system. The addition of BTP-eC9 can prolong the nucleation and crystallization progress of acceptor and donor molecules, thereby enhancing the order of molecular arrangement. Meanwhile, the nucleation and crystallization time of the donor is earlier than that of the acceptors after introducing BTP-eC9, which is beneficial for obtaining a better vertical structural phase separation. The exciton dissociation, charge transport, and charge collection are promoted effectively by the optimized morphology of the active layer, which improves the short-circuit current density and filling factor. After introducing BTP-eC9, the power conversion efficiencies (PCEs) of the ternary OSCs are improved from 17.31% to 18.15%. The PCE is further improved to 18.39% by introducing gold nanopyramid (Au NBPs) into the hole transport layer to improve photon utilization efficiency. This work indicates that the morphology can be optimized by selecting a highly crystalline third component to regulate the nucleation and crystallization progress of the acceptor and donor molecules.

11.
Crit Rev Food Sci Nutr ; : 1-15, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38950560

RESUMO

In cereals, the protein body and protein matrix are usually two morphological protein structures. However, processing treatments can affect protein structures, change protein bodies into the matrix, or induce a change in the matrix structure; therefore, the processing-induced matrix was listed as the third morphological structure of the protein. Previous research on the effect of proteins was mainly based on protein content and composition, but these studies arrived at different conclusions. Studying the effect of protein morphological structures on sensorial property and starch digestion can provide a theoretical basis for selecting cultivars with high sensorial property and help produce low-glycemic index foods for people with diabetes, controlling their postprandial blood sugar. This study aimed to review the distribution and structure of protein bodies, protein matrices, and processing-induced matrices, as well as their influence on cereal sensorial property and starch digestion. Therefore, we determined the protein morphological structures in different cereal cultivars and summarized its impact. Protein bodies mainly have steric stabilization effects on starch gelatinization, whereas the protein matrix serves as a physical barrier surrounding the starch to inhibit water absorption and α-amylase. Processing can change protein morphological structures, enabling protein bodies to act as a physical matrix barrier.

12.
Zhonghua Xue Ye Xue Za Zhi ; 45(4): 330-338, 2024 Apr 14.
Artigo em Chinês | MEDLINE | ID: mdl-38951059

RESUMO

Blood cell morphological examination is a crucial method for the diagnosis of blood diseases, but traditional manual microscopy is characterized by low efficiency and susceptibility to subjective biases. The application of artificial intelligence (AI) technology has improved the efficiency and quality of blood cell examinations and facilitated the standardization of test results. Currently, a variety of AI devices are either in clinical use or under research, with diverse technical requirements and configurations. The Experimental Diagnostic Study Group of the Hematology Branch of the Chinese Medical Association has organized a panel of experts to formulate this consensus. The consensus covers term definitions, scope of application, technical requirements, clinical application, data management, and information security. It emphasizes the importance of specimen preparation, image acquisition, image segmentation algorithms, and cell feature extraction and classification, and sets forth basic requirements for the cell recognition spectrum. Moreover, it provides detailed explanations regarding the fine classification of pathological cells, requirements for cell training and testing, quality control standards, and assistance in issuing diagnostic reports by humans. Additionally, the consensus underscores the significance of data management and information security to ensure the safety of patient information and the accuracy of data.


Assuntos
Inteligência Artificial , Células Sanguíneas , Consenso , Humanos , Células Sanguíneas/citologia , China , Algoritmos
13.
Surg Radiol Anat ; 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38951185

