Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.448
Filtrar
2.
J Med Entomol ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38991848

RESUMO

The Nísia Floresta National Forest, located in Rio Grande do Norte (RN), is an important remnant of the Atlantic Forest biome in Brazil. Bromeliad tanks in this forest offer suitable breeding sites for mosquito species that may act as viral vectors, thus posing an epidemiological concern. However, studies investigating the presence of immature Culicidae in natural breeding sites in RN have thus far been restricted to Caatinga vegetation. This study investigated mosquitoes and their natural breeding sites in bromeliads growing in the Nísia Floresta National Forest. From March 2013 to February 2014, monthly samples were collected from the tanks of five randomly selected bromeliads and larvitraps placed in each of the three forest management areas. Hohenbergia catingae Ule (Hohenbergia bromeliad) is an important shelter for immature mosquitoes. Culex (Microculex) was the predominant species, representing 86% of the immature mosquitoes collected. A rare occurrence of Aedes (Stegomyia) aegypti (Linnaeus, 1762) (generally associated with urban areas under high anthropogenic influence) was observed, highlighting the importance of investigating the presence of mosquitoes in different natural habitats. An analysis of species diversity revealed that species such as Culex imitator Theobald, 1903 and Culex davisi Kumm, 1933, have a strong association with bromeliads. In tire traps (larvitraps) Aedes (Stegomyia) albopictus Skuse, 1894 was predominant. Environmental changes, such as deforestation, removal of bromeliads, and climate change in the area, can influence the migration of species and adaptation to new habitats in a peridomiciliary environment around the forest, consequently the possibility of transmission of virus and other pathogens.

3.
Emerg Infect Dis ; 30(9)2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38985536

RESUMO

Spread of the Anopheles stephensi mosquito, an invasive malaria vector, threatens to put an additional 126 million persons per year in Africa at risk for malaria. To accelerate the early detection and rapid response to this mosquito species, confirming its presence and geographic extent is critical. However, existing molecular species assays require specialized laboratory equipment, interpretation, and sequencing confirmation. We developed and optimized a colorimetric rapid loop-mediated isothermal amplification assay for molecular An. stephensi species identification. The assay requires only a heat source and reagents and can be used with or without DNA extraction, resulting in positive color change in 30-35 minutes. We validated the assay against existing PCR techniques and found 100% specificity and analytical sensitivity down to 0.0003 nanograms of genomic DNA. The assay can successfully amplify single mosquito legs. Initial testing on samples from Marsabit, Kenya, illustrate its potential as an early vector detection and malaria mitigation tool.

4.
Med Vet Entomol ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38989855

RESUMO

Mosquito traps, historically used for surveillance and research, have gained prominence as a tool for mosquito control, amidst concern over the environmental impact and increased resistance to insecticide-based methods. In this study, we tested the effectiveness of a mass trapping barrier design with two types of traps, Mosquito Magnet (MM) traps and BG-Protector (BGP) traps. This experiment was conducted in three coastal camping areas in southern France between summer and autumn 2022, where the presence of floodwater mosquito species with anthropophilic preferences like Aedes caspius represents a year-long nuisance. MM traps were set around the campsite as a barrier to interfere with mosquitoes from entering the campsites, whereas BGP traps were set within the campsites, with the aim of diverting mosquitoes away from humans at peak activity hours. Over 210,000 mosquitoes of 11 species from 4 genera were collected by both trap types across treatment campsites, with no significant differences in mosquito community samplings between BGP and MM traps. Barrier traps effectively targeted Ae. caspius, reducing total mosquito abundance in two of the three study sites by 34% and 55%. This study provides valuable insights into the efficacy and feasibility of using mass trapping barriers as a complementary control strategy for mosquito species in wetlands.

