Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
Bioinformation ; 20(5): 557-561, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39132248

RESUMO

SHEDs have been shown to have a higher rate of proliferation and raise in cell population doublings when compared to stem cells from permanent teeth. Hence, using them in tissue engineering may be advantageous over stem cells from adult human teeth. Stem cells were removed from pulpal tissues of thirty primary teeth undergoing extraction under six to fourteen year of age. The tissues were incubated after centrifuging and adding DMEM-KO following the addition of a 2 mg/ml collagenase blend for examination of plates in search of cell attachment and growth. Flow cytometric analysis showed successful isolation of SHEDs using fluoresce inisothiocyanate (FITC)-conjugated CD-34, CD-105, and PE (R-phycoerythrin)-conjugated CD-45, CD-90, CD-73, and HLA-DR antibodies. The surface antigens CD-73, CD-90 and CD-105 which are known to be present in mesenchymal lineages were positively expressed in SHEDs according to flow cytometry analysis, whereas CD-34, CD-45, and HLA-DR were not.

2.
Eur J Cell Biol ; 103(2): 151417, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729084

RESUMO

Nowadays, it is an established concept that the capability to reach a specialised cell identity via differentiation, as in the case of multi- and pluripotent stem cells, is not only determined by biochemical factors, but that also physical aspects of the microenvironment play a key role; interpreted by the cell through a force-based signalling pathway called mechanotransduction. However, the intricate ties between the elements involved in mechanotransduction, such as the extracellular matrix, the glycocalyx, the cell membrane, Integrin adhesion complexes, Cadherin-mediated cell/cell adhesion, the cytoskeleton, and the nucleus, are still far from being understood in detail. Here we report what is currently known about these elements in general and their specific interplay in the context of multi- and pluripotent stem cells. We furthermore merge this overview to a more comprehensive picture, that aims to cover the whole mechanotransductive pathway from the cell/microenvironment interface to the regulation of the chromatin structure in the nucleus. Ultimately, with this review we outline the current picture of the interplay between mechanotransductive cues and epigenetic regulation and how these processes might contribute to stem cell dynamics and fate.


Assuntos
Mecanotransdução Celular , Humanos , Animais , Células-Tronco/metabolismo , Células-Tronco/citologia , Diferenciação Celular
3.
Artigo em Inglês | MEDLINE | ID: mdl-38468535

RESUMO

Coronavirus disease-2019 (COVID-19) is a respiratory disease in which Spike protein from SARS-CoV-2 plays a key role in transferring virus genomic code into target cells. Spike protein, which is found on the surface of the SARS-CoV-2 virus, latches onto angiotensin-converting enzyme 2 receptors (ACE2r) on target cells. The RNA genome of coronaviruses, with an average length of 29 kb, is the longest among all RNA viruses and comprises six to ten open reading frames (ORFs) responsible for encoding replicase and structural proteins for the virus. Each component of the viral genome is inserted into a helical nucleocapsid surrounded by a lipid bilayer. The Spike protein is responsible for damage to several organs and tissues, even leading to severe impairments and long-term disabilities. Spike protein could also be the cause of the long-term post-infectious conditions known as Long COVID-19, characterized by a group of unresponsive idiopathic severe neuro- and cardiovascular disorders, including strokes, cardiopathies, neuralgias, fibromyalgia, and Guillaume-Barret's like-disease. In this paper, we suggest a pervasive mechanism whereby the Spike proteins either from SARS-CoV-2 mRNA or mRNA vaccines, tend to enter the mature cells, and progenitor, multipotent, and pluripotent stem cells (SCs), altering the genome integrity. This will eventually lead to the production of newly affected clones and mature cells. The hypothesis presented in this paper proposes that the mRNA integration into DNA occurs through several components of the evolutionarily genetic mechanism such as retrotransposons and retrotransposition, LINE-1 or L1 (long interspersed element-1), and ORF-1 and 2 responsible for the generation of retrogenes. Once the integration phase is concluded, somatic cells, progenitor cells, and SCs employ different silencing mechanisms. DNA methylation, followed by histone modification, begins to generate unlimited lines of affected cells and clones that form affected tissues characterized by abnormal patterns that become targets of systemic immune cells, generating uncontrolled inflammatory conditions, as observed in both Long COVID-19 syndrome and the mRNA vaccine.

