RESUMO
Brazilian coastal areas have been exposed to various anthropic influences including physical alteration such as marina construction. To assess the impact of the pier marina construction in the Saco da Ribeira cove (Flamengo Bay, SE Brazil), sedimentological (grain size), geochemical (organic and trace elements) parameters and benthic foraminifera were analyzed on a 50-cm-long dated sediment core covering the last century. The multiproxy approach applied to a numerical hydrodynamic model shows that the circulation in the study area underwent an overall reduction (ca. 30 %) after the pier marina construction in the 1970s, promoting an increase of mud accumulation and higher concentrations of total organic carbon and trace elements (i.e., Enrichment Factor Cu from 0.80 to 1.4) as well as a shift in the benthic foraminiferal assemblages (i.e., foraminiferal density from 63 to 23.20 specimens per 10 cm3 and dominance from 0.13 to 0.73). On the basis of these integrated data, better environmental conditions occurred before the 1970s, then an overall increase in environmental stress took place after the pier's marina construction. Our results provide a baseline for future biomonitoring projects in a stressed region and exemplify the strong capability and reliability of benthic foraminifera as bioindicators of paleoenvironmental changes in coastal environments and for understanding how human pressure might induce such changes.
Assuntos
Foraminíferos , Oligoelementos , Humanos , Monitoramento Ambiental/métodos , Sedimentos Geológicos , Brasil , Oligoelementos/análise , Baías , Reprodutibilidade dos TestesRESUMO
Using benthic foraminifera, we evaluate the ecological quality status (EcoQS) of transitional waters of the Guanabara Bay (SE Brazil) by applying the diversity-based index exp (H'bc) and the sensitivity-based Foram-AMBI for the first time in South America. The Guanabara Bay was selected for this study as it is one of the largest transitional ecosystems in the State of Rio de Janeiro and has been severely impacted by anthropogenic activities. Concentrations of potentially toxic elements (PTEs) were assessed by sequential chemical extraction in three phases (i.e., dissolved in water, adsorbed on organic matter, and Mn oxy-hydroxides). Total organic carbon, total nitrogen, and stable isotope (δ13C and δ15N) signatures of organic matter were analyzed to trace environmental stress. The Ammonia/Elphidium ratio suggests hypoxic conditions at most of the sampled sites. Principal component analysis identifies the first component as environmental stress underlying organic matter and PTE enrichment (in all three phases), which is positively related to Foram-AMBI and negatively to exp (H'bc). The exp (H'bc) and Foram-AMBI indices reveal that stations near the Governador Island and Niterói margin have the worst EcoQS, showing medium to extreme pollution. Additionally, Foram-AMBI and exp (H'bc) provide a congruent EcoQS classification for â¼64% of the sites. Although these results are promising, they suggest that a significant effort should be made to obtain better knowledge of foraminiferal ecological requirements to employ benthic foraminifera as a biomonitoring and management method.
Assuntos
Foraminíferos , Poluentes Químicos da Água , Sedimentos Geológicos/análise , Ecossistema , Baías , Brasil , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análiseRESUMO
The ecological quality status of the NE region of the Guanabara Bay (SE Brazil), one of the most important Brazilian embayments, is evaluated. For this purpose, sediment samples from in the inner of the Guanabara Bay (GB) were collected and analyzed (grain-size, mineralogy, geochemistry and living foraminifera). In this study, it is hypothesized that the potentially toxic elements (PTEs) concentrations, in solution and associated with organic matter (OMPTEs, potential nutrient source), may represent two potential pathways to impact benthic foraminifers. A multiproxy approach applied to complex statistical analyses and ecological indexes shows that the study area is, in general, eutrophic (with high organic matter and low oxygen content), polluted by PTEs and oil. As a consequence, foraminifera are not abundant and their assemblages are poorly diversified and dominated by some stress-tolerant species (i.e., Ammonia tepida, Quinqueloculina seminula, Cribroelphidium excavatum). The results allow us to identify a set of species sensitive to eutrophication and OMPTEs. Factors such as the increase of organic matter contents and OMPTEs and, in particular of Zn, Cd and Pb, the oxygen depletion and the presence of oil, altogether contribute to a marked reduction in the abundance and diversity of foraminifera. Ammonia-Elphidium Index and the Foram Stress Index confirm that the NE zone of GB is, in general, "heavily polluted", with "poor ecological quality status" and experiences suboxic to anoxic conditions. In light of it, special attention from public authorities and policymakers is required in order to take immediate actions to enable its environmental recovery.