5.
Virology ; 598: 110182, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39033587

RESUMO

Using Illumina NextSeq sequencing and bioinformatics, we identified and characterized thirty-three viral sequences of unsegmented and multipartite viral families in Aedes spp., Culex sp. and Anopheles darlingi female mosquito pools from Porto São Luiz and Pirizal, Alto Pantanal. Seventeen sequences belong to unsegmented viral families, twelve represent putative novel insect-specific viruses (ISVs) within families Chuviridae (3/33; partial genomes) and coding-complete sequences of Xinmoviridae (1/33), Rhabdoviridae (2/33) and Metaviridae (6/33); and five coding-complete sequences of already-known ISVs. Notably, two putative novel rhabdoviruses, Corixo rhabdovirus 1 and 2, were phylogenetically related to Coxipo dielmovirus, but separated from other Alpharhabdovirinae genera, sharing Anopheles spp. as host. Regarding multipartite families, sixteen segments of different putative novel viruses were identified (13 coding-complete segments) within Durnavirales (4/33), Elliovirales (1/33), Hareavirales (3/33) and Reovirales (8/33) orders. Overall, this study describes twenty-eight (28/33) putative novel ISVs and five (5/33) already described viruses using metagenomics approach.

6.
Acta Trop ; 257: 107322, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39004112

RESUMO

Arboviruses have always been a significant public health concern. Metagenomic surveillance has expanded the number of novel, often unclassified arboviruses, especially mosquito-borne and mosquito-specific viruses. This report presents the first description of a novel single-stranded RNA virus, Wanghe virus, identified from mosquitoes that were collected in Shandong Province in 2022. In this study, a total of 4,795 mosquitoes were collected and then divided into 105 pools according to location and species. QRT-PCR and nested PCR were performed to confirm the presence of Wanghe virus, and its genomic features and phylogenetic relationships were further analyzed. Our results revealed that Wanghe virus was detected in 9 out of the 105 mosquito pools, resulting in a minimum infection rate (MIR) of 0.19 % (9/4,795). One complete genome sequence and three viral partial sequences were obtained from the Wanghe virus-positive pools. Pairwise distance analysis indicated that these amplified sequences shared high nucleotide identity. Phylogenetic analysis demonstrated that Wanghe virus is most closely related to Guiyang Solinvi-like virus 3, which belongs to Solinviviridae. Further analyses indicated that Wanghe virus is a new, unclassified member of Solinviviridae.

7.
BMC Genomics ; 25(1): 700, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39020310

RESUMO

Due to limitations in conventional disease vector control strategies including the rise of insecticide resistance in natural populations of mosquitoes, genetic control strategies using CRISPR gene drive systems have been under serious consideration. The identification of CRISPR target sites in mosquito populations is a key aspect for developing efficient genetic vector control strategies. While genome-wide Cas9 target sites have been explored in mosquitoes, a precise evaluation of target sites focused on coding sequence (CDS) is lacking. Additionally, target site polymorphisms have not been characterized for other nucleases such as Cas12a, which require a different DNA recognition site (PAM) and would expand the accessibility of mosquito genomes for genetic engineering. We undertook a comprehensive analysis of potential target sites for both Cas9 and Cas12a nucleases within the genomes of natural populations of Anopheles gambiae and Aedes aegypti from multiple continents. We demonstrate that using two nucleases increases the number of targets per gene. Also, we identified differences in nucleotide diversity between North American and African Aedes populations, impacting the abundance of good target sites with a minimal degree of polymorphisms that can affect the binding of gRNA. Lastly, we screened for gRNAs targeting sex-determination genes that could be widely applicable for developing field genetic control strategies. Overall, this work highlights the utility of employing both Cas9 and Cas12a nucleases and underscores the importance of designing universal genetic strategies adaptable to diverse mosquito populations.