RESUMO

INTRODUCTION: The current study, which delves into proximal tibia morphometric parameters in a Greek sample, not only analyzes whether specific linear distance ratios are consistent but also paves the way for a potential novel metric system for knee arthroplasty imaging studies using constant ratios. These findings could have significant implications for future enlarged research and clinical practice. METHODS: A total of 38 dried tibiae were evaluated by two independent investigators. The following distances were measured with a digital Vernier sliding caliper: (1) the mediolateral distance of the proximal surface (A), (2) the anteroposterior distance of the proximal surface (B), (3) The longitudinal length of the bone (C), (4) the line connecting the anterior margin of the proximal surface with the highest peak of the tibia tuberosity (D), (5) the depth of the proximal margin of the medial articular facet (AF) (medial plateau) (E) and (6) the depth of the proximal margin of the lateral AF (lateral plateau) (F). RESULTS: The A, B, C, D, E, and F mean distances were 71.3 mm, 47.4 mm, 340.2 mm, 37.1 mm, 42 mm, and 35.9 mm. Reliability analysis for each observer on all measurements revealed an interclass correlation (ICC) score of 0.975 (observer 1) and 0.971 (observer 2). The ratio A/B was 1.5, A/C was a constant 0.2, and D/C was 0.1. The ratio E/F was 1.2. The six measurements (A-F) showed excellent inter-observer reliability (all ICC values > 0.990). CONCLUSIONS: The study established constant ratios of the studied linear distances around the proximal tibia. Considering these ratios, asymmetrical tibial components in knee arthroplasty seem to replicate the native anatomy more closely. Furthermore, the distance from the anterior margin of the proximal surface to the tibial tuberosity peak, constituting one-tenth of the longitudinal length of the tibia, shows promise as a metric system for imaging studies, especially in assessing lesions around tibial components.

14.
Small ; : e2401656, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38994827

RESUMO

Electrochemical CO2 reduction is a promising technology for replacing fossil fuel feedstocks in the chemical industry but further improvements in catalyst selectivity need to be made. So far, only copper-based catalysts have shown efficient conversion of CO2 into the desired multi-carbon (C2+) products. This work explores Cu-based dilute alloys to systematically tune the energy landscape of CO2 electrolysis toward C2+ products. Selection of the dilute alloy components is guided by grand canonical density functional theory simulations using the calculated binding energies of the reaction intermediates CO*, CHO*, and OCCO* dimer as descriptors for the selectivity toward C2+ products. A physical vapor deposition catalyst testing platform is employed to isolate the effect of alloy composition on the C2+/C1 product branching ratio without interference from catalyst morphology or catalyst integration. Six dilute alloy catalysts are prepared and tested with respect to their C2+/C1 product ratio using different electrolyzer environments including selected tests in a 100-cm2 electrolyzer. Consistent with theory, CuAl, CuB, CuGa and especially CuSc show increased selectivity toward C2+ products by making CO dimerization energetically more favorable on the dominant Cu facets, demonstrating the power of using the dilute alloy approach to tune the selectivity of CO2 electrolysis.

15.
Br Poult Sci ; : 1-8, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38995225

RESUMO

1. This trial investigated the effect on embryo injected with ochratoxin A (OTA) and the growth performance, jejunal morphology and barrier of ducklings to 21 d old.2. Two hundred forty, fertilised eggs were individually weighed and randomly assigned to two groups, a control (CON) and the OTA treatment, according to average egg weight. On d 13 of embryonic development, the treatment group was injected with 8 ng OTA/g egg and the CON group was injected with NaHCO3 solution as a placebo. All newly hatched ducklings were assigned to the CON or OTA group based on the different treatments. Each treatment consisted of six replicates and each included 10 ducklings and the experiment lasted until 21 d of age.3. The results showed that embryos injected with OTA affected the 21 d body weight (BW) and average daily gain (ADG) of ducklings (p < 0.05). OTA exposure increased the relative weights of the liver, pancreas, gizzard, proventriculus and jejunum (p < 0.05); and decreased the relative length of the jejunum of ducklings (p < 0.05). Moreover, jejunal crypt depth increased (p < 0.05) and the villus height-to-crypt depth ratio (Vh/Cd) decreased in the OTA-injected group (p < 0.05). Compared with those in the CON group, the mRNA expression of Zonula Occludens-1; (ZO-1) (p = 0.0582) and Occludin; (p = 0.0687) in the OTA treatment group was downregulated.4. The findings demonstrated that a single low-dose injection of OTA increased body weight and daily gain in ducklings. Moreover, embryo exposure to OTA had negative effects with increased relative weight of organs and the jejunal crypt depth, decreased relative length of the intestine and mRNA expression of tight junctions (ZO-1, Occludin).