4.
Curr Issues Mol Biol ; 46(3): 2181-2208, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38534757

RESUMO

Despite improvements in contemporary medical and surgical therapies, cardiovascular disease (CVD) remains a significant cause of worldwide morbidity and mortality; more specifically, ischemic heart disease (IHD) may affect individuals as young as 20 years old. Typically managed with guideline-directed medical therapy, interventional or surgical methods, the incurred cardiomyocyte loss is not always completely reversible; however, recent research into various stem cell (SC) populations has highlighted their potential for the treatment and perhaps regeneration of injured cardiac tissue, either directly through cellular replacement or indirectly through local paracrine effects. Different stem cell (SC) types have been employed in studies of infarcted myocardium, both in animal models of myocardial infarction (MI) as well as in clinical studies of MI patients, including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), Muse cells, multipotent stem cells such as bone marrow-derived cells, mesenchymal stem cells (MSCs) and cardiac stem and progenitor cells (CSC/CPCs). These have been delivered as is, in the form of cell therapies, or have been used to generate tissue-engineered (TE) constructs with variable results. In this text, we sought to perform a narrative review of experimental and clinical studies employing various stem cells (SC) for the treatment of infarcted myocardium within the last two decades, with an emphasis on therapies administered through thoracic incision or through percutaneous coronary interventions (PCI), to elucidate possible mechanisms of action and therapeutic effects of such cell therapies when employed in a surgical or interventional manner.

5.
Front Neurosci ; 18: 1210447, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38356648

RESUMO

Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by continuous and selective degeneration or death of dopamine neurons in the midbrain, leading to dysfunction of the nigrostriatal neural circuits. Current clinical treatments for PD include drug treatment and surgery, which provide short-term relief of symptoms but are associated with many side effects and cannot reverse the progression of PD. Pluripotent/multipotent stem cells possess a self-renewal capacity and the potential to differentiate into dopaminergic neurons. Transplantation of pluripotent/multipotent stem cells or dopaminergic neurons derived from these cells is a promising strategy for the complete repair of damaged neural circuits in PD. This article reviews and summarizes the current preclinical/clinical treatments for PD, their efficacies, and the advantages/disadvantages of various stem cells, including pluripotent and multipotent stem cells, to provide a detailed overview of how these cells can be applied in the treatment of PD, as well as the challenges and bottlenecks that need to be overcome in future translational studies.

6.
Chinese Journal of Trauma ; (12): 48-56, 2024.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1027006

RESUMO

In recent years, advancements in microfabrication technology and tissue engineering have propelled the development of a novel platform known as organoid-on-a-chip for drug screening and disease modeling. This platform integrates organoids and organ-on-a-chip technologies, emerging as a promising approach for in vitro modeling of human organs. Organ-on-a-chip leverages microfluidic device to simulate the physiological environment of specific organs, offering a more dynamic and flexible setting that can mimic a more comprehensive human biological context. However, the lack of functional vasculature has remained a major challenge in this technology. Vascularization is crucial for the long-term cultivation and in vitro modeling of organoids, which is of great significance in drug development and personalized medical approaches. The authors reviewed the research progress in the construction of vascularized organoid-on-a-chip including the methods for constructing in vitro vascularized models, vascularization of organoids, etc, which may serve as a reference for the construction of fully functional vascularized organoid-on-a-chip.