Assuntos
Aedes , Anopheles , Sistemas CRISPR-Cas , Animais , Anopheles/genética , Aedes/genética , Variação Genética , RNA Guia de Sistemas CRISPR-Cas/genética , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Proteínas Associadas a CRISPR/genética , Proteínas Associadas a CRISPR/metabolismo , Genoma de Inseto , Mosquitos Vetores/genética , Edição de Genes , Proteínas de Bactérias
8.
Parasitol Res ; 123(6): 251, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38916607

RESUMO

Anopheles claviger (Meigen, 1804) (Diptera, Culicidae) is widespread in the western Palaearctic Region, but it was recorded in Karelia (Russia) for the first time. This record is one of the northernmost ones in the Palaearctic Region and Russia, updates the northern border of the An. claviger range. Mosquitoes were collected from July to September 2023 in the southern Karelia (the village of Gomselga, Kondopoga District, and Petrozavodsk) using Krishtal trap (from human) and Mosquito Magnet® trap (Pioneer design, Octenol as attractant). Seven females of An. claviger were collected in Gomselga; one specimen was sampled from Petrozavodsk City parks. Morphological identification of eight females was verified by COI and ITS2 sequences. Phylogenetic analysis of ITS2 and COI sequences confirmed the collected specimens to An. claviger s. s., clustering in both cases in a strongly supported clade clearly differentiated from the closely related species An. petragnani. The high diversity of An. claviger haplotypes from Karelia is in agreement with data from other geographical regions and shows that the records of this species in Gomselga and Petrozavodsk are not accidental.


Assuntos
Anopheles , Filogenia , Animais , Anopheles/classificação , Anopheles/anatomia & histologia , Anopheles/genética , Anopheles/fisiologia , Federação Russa , Feminino , DNA Espaçador Ribossômico/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Análise de Sequência de DNA
9.
Emerg Infect Dis ; 30(7): 1467-1471, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38916721

RESUMO

We detected malaria vector Anopheles stephensi mosquitoes in the Al Hudaydah governorate in Yemen by using DNA sequencing. We report 2 cytochrome c oxidase subunit I haplotypes, 1 previously found in Ethiopia, Somalia, Djibouti, and Yemen. These findings provide insight into invasive An. stephensi mosquitoes in Yemen and their connection to East Africa.


Assuntos
Anopheles , Mosquitos Vetores , Animais , Anopheles/genética , Anopheles/parasitologia , Anopheles/classificação , Iêmen , Mosquitos Vetores/genética , Humanos , Complexo IV da Cadeia de Transporte de Elétrons/genética , Haplótipos , Malária/transmissão , Malária/epidemiologia , Filogenia
10.
Insects ; 15(6)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38921163

RESUMO

Arthropod vectors are responsible for a multitude of human and animal diseases affecting poor communities in sub-Saharan Africa. Their control still relies on chemical agents, despite growing evidence of insecticide resistance and environmental health concerns. Biorational agents, such as the entomopathogenic fungus Metarhizium anisopliae, might be an alternative for vector control. Recently, the M. anisopliae isolate ICIPE 7 has been developed into a commercial product in Kenya for control of ticks on cattle. We were interested in assessing the potential of controlling not only ticks but also disease-transmitting mosquitoes and tsetse flies using cattle as blood hosts, with the aim of developing a product for integrated vector management. Laboratory bioassays were carried out with M. anisopliae, isolate ICIPE 7 and isolate ICIPE 30, to compare efficacy against laboratory-reared Anopheles arabiensis. ICIPE 7 was further tested against wild Glossina fuscipes and Rhipicephalus spp. Dose-response tests were implemented, period of mosquito exposure was evaluated for effects on time to death, and the number of spores attached to exposed vectors was assessed. Exposure to 109 spores/mL of ICIPE 7 for 10 min resulted in a similar mortality of An. arabiensis as exposure to ICIPE 30, albeit at a slower rate (12 vs. 8 days). The same ICIPE 7 concentration also resulted in mortalities of tsetse flies (LT50: 16 days), tick nymphs (LT50: 11 days), and adult ticks (LT50: 20 days). Mosquito mortality was dose-dependent, with decreasing LT50 of 8 days at a concentration of 106 spores/mL to 6 days at 1010 spores/mL. Exposure period did not modulate the outcome, 1 min of exposure still resulted in mortality, and spore attachment to vectors was dose-dependent. The laboratory bioassays confirmed that ICIPE 7 has the potential to infect and cause mortality to the three exposed arthropods, though at slower rate, thus requiring further validation under field conditions.