16.
Front Plant Sci ; 15: 1391846, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39015294

RESUMO

The present study evaluated the repercussions of magnetopriming on the root system architecture of soybean plants subjected to arsenic toxicity using synchrotron radiation source based micro-computed tomography (SR-µCT). This will be used evey where as abbreviation for the technique for three-dimensional imaging. Seeds of soybean were exposed to the static magnetic field (SMF) of strength (200 mT) for 1h prior to sowing. Magnetoprimed and non-primed seeds were grown for 1 month in a soil-sand mixture containing four different levels of sodium arsenate (0, 5, 10, and 50 mg As kg-1 soil). The results showed that arsenic adversely affects the root growth in non-primed plants by reducing their root length, root biomass, root hair, size and number of root nodules, where the damaging effect of As was observed maximum at higher concentrations (10 and 50 mg As kg-1 soil). However, a significant improvement in root morphology was detected in magnetoprimed plants where SMF pretreatment enhanced the root length, root biomass, pore diameter of cortical cells, root hair formation, lateral roots branching, and size of root nodules and girth of primary roots. Qualitative analysis of x-ray micro-CT images showed that arsenic toxicity damaged the epidermal and cortical layers of the root as well as reduced the pore diameter of the cortical cells. However, the diameter of cortical cells pores in magnetoprimed plants was observed higher as compared to plants emerged from non-primed seeds at all level of As toxicity. Thus, the study suggested that magnetopriming has the potential to attenuate the toxic effect of As and could be employed as a pre-sowing treatment to reduce the phytotoxic effects of metal ions in plants by improving root architecture and root tolerance index. This study is the very first exploration of the potential benefits of magnetopriming in mitigating the toxicity of metals (As) in plant roots utilizing the micro-CT technique.

17.
J Exp Orthop ; 11(3): e12082, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39015343

RESUMO

Purpose: The purpose of this study was to examine the location where the femoral artery contacts the vastus medialis at the adductor tendon hiatus, which is important when using the subvastus approach in medial closed wedge distal femoral osteotomy. We evaluated the correlation between differences in height, vastus medialis morphology, and lower limb alignment. Methods: Sixty knees (16 male, 44 female) that underwent plain computer tomography (CT) were included. Using the radiographic hip-knee-ankle (HKA) angle as a reference, the knees were divided into three groups of 20 knees: valgus, varus, and neutral. The mechanical lateral distal femoral angle (mLDFA) and distance from the medial femoral epicondyle to the centre of the femoral head (D1) were measured on full-length weight-bearing anteroposterior radiographs. The first cross-section on CT where the vastus medialis muscle and femoral artery connect was defined as the cross-sectional image for measurement. The direct distance from the medial epicondyle to the measured cross-sectional image (D2) was measured in the coronal view. The ratio of the vastus medialis muscle width to the femoral posterior wall width was defined as the vastus medialis muscle coverage ratio (CR). Correlations between each measurement and group were evaluated. Results: There was a positive correlation between D1 and D2 in the overall, neutral, and varus groups; however, there was no correlation in the valgus group. A positive correlation was observed in terms of the relationship between CR and D2 in the overall and valgus groups. In addition, there was no statistically significant difference in the correlation between the mLDFA and D2, with patient height as a control variable overall and in all groups. Conclusion: In the valgus group, distance to the adductor hiatus was correlated with vastus medialis coverage. Overhang of the vastus medialis may be an important influencing factor of femoral and popliteus artery position. Level of Evidence: Level III, retrospective cohort study.