7.
Stem Cell Res Ther ; 14(1): 333, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-38115136

RESUMO

BACKGROUND: Recent studies demonstrated that elevated osmolarity could induce adipocyte dedifferentiation, representing an appealing procedure to generate multipotent stem cells. Here we aim to elucidate the molecular mechanisms that underlie osmotic induction of adipocyte reprogramming. METHODS: To induce dedifferentiation, the 3T3-L1 or SVF adipocytes were cultured under the hypertonic pressure in 2% PEG 300 medium. Adipocyte dedifferentiation was monitored by aspect ratio measurement, Oil Red staining and qPCR to examine the morphology, lipid droplets, and specific genes of adipocytes, respectively. The osteogenic and chondrogenic re-differentiation capacities of dedifferentiated adipocytes were also examined. To investigate the mechanisms of the osmotic stress-induced dedifferentiation, extracellular vesicles (EVs) were collected from the reprograming cells, followed by proteomic and functional analyses. In addition, qPCR, ELISA, and TNF-α neutralizing antibody (20 ng/ml) was applied to examine the activation and effects of the TNF-α signaling. Furthermore, we also analyzed the Wnt signaling by assessing the activation of ß-catenin and applying BML-284, an agonist of ß-catenin. RESULTS: Hypertonic treatment induced dedifferentiation of both 3T3-L1 and the primary stromal vascular fraction (SVF) adipocytes, characterized by morphological and functional changes. Proteomic profiling revealed that hypertonicity induced extracellular vesicles (EVs) containing mitochondrial molecules including NDUFA9 and VDAC. Functionally, the mitochondrial EVs (MEVs) stimulated TNF-α signaling that activates Wnt-ß-catenin signaling and adipocyte dedifferentiation. Neutralizing TNF-α inhibited hypertonic dedifferentiation of adipocytes. In addition, direct activation of Wnt-ß-catenin signaling using BML-284 could efficiently induce adipocyte dedifferentiation while circumventing the apoptotic effect of the hypertonic treatment. CONCLUSIONS: Hypertonicity prompts the adipocytes to release MEVs, which in turn enhances the secretion of TNF-α as a pro-inflammatory cytokine during the stress response. Importantly, TNF-α is essential for the activation of the Wnt/ß-catenin signaling that drives adipocyte dedifferentiation. A caveat of the hypertonic treatment is apoptosis, which could be circumvented by direct activation of the Wnt/ß-catenin signaling using BML-284.


Assuntos
Vesículas Extracelulares , Fator de Necrose Tumoral alfa , Camundongos , Animais , Fator de Necrose Tumoral alfa/farmacologia , beta Catenina/metabolismo , Proteômica , Adipócitos , Diferenciação Celular , Via de Sinalização Wnt , Vesículas Extracelulares/metabolismo , Células 3T3-L1 , Adipogenia
8.
Int J Mol Sci ; 24(12)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37373009

RESUMO

Large animal experiments are important for preclinical studies of regenerative stem cell transplantation therapy. Therefore, we investigated the differentiation capacity of pig skeletal muscle-derived stem cells (Sk-MSCs) as an intermediate model between mice and humans for nerve muscle regenerative therapy. Enzymatically extracted cells were obtained from green-fluorescence transgenic micro-mini pigs (GFP-Tg MMP) and sorted as CD34+/45- (Sk-34) and CD34-/45-/29+ (Sk-DN) fractions. The ability to differentiate into skeletal muscle, peripheral nerve, and vascular cell lineages was examined via in vitro cell culture and in vivo cell transplantation into the damaged tibialis anterior muscle and sciatic nerves of nude mice and rats. Protein and mRNA levels were analyzed using RT-PCR, immunohistochemistry, and immunoelectron microscopy. The myogenic potential, which was tested by Pax7 and MyoD expression and the formation of muscle fibers, was higher in Sk-DN cells than in Sk-34 cells but remained weak in the latter. In contrast, the capacity to differentiate into peripheral nerve and vascular cell lineages was significantly stronger in Sk-34 cells. In particular, Sk-DN cells did not engraft to the damaged nerve, whereas Sk-34 cells showed active engraftment and differentiation into perineurial/endoneurial cells, endothelial cells, and vascular smooth muscle cells, similar to the human case, as previously reported. Therefore, we concluded that Sk-34 and Sk-DN cells in pigs are closer to those in humans than to those in mice.


Assuntos
Células Endoteliais , Fibras Musculares Esqueléticas , Camundongos , Humanos , Ratos , Animais , Suínos , Camundongos Nus , Porco Miniatura , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Diferenciação Celular/genética , Células-Tronco/metabolismo , Células Cultivadas , Nervo Isquiático
9.
Stem Cells Transl Med ; 12(6): 400-414, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37221140