11.
Math Biosci Eng ; 21(4): 5227-5249, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38872534

RESUMO

Mosquito-borne diseases are threatening half of the world's population. To prevent the spread of malaria, dengue fever, or other mosquito-borne diseases, a new disease control strategy is to reduce or eradicate the wild mosquito population by releasing sterile mosquitoes. To study the effects of sterile insect technique on mosquito populations, we developed a mathematical model of constant release of sterile Aedes aegypti mosquitoes with strong and weak Allee effect and considered interspecific competition with Anopheles mosquitoes. We calculated multiple release thresholds and investigated the dynamical behavior of this model. In order to get closer to reality, an impulsive differential equation model was also introduced to study mosquito suppression dynamics under the strategy of releasing $ c $ sterile male mosquitoes at each interval time $ T $. Finally, the relationship between the releasing amount or the waiting period and the number of days required to suppress mosquitoes was illustrated by numerical simulations.


Assuntos
Aedes , Anopheles , Simulação por Computador , Controle de Mosquitos , Mosquitos Vetores , Dinâmica Populacional , Animais , Controle de Mosquitos/métodos , Masculino , Anopheles/fisiologia , Feminino , Modelos Biológicos , Dengue/prevenção & controle , Dengue/transmissão , Dengue/epidemiologia , Malária/prevenção & controle , Malária/transmissão , Humanos , Culicidae , Comportamento Competitivo
12.
Bio Protoc ; 14(11): e4996, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38873019

RESUMO

Many studies on mosquito biology rely on laboratory-reared colonies, emphasizing the need for standardized protocols to investigate critical aspects such as disease biology, mosquito behavior, and vector control methods. While much knowledge is derived from anthropophilic species from genera like Anopheles, Aedes, and Culex, there is a growing interest in studying mosquitoes that feed on non-human hosts. This interest stems from the desire to gain a deeper understanding of the evolution of diverse host range use and host specificity. However, there is currently a limited number of comprehensive protocols for studying such species. Considering this gap, we present a protocol for rearing Uranotaenia lowii, a mosquito species specialized in feeding on anuran amphibians by eavesdropping on host-emitted sound cues. Additionally, we provide instructions for successfully shipping live specimens to promote research on this species and similar ones. This protocol helps fill the current gap in comprehensive guidelines for rearing and maintaining colonies of anuran host-biting mosquitoes. It serves as a valuable resource for researchers seeking to establish colonies of mosquito species from the Uranotaeniini tribe. Ultimately, this protocol may facilitate research on the evolutionary ecology of Culicidae, as this family has recently been proposed to have originated from a frog-feeding ancestor. Key features • Rearing and maintenance of colonies of non-human host-biting mosquitoes that feed on frogs using host-emitted acoustic cues. • Provides shipping guidelines aimed to enhance the establishment of colonies by new research groups and specimen exchanges between labs.

13.
Trends Microbiol ; 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38853121

RESUMO

The transmission of flaviviruses, such as dengue virus (DENV) and Zika virus (ZIKV), poses a significant threat to global public health. Zhang et al. recently showed that Rosenbergiella sp. YN46 (Rosenbergiella_YN46), a bacterium from the mosquito gut, inhibits flavivirus transmission and thus offers a potential biocontrol strategy with broad public health implications.