18.
J Biomed Opt ; 29(Suppl 2): S22712, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39015510

RESUMO

Significance: Label-free quantitative phase imaging can potentially measure cellular dynamics with minimal perturbation, motivating efforts to develop faster and more sensitive instrumentation. We characterize fast, single-shot quantitative phase gradient microscopy (ss-QPGM) that simultaneously acquires multiple polarization components required to reconstruct phase images. We integrate a computationally efficient least squares algorithm to provide real-time, video-rate imaging (up to 75 frames / s ). The developed instrument was used to observe changes in cellular morphology and correlate these to molecular measures commonly obtained by staining. Aim: We aim to characterize a fast approach to ss-QPGM and record morphological changes in single-cell phase images. We also correlate these with biochemical changes indicating cell death using concurrently acquired fluorescence images. Approach: Here, we examine nutrient deprivation and anticancer drug-induced cell death in two different breast cell lines, viz., M2 and MCF7. Our approach involves in-line measurements of ss-QPGM and fluorescence imaging of the cells biochemically labeled for viability. Results: We validate the accuracy of the phase measurement using a USAF1951 pattern phase target. The ss-QPGM system resolves 912.3 lp / mm , and our analysis scheme accurately retrieves the phase with a high correlation coefficient ( ∼ 0.99 ), as measured by calibrated sample thicknesses. Analyzing the contrast in phase, we estimate the spatial resolution achievable to be 0.55 µ m for this microscope. ss-QPGM time-lapse live-cell imaging reveals multiple intracellular and morphological changes during biochemically induced cell death. Inferences from co-registered images of quantitative phase and fluorescence suggest the possibility of necrosis, which agrees with previous findings. Conclusions: Label-free ss-QPGM with high-temporal resolution and high spatial fidelity is demonstrated. Its application for monitoring dynamic changes in live cells offers promising prospects.


Assuntos
Algoritmos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Linhagem Celular Tumoral , Microscopia de Contraste de Fase/métodos , Células MCF-7 , Microscopia de Fluorescência/métodos
19.
Cognition ; 251: 105875, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39018637

RESUMO

Although language depends on storage and composition, just what is stored or (de)composed remains unclear. We leveraged working memory load limitations to test for composition, hypothesizing that decomposed forms should particularly tax working memory. We focused on a well-studied paradigm, English inflectional morphology. We predicted that (compositional) regulars should be harder to maintain in working memory than (non-compositional) irregulars, using a 3-back production task. Frequency, phonology, orthography, and other potentially confounding factors were controlled for. Compared to irregulars, regulars and their accompanying -s/-ing-affixed filler items yielded more errors. Underscoring the decomposition of only regulars, regulars yielded more bare-stem (e.g., walk) and stem affixation errors (walks/walking) than irregulars, whereas irregulars yielded more past-tense-form affixation errors (broughts/tolded). In line with previous evidence that regulars can be stored under certain conditions, the regular-irregular difference held specifically for phonologically consistent (not inconsistent) regulars, in particular for both low and high frequency consistent regulars in males, but only for low frequency consistent regulars in females. Sensitivity analyses suggested the findings were robust. The study further elucidates the computation of inflected forms, and introduces a simple diagnostic for linguistic composition.

20.
Brain Struct Funct ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39020216

RESUMO

Accumulating evidence have documented sex differences in brain anatomy from early childhood to late adulthood. However, whether sex difference of brain structure emerges in the neonatal brain and how sex modulates the development of cortical morphology during the perinatal stage remains unclear. Here, we utilized T2-weighted MRI from the Developing Human Connectome Project (dHCP) database, consisting of 41 male and 40 female neonates born between 35 and 43 postmenstrual weeks (PMW). Neonates of each sex were arranged in a continuous ascending order of age to capture the progressive changes in cortical thickness and curvature throughout the developmental continuum. The maturational covariance network (MCN) was defined as the coupled developmental fluctuations of morphology measures between cortical regions. We constructed MCNs based on the two features, respectively, to illustrate their developmental interdependencies, and then compared the network topology between sexes. Our results showed that cortical structural development exhibited a localized pattern in both males and females, with no significant sex differences in the developmental trajectory of cortical morphology, overall organization, nodal importance, and modular structure of the MCN. Furthermore, by merging male and female neonates into a unified cohort, we identified evident dependencies influences in structural development between different brain modules using the Granger causality analysis (GCA), emanating from high-order regions toward primary cortices. Our findings demonstrate that the maturational pattern of cortical morphology may not differ between sexes during the perinatal period, and provide evidence for the developmental causality among cortical structures in perinatal brains.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...