RESUMO

We recently demonstrated that injury/ischemia-induced multipotent stem cells (iSCs) develop within post-stroke human brains. Because iSCs are stem cells induced under pathological conditions, such as ischemic stroke, the use of human brain-derived iSCs (h-iSCs) may represent a novel therapy for stroke patients. We performed a preclinical study by transplanting h-iSCs transcranially into post-stroke mouse brains 6 weeks after middle cerebral artery occlusion (MCAO). Compared with PBS-treated controls, h-iSC transplantation significantly improved neurological function. To identify the underlying mechanism, green fluorescent protein (GFP)-labeled h-iSCs were transplanted into post-stroke mouse brains. Immunohistochemistry revealed that GFP+ h-iSCs survived around the ischemic areas and some differentiated into mature neuronal cells. To determine the effect on endogenous neural stem/progenitor cells (NSPCs) by h-iSC transplantation, mCherry-labeled h-iSCs were administered to Nestin-GFP transgenic mice which were subjected to MCAO. As a result, many GFP+ NSPCs were observed around the injured sites compared with controls, indicating that mCherry+ h-iSCs activate GFP+ endogenous NSPCs. In support of these findings, coculture studies revealed that the presence of h-iSCs promotes the proliferation of endogenous NSPCs and increases neurogenesis. In addition, coculture experiments indicated neuronal network formation between h-iSC- and NSPC-derived neurons. These results suggest that h-iSCs exert positive effects on neural regeneration through not only neural replacement by grafted cells but also neurogenesis by activated endogenous NSPCs. Thus, h-iSCs have the potential to be a novel source of cell therapy for stroke patients.


Assuntos
Isquemia Encefálica , Células-Tronco Neurais , Acidente Vascular Cerebral , Humanos , Camundongos , Animais , Isquemia Encefálica/terapia , Isquemia Encefálica/metabolismo , Acidente Vascular Cerebral/terapia , Acidente Vascular Cerebral/patologia , Células-Tronco Multipotentes , Encéfalo/patologia , Neurogênese/fisiologia , Camundongos Transgênicos
10.
Stem Cell Rev Rep ; 19(5): 1307-1327, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37012485

RESUMO

Human milk is a complex fluid that contains carbohydrates, lipids, proteins, and other bioactive molecules (immunoglobulins, lactoferrin, human milk oligosaccharides, lysozyme, leukocytes, cytokines, hormones, and microbiome) which provide nutritional, immunological, and developmental benefits to the infant. In addition to their involvement in the development, these bioactive compounds have a key role in anti-oncogenicity, neuro-cognitive development, cellular communication, and differentiation. As a result of technological advancements, it has been discovered that human breast milk contains cells that display many of the characteristics of stem cells with multilineage differentiation potentials. Do these cells have any specific properties or roles? Research efforts on breast milk cells have been mainly focused on leukocytes based on their immunological perspective in the early postpartum period. This review summarizes the nutritional components in human milk, i.e., the macro and micronutrients required for the growth and development of infants. Further, it discusses the research work reported concerning the purification, propagation, and differentiation of breast milk progenitor cells and highlights the advancements made in this newly emerging field of stem cell biology and regenerative medicine.


Assuntos
Microbiota , Leite Humano , Lactente , Feminino , Humanos , Leite Humano/metabolismo , Nutrientes , Células-Tronco , Diferenciação Celular
11.
Alzheimers Dement ; 19(1): 261-273, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35357079

RESUMO

HYPOTHESIS: We hypothesized that Lomecel-B, an allogeneic medicinal signaling cell (MSC) therapeutic candidate for Alzheimer's disease (AD), is safe and potentially disease-modifying via pleiotropic mechanisms of action. KEY PREDICTIONS: We prospectively tested the predictions that Lomecel-B administration to mild AD patients is safe (primary endpoint) and would provide multiple exploratory indications of potential efficacy in clinical and biomarker domains (prespecified secondary/exploratory endpoints). STRATEGY AND KEY RESULTS: Mild AD patient received a single infusion of low- or high-dose Lomecel-B, or placebo, in a double-blind, randomized, phase I trial. The primary safety endpoint was met. Fluid-based and imaging biomarkers indicated significant improvement in the Lomecel-B arms versus placebo. The low-dose Lomecel-B arm showed significant improvements versus placebo on neurocognitive and other assessments. INTERPRETATION: Our results support the safety of Lomecel-B for AD, suggest clinical potential, and provide mechanistic insights. This early-stage study provides important exploratory information for larger efficacy-powered clinical trials.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/tratamento farmacológico , Resultado do Tratamento , Método Duplo-Cego , Biomarcadores
12.
ACS Biomater Sci Eng ; 8(10): 4327-4340, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36174215