14.
Med Trop Sante Int ; 4(1)2024 03 31.
Artigo em Francês | MEDLINE | ID: mdl-38846112

RESUMO

Background and justification: The Republic of Djibouti is located in the Horn of Africa, on the Gulf of Aden and the Bab-el-Mandeb detroit, at the southern entrance to the Red Sea. Prior to its independence in 1977, the Republic of Djibouti was known by two names: "Côte française des Somalis" until 1967, then "Territoire Français de Afars et Issas". As part of our doctoral research on the ecology of mosquitoes in Djibouti, we noted a lack of information on the species encountered, and felt it essential to draw up a list of species before embarking on ecological monitoring. The aim of this work is to survey publications on mosquitoes in Djibouti and to synthesize data from this scientific literature in order to update the national inventory of Culicidae. Materials and methods: An exhaustive search of electronic bibliographic databases (PubMed, Scopus, HAL Open Archive, Science Direct and Google Scholar) was carried out. Reference lists were filtered to access additional articles in order to obtain more data. Two keywords were used: "Djibouti" and "French Territory of Afars and Issas". A selection of scientific publications on Djibouti mosquitoes and/or diseases transmitted by mosquito vectors was made. Researches were conducted in articles selected. The names of the species listed were checked and validated by referring to the site Mosquito Taxonomic Inventory. Results: A total of 13 studies, published between 1970 and 2023, were found. Over the years, the composition of the Culicidae fauna has become well known. In part, the movement of people traveling to and from neighboring countries has been linked to the detection of new species and the reappearance of mosquito species in Djibouti. Numerous studies have been carried out over the years, including purely taxonomic studies and others focusing on the incrimination of mosquito vectors and the characterization of the pathogens they transmit. A total of 37 species, belonging to two subfamilies (Anophelinae and Culicinae), of mosquitoes divided between 7 genera (Aedes, Anopheles, Culex, Culiseta, Lutzia, Mimomyia and Uranotaenia) have been mentioned across the country. The number of species per genus is distributed as follows: 5 species of Aedes including 1 subspecies, 14 species of Anopheles including two subspecies, 12 species of Culex including 1 subspecies, 1 species for each of the genera Culiseta and Lutzia and finally 2 species respectively for the genera Mimomiya and Uranotaenia. Five species have been incriminated as vectors of diseases such as malaria, dengue fever, yellow fever, West Nile virus and chikungunya. Others are known for their potential role in pathogen transmission, including Zika and Rift Valley virus. Discussion - Conclusion: The bibliographical research enabled us to summarize the research carried out over more than half a century in the history of Djibouti, and to update the inventory of the country's mosquitoes, which now includes 37 species. Species names were reviewed and updated, and the case of Anopheles gambiae was also addressed. Two species mentioned as part of the Culicidae fauna of Djibouti appeared to be doubtful and are up for discussion. These results provide a useful information base for defining vector control priorities in Djibouti. They will also inform, guide and facilitate future consultations of our database. In addition, this study will help to identify research ways on mosquitoes in Djibouti.


Assuntos
Culicidae , Animais , Culicidae/classificação , Culicidae/fisiologia , Djibuti , Mosquitos Vetores/classificação
15.
J Theor Biol ; 591: 111865, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-38823767

RESUMO

Dengue is a vector-borne disease transmitted by Aedes mosquitoes. The worldwide spread of these mosquitoes and the increasing disease burden have emphasized the need for a spatio-temporal risk map capable of assessing dengue outbreak conditions and quantifying the outbreak risk. Given that the life cycle of Aedes mosquitoes is strongly influenced by habitat temperature, numerous studies have utilized temperature-dependent development rates of these mosquitoes to construct virus transmission and outbreak risk models. In this study, we contribute to existing research by developing a mechanistic model for the mosquito life cycle that accurately captures its non-Markovian nature. Beginning with integral equations to track the mosquito population across different life cycle stages, we demonstrate how to derive the corresponding differential equations using phase-type distributions. This approach can be further applied to similar non-Markovian processes that are currently described with less accurate Markovian models. By fitting the model to data on human dengue cases, we estimate several model parameters, allowing the development of a global spatiotemporal dengue risk map. This risk model employs temperature and precipitation data to assess the environmental suitability for dengue outbreaks in a given area.