RESUMO

Metal ions are important effectors of protein and cell functions. Here, polyelectrolyte multilayers (PEMs) made of chitosan (Chi) and alginate (Alg) were doped with different metal ions (Ca2+, Co2+, Cu2+, and Fe3+), which can form bonds with their functional groups. Ca2+ and Fe3+ ions can be deposited in PEM at higher quantities resulting in more positive ζ potentials and also higher water contact angles in the case of Fe3+. An interesting finding was that the exposure of PEM to metal ions decreases the elastic modulus of PEM. Fourier transformed infrared (FTIR) spectroscopy of multilayers provides evidence of interaction of metal ions with the carboxylic groups of Alg but not for hydroxyl and amino groups. The observed changes in wetting and surface potential are partly related to the increased adhesion and proliferation of multipotent C3H10T1/2 fibroblasts in contrast to plain nonadhesive [Chi/Alg] multilayers. Specifically, PEMs doped with Cu2+ and Fe3+ ions greatly promote cell attachment and adipogenic differentiation, which indicates that changes in not only surface properties but also the bioactivity of metal ions play an important role. In conclusion, metal ion-doped multilayer coatings made of alginate and chitosan can promote the differentiation of multipotent cells on implants without the use of other morphogens like growth factors.


Assuntos
Alginatos , Quitosana , Adipogenia , Alginatos/química , Alginatos/farmacologia , Quitosana/farmacologia , Íons , Polieletrólitos/química , Polieletrólitos/farmacologia , Células-Tronco , Água/química
13.
Front Immunol ; 13: 933721, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35833124

RESUMO

Degenerative disc disease (DDD), a major contributor to discogenic pain, which is mainly resulted from the dysfunction of nucleus pulposus (NP), annulus fibrosis (AF) and cartilage endplate (CEP) cells. Genetic and cellular components alterations in CEP may influence disc homeostasis, while few single-cell RNA sequencing (scRNA-seq) report in CEP makes it a challenge to evaluate cellular heterogeneity in CEP. Here, this study conducted a first conjoint analysis of weighted gene co-expression network analysis (WGCNA) and scRNA-seq in CEP, systematically analyzed the interested module, immune infiltration situation, and cell niches in CEP. WGCNA and protein-protein interaction (PPI) network determined a group of gene signatures responsible for degenerative CEP, including BRD4, RAF1, ANGPT1, CHD7 and NOP56; differentially immune analysis elucidated that CD4+ T cells, NK cells and dendritic cells were highly activated in degenerative CEP; then single-cell resolution transcriptomic landscape further identified several mesenchymal stem cells and other cellular components focused on human CEP, which illuminated niche atlas of different cell subpopulations: 8 populations were identified by distinct molecular signatures. Among which, NP progenitor/mesenchymal stem cells (NPMSC), also served as multipotent stem cells in CEP, exhibited regenerative and therapeutic potentials in promoting bone repair and maintaining bone homeostasis through SPP1, NRP1-related cascade reactions; regulatory and effector mesenchymal chondrocytes could be further classified into 2 different subtypes, and each subtype behaved potential opposite effects in maintaining cartilage homeostasis; next, the potential functional differences of each mesenchymal stem cell populations and the possible interactions with different cell types analysis revealed that JAG1, SPP1, MIF and PDGF etc. generated by different cells could regulate the CEP homeostasis by bone formation or angiogenesis, which could be served as novel therapeutic targets for degenerative CEP. In brief, this study mainly revealed the mesenchymal stem cells populations complexity and phenotypic characteristics in CEP. In brief, this study filled the gap in the knowledge of CEP components, further enhanced researchers' understanding of CEP and their cell niches constitution.


Assuntos
Degeneração do Disco Intervertebral , Núcleo Pulposo , Proteínas de Ciclo Celular/metabolismo , Homeostase , Humanos , Degeneração do Disco Intervertebral/patologia , Proteínas Nucleares/metabolismo , Núcleo Pulposo/metabolismo , Fatores de Transcrição/metabolismo
14.
Stem Cells Dev ; 31(17-18): 555-568, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35708107