Assuntos
Aedes , Dengue , Dengue/transmissão , Dengue/epidemiologia , Animais , Aedes/virologia , Humanos , Surtos de Doenças , Mosquitos Vetores/virologia , Mosquitos Vetores/crescimento & desenvolvimento , Modelos Biológicos , Temperatura , Cadeias de Markov , Medição de Risco , Vírus da Dengue/fisiologia
16.
Neotrop Entomol ; 53(4): 987-996, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38918340

RESUMO

Mosquitoes (Diptera: Culicidae) pose a significant threat to public health worldwide, especially in tropical and subtropical regions, where they act as primary vectors in transmission of infectious agents. In Peru, 182 culicid species have been identified and several species of the genus Culex are known to transmit arboviruses. However, knowledge of mosquito diversity and distribution remains limited, with many studies focusing on specific regions only. Here, we describe a new morphological variation of Cx. (Culex) coronator Dyar and Knab, 1906, and report the presence of Culex (Carrollia) bonnei Dyar, 1921 in the central region of Peru, Huanuco. Specimens were obtained through larvae collections and identified through morphologic characterization, including dissection of male genitalia, and molecular analyses. In total, 17 mosquitoes were analyzed, and the genitalia of the male specimens allowed the identification of Cx. coronator and Cx. bonnei. Partial sequences of the CoxI gene corresponding to these two species were obtained (N = 10). Phylogenetic analysis revealed that the sequences of Cx. coronator grouped in a monophyletic clade with sequences ascribed to other species corresponding to the subgenus Carrollia, while Cx. bonnei specimens formed a monophyletic clade with homologous sequences from GenBank. This study underscores the importance of continued efforts to study the diversity and distribution of mosquitoes in Peru, including their potential role as vectors of human pathogens, to underpin effective disease control and prevention strategies, highlighting the importance of a complemented morphological and molecular analysis.


Assuntos
Culex , Animais , Peru , Culex/anatomia & histologia , Culex/classificação , Masculino , Larva/anatomia & histologia , Larva/classificação , Genitália Masculina/anatomia & histologia , Filogenia , Feminino , Mosquitos Vetores/anatomia & histologia
17.
J Formos Med Assoc ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38879404

RESUMO

The co-infection of dengue and COVID-19 has been regarded as a public health issue for dengue-endemic countries during the COVID-19 pandemic. Travel restrictions might decrease the chance of mosquitoes biting and, thus, reduce the risk of dengue transmission. However, the spread of dengue was reported to increase with the policies of lockdowns and social distancing in specific areas due to delayed interventions in dengue transmission. Of cases experiencing dengue and COVID-19 co-infection, most recovered after receiving supportive care and/or steroid therapy. However, some episodes of severe or fatal diseases in specific individuals, such as pregnant women, have been reported, and the clinical course of this co-infection is unrecognized or unpredictable. Accordingly, it is crucial to promptly identify predictors of developing severe viral diseases among co-infection patients.

18.
bioRxiv ; 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38895389

RESUMO

Aedes transmitted arboviral human cases are increasing worldwide and spreading to new areas of the United States of America (USA). These diseases continue to re-emerge likely due to changes in vector ecology, urbanization, human migration, and larger range of climatic suitability. Recent shifts in landscape and weather variables are predicted to impact the habitat patterns of urban mosquitoes such as Aedes aegypti and Aedes albopictus. Miami (FL) is in the tropical zone and an established hotspot for arboviruses, while Charleston (SC) is in the humid subtropical zone and newly vulnerable. Although these coastal cities have distinct climates, both have hot summers. To understand mosquito infestation in both cities and potentiate our surveillance effort, we performed egg collections in the warmest season. We applied remote sensing with land-use cover and weather variation to identify mosquito infestation patterns. Our study found predominant occurrence of Ae. aegypti and, to a lesser extent, Ae. albopictus in both cities. We detected statistically significant positive and negative associations between entomological indicators and most weather variables in combined data from both cities. For all entomological indices, weekly wind speed and relative humidity were significantly positively associated, while precipitation and maximum temperature were significantly negatively associated. Aedes egg abundance was significantly positively associated with open land in Charleston but was negatively associated with vegetation cover in combined data. There is a clear need for further observational studies to determine the impact of climate change on Ae. aegypti and Ae. albopictus infestation in the Southeastern region of the USA.

19.
ISME Commun ; 4(1): ycae078, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38915450

RESUMO

Wolbachia is a maternally inherited intracellular bacterium that infects a wide range of arthropods including mosquitoes. The endosymbiont is widely used in biocontrol strategies due to its capacity to modulate arthropod reproduction and limit pathogen transmission. Wolbachia infections in Culex spp. are generally assumed to be monoclonal but the potential presence of genetically distinct Wolbachia subpopulations within and between individual organs has not been investigated using whole genome sequencing. Here we reconstructed Wolbachia genomes from ovary and midgut metagenomes of single naturally infected Culex pipiens mosquitoes from Southern France to investigate patterns of intra- and inter-individual differences across mosquito organs. Our analyses revealed a remarkable degree of intra-individual conservancy among Wolbachia genomes from distinct organs of the same mosquito both at the level of gene presence-absence signal and single-nucleotide polymorphisms (SNPs). Yet, we identified several synonymous and non-synonymous substitutions between individuals, demonstrating the presence of some level of genomic heterogeneity among Wolbachia that infect the same C. pipiens field population. Overall, the absence of genetic heterogeneity within Wolbachia populations in a single individual confirms the presence of a dominant Wolbachia that is maintained under strong purifying forces of evolution.

20.
Parasit Vectors ; 17(1): 235, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38778423

RESUMO

BACKGROUND: "Regeneration time" (RT) denotes the time required to obtain a stable mortality rate for mosquitoes exposed to insecticide-treated nets (ITNs) after three consecutive washes of a net in a day. The RT informs the wash interval used to artificially age ITNs to simulate their lifetime performance under user conditions (20 washes). RT was estimated following World Health Organization (WHO) longitudinal method (LM) procedures. Longitudinal evaluation may introduce heterogeneity due to mosquito batch variability, complicating RT determination. To overcome this, nets at each stage of regeneration (i.e., 1, 2, 3, 5 and 7 days post wash) were prepared in advance and refrigerated; then, a complete regeneration series was tested with a single mosquito batch on 1 testing day, completing four series over 4 days. This study compared the complete series method (CSM) against the LM. METHODS: The overall heterogeneity in the methods for estimating RT of one incorporated alpha-cypermethrin and piperonyl butoxide (PBO) and one incorporated permethrin with PBO ITNs was determined using laboratory-reared resistant Anopheles arabiensis under standard laboratory conditions. LM methods and CSM were compared in two experiments with refrigerated nets acclimated for (i) 2 h (test 1) and (ii) 3 h (test 2). Four regeneration replicates per day were tested per ITN product with 50 mosquitoes exposed per replicate (equivalent sample size to LM). The heterogeneity from these methods was compared descriptively. RESULTS: The intra-method variability for unwashed pieces was minimal, with variance of 1.26 for CSM and 1.18 for LM. For unwashed nets, LM had substantially greater variance and ratio of LM:CSM was 2.66 in test 1 and 2.49 in test 2. The magnitude of mortality measured in bioassays depended on sample acclimation after refrigeration. CONCLUSIONS: The CSM is a convenient method for determining the regeneration times. ITNs are prepared in advance, reducing pressure to prepare all samples to start on a single day. A complete regeneration series of samples is removed from the refrigerator, defrosted and evaluated on a single day with one mosquito batch reducing the influence of mosquito batch heterogeneity on results. Replicates can be conducted over several days but do not have to be conducted on consecutive days, allowing easy facility scheduling.


Assuntos
Anopheles , Mosquiteiros Tratados com Inseticida , Inseticidas , Controle de Mosquitos , Animais , Anopheles/fisiologia , Anopheles/efeitos dos fármacos , Inseticidas/farmacologia , Controle de Mosquitos/métodos , Fatores de Tempo , Piretrinas/farmacologia , Permetrina/farmacologia , Malária/prevenção & controle , Malária/transmissão , Butóxido de Piperonila/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...