RESUMO

We showed that injury-induced multipotent stem cells (iSCs) emerge in the brain after stroke. These brain-derived iSCs (B-iSCs) can differentiate into various lineages, including neurons. This study aimed to determine whether similar stem cells can be induced even after nonischemic injuries, such as trauma to the spinal cord. We characterized these cells, mainly focusing on their stemness, multipotency, and neuronal differentiation activities. Spinal cord injury (SCI) was produced using forceps in adult mice. On day 3 after SCI, samples were obtained from the injured areas. Spinal cord sections were subjected to histological analyses. Cells were isolated and assessed for proliferative activities, immunohistochemistry, reverse transcriptase-polymerase chain reaction, fluorescence-activated cell sorter, and microarray analysis. Although nerve cell morphology was disrupted within the injured spinal cord, our histological observations revealed the presence of cells expressing stem cells, such as nestin and Sox2 in these areas. In addition, cells extracted from injured areas exhibited high proliferative abilities. These cells also expressed markers of both neural stem cells (eg, nestin, Sox2) and multipotent stem cells (eg, Sox2, c-myc, Klf4). They differentiated into adipocytes, osteocytes, and chondrocytes, as well as neuronal cells. Microarray analysis further identified similar properties between spinal cord (SC)-derived iSCs and B-iSCs. However, SC-iSCs revealed specific genes related to the regulation of stemness and neurogenesis. We identified similar features related to multipotency in SC-iSCs compared with B-iSCs, including neuronal differentiation potential. Although the differences between SC-iSCs and B-iSCs remain largely undetermined, this study shows that iSCs can develop even after nonischemic injuries such as trauma. This phenomenon can occur outside the brain within the central nervous system.


Assuntos
Células-Tronco Neurais , Traumatismos da Medula Espinal , Animais , Diferenciação Celular/fisiologia , Camundongos , Células-Tronco Multipotentes , Nestina/genética , Neurogênese/fisiologia , Medula Espinal , Traumatismos da Medula Espinal/patologia
15.
Stem Cells Transl Med ; 11(1): 26-34, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35641164

RESUMO

It is the hope of clinicians and patients alike that stem cell-based therapeutic products will increasingly become applicable remedies for many diseases and injuries. Whereas some multipotent stem cells are already routinely used in regenerative medicine, the efficacious and safe clinical translation of pluripotent stem cells is still hampered by their inherent immunogenicity and tumorigenicity. In addition, stem cells harbor the paracrine potential to affect the behavior of cells in their microenvironment. On the one hand, this property can mediate advantageous supportive effects on the overall therapeutic concept. However, in the last years, it became evident that both, multipotent and pluripotent stem cells, are capable of inducing adjacent cells to become motile. Not only in the context of tumor development but generally, deregulated mobilization and uncontrolled navigation of patient's cells can have deleterious consequences for the therapeutic outcome. A more comprehensive understanding of this ubiquitous stem cell feature could allow its proper clinical handling and could thereby constitute an important building block for the further development of safe therapies.


Assuntos
Células-Tronco Pluripotentes , Movimento Celular , Humanos , Células-Tronco Multipotentes , Células-Tronco Pluripotentes/metabolismo , Medicina Regenerativa , Transplante de Células-Tronco
16.
Cell Mol Life Sci ; 79(5): 229, 2022 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-35396689

RESUMO

Skeletal muscle tissue engineering aims at generating biological substitutes that restore, maintain or improve normal muscle function; however, the quality of cells produced by current protocols remains insufficient. Here, we developed a multifactor-based protocol that combines adenovector (AdV)-mediated MYOD expression, small molecule inhibitor and growth factor treatment, and electrical pulse stimulation (EPS) to efficiently reprogram different types of human-derived multipotent stem cells into physiologically functional skeletal muscle cells (SMCs). The protocol was complemented through a novel in silico workflow that allows for in-depth estimation and potentially optimization of the quality of generated muscle tissue, based on the transcriptomes of transdifferentiated cells. We additionally patch-clamped phenotypic SMCs to associate their bioelectrical characteristics with their transcriptome reprogramming. Overall, we set up a comprehensive and dynamic approach at the nexus of viral vector-based technology, bioinformatics, and electrophysiology that facilitates production of high-quality skeletal muscle cells and can guide iterative cycles to improve myo-differentiation protocols.


Assuntos
Desenvolvimento Muscular , Fibras Musculares Esqueléticas , Diferenciação Celular/fisiologia , Humanos , Desenvolvimento Muscular/genética , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Proteína MyoD/metabolismo , Células-Tronco , Fluxo de Trabalho
17.
In Vivo ; 36(3): 1067-1076, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35478128

RESUMO

BACKGROUND/AIM: Craniofacial reconstruction of extensive bone defects causes high morbidity to patients. Contemporary reconstructive surgery aims at restoring lost bone with either autogenous bone or substitutes. Multipotent unrestricted somatic stem cells (USSC) show a potential for osteoblast differentiation and are increasingly used in tissue engineering. The osteogenic potential of USSC micromasses influenced by dexamethasone, ascorbic acid and ß-glycerophosphate (DAG) seems promising. The present study evaluated the effects of DAG and MAPK, ERK and PI3K/Akt-pathway inhibitors on growth and mineralization of USSC micromasses. MATERIALS AND METHODS: Cells: i) USSC-18 (female, Passage 8), ii) USSC-8 (female Passage 9), and iii) USSC-8/17 (male, Passage 8), all cultured in 350 ml DMEM, with 150 ml fetal bovine serum, 5 ml penicillin/streptomycin and 5 ml L-glutamine. Differentiation was induced using 50 µM dexamethasone in DMEM, 50 mM ascorbic acid in PBS and 1 M ß-glycerolphosphate in PBS. Microtome slices were dyed with OsteoImage™ and analyzed under fluorescence microscopy. RESULTS: Significant increase in size and mineralization of DAG-treated micromasses was found on days 3 (p<0.001), 6 (p<0.001) and 7 (p<0.001). The ERK-pathway inhibitor, FR180204, significantly reduced micromass growth and mineralization in non-DAG treated cells (p<0.001) but showed increased mineralization in DAG-treated cells (p=0.014). The PI3K/Akt-pathway inhibitor, LY294002, did not significantly affect micromass growth but significantly decreased mineralization (p<0.001). The MAP-kinase inhibitor, U0126, significantly reduced micromass growth (p=0.001) and mineralization (p=0.001) of DAG-treated cells. CONCLUSION: DAG is a strong initiator of osteogenic differentiation. The PI3K/Akt-pathway inhibitor and the ERK-pathway inhibitor, FR180204, control osteogenic differentiation of 3D-micromasses. These results may facilitate preconditioning of cell cultures in guided tissue regeneration.


Assuntos
Osteogênese , Fosfatidilinositol 3-Quinases , Ácido Ascórbico/farmacologia , Dexametasona , Feminino , Humanos , Masculino , Células-Tronco Multipotentes , Proteínas Proto-Oncogênicas c-akt
18.
Cells ; 12(1)2022 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-36611914

RESUMO

Spinal Cord Injury (SCI) is a common neurological disorder with devastating psychical and psychosocial sequelae. The majority of patients after SCI suffer from permanent disability caused by motor dysfunction, impaired sensation, neuropathic pain, spasticity as well as urinary complications, and a small number of patients experience a complete recovery. Current standard treatment modalities of the SCI aim to prevent secondary injury and provide limited recovery of lost neurological functions. Stem Cell Therapy (SCT) represents an emerging treatment approach using the differentiation, paracrine, and self-renewal capabilities of stem cells to regenerate the injured spinal cord. To date, multipotent stem cells including mesenchymal stem cells (MSCs), neural stem cells (NSCs), and hematopoietic stem cells (HSCs) represent the most investigated types of stem cells for the treatment of SCI in preclinical and clinical studies. The microenvironment of SCI has a significant impact on the survival, proliferation, and differentiation of transplanted stem cells. Therefore, a deep understanding of the pathophysiology of SCI and molecular mechanisms through which stem cells act may help improve the treatment efficacy of SCT and find new therapeutic approaches such as stem-cell-derived exosomes, gene-modified stem cells, scaffolds, and nanomaterials. In this literature review, the pathogenesis of SCI and molecular mechanisms of action of multipotent stem cells including MSCs, NSCs, and HSCs are comprehensively described. Moreover, the clinical efficacy of multipotent stem cells in SCI treatment, an optimal protocol of stem cell administration, and recent therapeutic approaches based on or combined with SCT are also discussed.


Assuntos
Células-Tronco Mesenquimais , Células-Tronco Neurais , Traumatismos da Medula Espinal , Humanos , Traumatismos da Medula Espinal/patologia , Células-Tronco Multipotentes/transplante
19.
Postepy Kardiol Interwencyjnej ; 18(4): 476-482, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36967843

RESUMO

Introduction: CIRCULATE-AMI (NCT03404063), a cardiac magnetic resonance imaging (cMRI) infarct size-reduction-powered double-blind randomized controlled trial (RCT) of standardized Wharton jelly multipotent stem cells (WJMSCs, CardioCell Investigational Medical Product) vs. placebo (2 : 1) transcoronary transfer on acute myocardial infarction (AMI) day ~5-7, is preceded by safety and feasibility evaluation in a pilot study cohort (CIRCULATE-AMI PSC). Aim: To evaluate WJMSC transplantation safety and evolution of left ventricular (LV) remodeling in CIRCULATE-AMI PSC. Material and methods: In 10 consecutive patients (32-65 years, peak CK-MB 533 ±89 U/l, cMRI-LVEF 40.3 ±2.7%, cMRI-infarct size 20.1 ±2.8%), 30 × 106 WJMSCs were administered using a novel cell delivery-dedicated, coronary-non-occlusive method (CIRCULATE catheter). Other treatment was guideline-based. Results: WJMSC transfer was safe and occurred in the absence of coronary (TIMI-3 in all) or myocardial (corrected TIMI frame count (cTFC) 45 ±8 vs. 44 ±9, p = 0.51) flow deterioration or troponin elevation. By 3 years, 1 patient died from a new, non-index territory AMI; there were no other major adverse cardiovascular and cerebrovascular events (MACCE) and no adverse events that might be related to WJMSCs. cMRI infarct size was reduced from 33.2 ±7.6 g to 25.5 ±6.4 g at 1 year and 23.1 ±5.6 g at 3 years (p = 0.03 vs. baseline). cMRI, SPECT, and echo showed a consistent, statistically significant increase in LVEF at 6-12 months (41.9 ±2.6% vs. 51.0 ±3.3%, 36.0 ±3.9% vs. 44.9 ±5.0%, and 38.4 ±2.5% vs. 48.0 ±2.1% respectively, p < 0.01 for all); the effect was sustained at 3 years. Conclusions: CIRCULATE-AMI PSC data suggest that WJMSC transcoronary application ~5-7 days after large AMI in humans is feasible and safe and it may be associated with a durable LVEF improvement. CIRCULATE-AMI RCT will quantify the magnitude of LV adverse remodeling attenuation with CardioCell/placebo administration.

20.
Adv Exp Med Biol ; 1376: 151-180, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34611861

RESUMO

Induced pluripotent stem cells (iPSCs) have vast biomedical potential concerning disease modeling, drug screening and discovery, cell therapy, tissue engineering, and understanding organismal development. In the year 2006, a groundbreaking study reported the generation of iPSCs from mouse embryonic fibroblasts by viral transduction of four transcription factors, namely, Oct4, Sox2, Klf4, and c-Myc. Subsequently, human iPSCs were generated by reprogramming fibroblasts as a starting cell source using two reprogramming factor cocktails [(i) OCT4, SOX2, KLF4, and c-MYC, and (ii) OCT4, SOX2, NANOG, and LIN28]. The wide range of applications of these human iPSCs in research, therapeutics, and personalized medicine has driven the scientific community to optimize and understand this reprogramming process to achieve quality iPSCs with higher efficiency and faster kinetics. One of the essential criteria to address this is by identifying an ideal cell source in which pluripotency can be induced efficiently to give rise to high-quality iPSCs. Therefore, various cell types have been studied for their ability to generate iPSCs efficiently. Cell sources that can be easily reverted to a pluripotent state are tissue-restricted stem cells present in the fetus and adult tissues. Tissue-restricted stem cells can be isolated from fetal, cord blood, bone marrow, and other adult tissues or can be obtained by differentiation of embryonic stem cells or trans-differentiation of other tissue-restricted stem cells. Since these cells are undifferentiated cells with self-renewal potential, they are much easier to reprogram due to the inherent characteristic of having an endogenous expression of few pluripotency-inducing factors. This review presents an overview of promising tissue-restricted stem cells that can be isolated from different sources, namely, neural stem cells, hematopoietic stem cells, mesenchymal stem cells, limbal epithelial stem cells, and spermatogonial stem cells, and their reprogramming efficacy. This insight will pave the way for developing safe and efficient reprogramming strategies and generating patient-specific iPSCs from tissue-restricted stem cells derived from various fetal and adult tissues.


Assuntos
Reprogramação Celular , Células-Tronco Pluripotentes Induzidas , Animais , Diferenciação Celular , Células Cultivadas , Células-Tronco Embrionárias , Fibroblastos/metabolismo , Humanos , Fator 4 Semelhante a Kruppel , Camundongos , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA