Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Chemosphere ; 361: 142478, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38815817

RESUMO

Effective municipal solid waste (MSW) management is a crucial component for sustainable cities, as inefficient waste disposal contributes to the release of about a billion tons of CO2-eq in greenhouse gases (GHG) annually. With escalating global waste generation, there is an untapped opportunity to integrate carbon dioxide removal (CDR) technologies into existing MSW management processes. This review explores current research on utilizing MSW for CDR, emphasizing its potential for both energy generation and carbon sequestration. The investigation covers three waste management practices: landfilling, waste-to-energy (WtE), and biochar production, revealing two paths for carbon sequestration. First, MSW serves as a feedstock in bioenergy with carbon capture and storage (BECCS), acting as a carbon-neutral resource that avoids fossil fuel and energy crop use, reducing GHG emissions and generating value through energy production. Second, direct storage of organic MSW and its derivatives, like biochar, in various carbon sinks allows for extended sequestration, offering a comprehensive approach to address the challenges of waste management and climate change mitigation. Moreover, this review advocates for an extended exploration into several subjects including in-depth analysis of waste, research on MSW-derived biochar recalcitrance across different carbon sinks, and understanding the symbiotic connections with GHG-emitting sectors like agriculture and energy. Finally, this review emphasizes the necessity of conducting life-cycle assessment studies to fully discern the benefits and assess the impacts of any future endeavors exploring the role of MSW in carbon sequestration.


Assuntos
Dióxido de Carbono , Sequestro de Carbono , Eliminação de Resíduos , Resíduos Sólidos , Resíduos Sólidos/análise , Eliminação de Resíduos/métodos , Gases de Efeito Estufa/análise , Gerenciamento de Resíduos/métodos , Carvão Vegetal/química , Mudança Climática , Cidades
2.
Waste Manag ; 181: 145-156, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38608529

RESUMO

Landfill disposal is a major approach of disposing municipal solid waste (MSW) in China. In order to explore the impact of volatile organic compounds (VOCs) generated by landfill on the air quality of regional environment, Jiangcungou landfill in Xi'an and its surrounding area were taken as a research object to analyze the spatial distribution and seasonal variation patterns of non-methane hydrocarbon (NMHC) and VOCs components through seasonal sampling of regional NMHC concentration and VOCs concentration (116 species). CALPUFF model was adopted to analyze the regional dispersion characteristics of NMHC on landfill. In addition, propylene equivalent concentration (PEC) and maximum incremental reactivity (MIR) methods were used to estimate O3 formation potential of the landfill, while fraction aerosol coefficient (FAC) and SOA potential (SOAP) methods were used to estimate SOA formation potential of the landfill. It was indicated that, the component with the highest concentration of VOCs on the working surface and the surrounding area of landfill was p + m-xylene (41.0 µg/m3) and halohydrocarbon (111.2 µg/m3-156.3 µg/m3), respectively. The component with the greatest impact on the surrounding air was acetone, which accounts for 75 %-87 % of the corresponding substance concentration on the landfill. In summer, the surrounding area was affected most by NMHC from landfill, whose emissions contributed 9.5 mg/m3 to the surrounding area. The component making the largest contribution to O3 formation was p + m-xylene (8 %-24 %), while ethylbenzene was the component making the largest contribution to SOA formation (20 %-24 %).


Assuntos
Poluentes Atmosféricos , Monitoramento Ambiental , Eliminação de Resíduos , Resíduos Sólidos , Compostos Orgânicos Voláteis , Instalações de Eliminação de Resíduos , Compostos Orgânicos Voláteis/análise , China , Resíduos Sólidos/análise , Poluentes Atmosféricos/análise , Eliminação de Resíduos/métodos , Estações do Ano , Hidrocarbonetos/análise
3.
J Environ Manage ; 354: 120364, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38387351

RESUMO

This study delves into the critical role of microbial ecosystems in landfills, which are pivotal for handling municipal solid waste (MSW). Within these landfills, a complex interplay of several microorganisms (aerobic/anaerobic bacteria, archaea or methanotrophs), drives the conversion of complex substrates into simplified compounds and complete mineralization into the water, inorganic salts, and gases, including biofuel methane gas. These landfills have dominant biotic and abiotic environments where various bacterial, archaeal, and fungal groups evolve and interact to decompose substrate by enabling hydrolytic, fermentative, and methanogenic processes. Each landfill consists of diverse bio-geochemical environments with complex microbial populations, ranging from deeply underground anaerobic methanogenic systems to near-surface aerobic systems. These kinds of landfill generate leachates which in turn emerged as a significant risk to the surrounding because generated leachates are rich in toxic organic/inorganic components, heavy metals, minerals, ammonia and xenobiotics. In addition to this, microbial communities in a landfill ecosystem could not be accurately identified using lab microbial-culturing methods alone because most of the landfill's microorganisms cannot grow on a culture medium. Due to these reasons, research on landfills microbiome has flourished which has been characterized by a change from a culture-dependent approach to a more sophisticated use of molecular techniques like Sanger Sequencing and Next-Generation Sequencing (NGS). These sequencing techniques have completely revolutionized the identification and analysis of these diverse microbial communities. This review underscores the significance of microbial functions in waste decomposition, gas management, and heat control in landfills. It further explores how modern sequencing technologies have transformed our approach to studying these complex ecosystems, offering deeper insights into their taxonomic composition and functionality.


Assuntos
Bacteriologia , Eliminação de Resíduos , Temperatura Alta , Ecossistema , Resíduos Sólidos/análise , Instalações de Eliminação de Resíduos , Gases/análise
4.
Huan Jing Ke Xue ; 44(11): 5946-5953, 2023 Nov 08.
Artigo em Chinês | MEDLINE | ID: mdl-37973079

RESUMO

The waste sector is a significant source of greenhouse gas(GHG) emissions and clarifying its emission trends and characteristics is the premise for formulating GHG emission reduction strategies. Using the IPCC inventory model, the GHG emissions from the municipal solid waste(MSW) sector in China during 2010 to 2020 were estimated. The results showed that GHG emissions increased from 42.5 Mt in 2010 to 75.3 Mt in 2019, then decreased to 72.1 Mt in 2020. MSW landfills were the main source of GHG emissions. Further, with the increase in the proportion of waste incineration, the proportion of GHG incineration increased rapidly from 16.5% in 2010 to 60.1% in 2020. In terms of regional distribution, East and South China were the regions with the highest emissions, and Guangdong, Shandong, Jiangsu, and Zhejiang were the provinces with the largest GHG emissions. Implementing MSW classification, changing the MSW disposal modes from landfilling to incineration, improving the LFG collection efficiency of landfills, and using biological functional materials as the cover soil to strengthen the methane oxidation efficiency are the main measures to achieve GHG emission reduction in waste sectors.

5.
Huan Jing Ke Xue ; 44(11): 6421-6432, 2023 Nov 08.
Artigo em Chinês | MEDLINE | ID: mdl-37973123

RESUMO

The treatment and disposal of municipal solid waste has increasingly become a common concern around the world, and the characteristics of municipal solid waste(MSW) are an important basis for the selection of terminal treatment methods. In this study, more than 400 MSW samples from over 30 cities across China were collected, and the basic physical and chemical properties, such as the physical composition, pollutant content, and calorific value, were analyzed. Shenzhen was taken as an example to analyze the influence of time and waste sorting measures on the physical and chemical characteristics of MSW. The correlation model between MSW composition and calorific value was established using partial least squares(PLS) regression, and the model was verified. The results showed that with per capita GDP increasing by 10,000 yuan, per capita MSW production and the low calorific value of MSW increased by 0.1 kg·(person·d)-1 and 373.8 kJ·kg-1, respectively. However, when per capita GDP was less than 60,000 yuan, the correlation between per capita GDP and per capita MSW production was relatively poor. Kitchen waste was still the most abundant component of MSW, and the content of most samples was between 40% and 60%. The combustible content of rubber/plastic and paper was relatively high, between 20%-30% and 10%-20%, respectively. The inorganic content did not usually exceed 5%, and the moisture content of the MSW was between 50% and 60%. After the implementation of waste classification in 2019, the content of kitchen waste in MSW had been significantly reduced, the content of rubber/plastic had increased, and other components had not changed much. Additionally, the calorific value of waste had been improved to a certain extent. The pollution element contents in MSW, S Cl, and N were all below 1%, and the average value was:N>Cl>S. The contents of Hg, As, Cr, Cd, and Pb in MSW samples did not change significantly with the composition and sampling time, and the content of Pb and Cr in MSW was affected by the environmental background value. The model analysis revealed that rubber/plastics and moisture content were the main variables that affected the calorific value of MSW. The deviation between the measured value and the predicted value was less than 20% for 85.96% of the samples. The model established in this study can meet the needs of the prediction of the calorific value of MSW.

6.
J Environ Eng (New York) ; 149(9): 1-9, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37941995

RESUMO

The leachate collection system (LCS) and leak detection system (LDS) flow rate data from 240 cells (or a combination of cells) at 54 municipal solid-waste landfills (located in seven US states) with double-liner systems were analyzed to assess the performance of the primary liner system. The average LCS leachate collection rates for the study sites ranged from 380 L ha-1 day-1 (40.7 gal. acre-1 day-1) to 22,400 L ha-1 day-1 (2,390 gal. acre-1 day-1) on a sitewide basis, and the average LDS leachate collection rates ranged from 1.8 L ha-1 day-1 (0.2 gal. acre-1 day-1) to 577 L ha-1 day-1 (61.7 gal. acre-1 day-1) on a sitewide basis. Assuming all leachate generated is collected either by the LCS or LDS, the data suggest that the primary liner systems' aggregated efficiency is over 98%. The collection efficiency at sites that used a composite liner (geomembrane underlain by a geosynthetic clay liner or a compacted clay liner) system was not statistically different from the sites that used only a geomembrane as the primary liner (geomembrane underlain by a permeable layer) (median of 99% for both types). Leakage rates were compared with those estimated from the equations used by the hydrologic evaluation of landfill performance (HELP) model. The comparison suggests that the equations used by the HELP model to estimate leakage through the liner overestimate the leakage rate through geomembrane primary liners but underestimate the leakage rate through composite primary liners based on the HELP-model-default defect size and suggested defect frequency. It is also possible that groundwater intrusion could contribute to a portion of the leachate collected from the LDS because leachate quality data collected from a few sites indicated the LCS leachate had a higher concentration of most constituents than the leachate collected from LDS.

7.
Heliyon ; 9(8): e18558, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37576321

RESUMO

The various components of Municipal Solid Waste (MSW) such as collection, sorting, transportation, and disposal have their peculiarities and challenges. However, final disposal sites, generally referred to as landfill sites, present a complex difficulty. The aggregation of the problems of other components has consequences on the microenvironment, public health, and groundwater. Final disposal of MSW, site selection, and management presents an enormous burden for most Metropolitan, Municipal, and District Assembly (s) in Ghana. The case of Bolgatanga Municipality is similar to many others in the Upper East region in particular and Ghana as a whole. The existing landfill site is improperly sited and poses a great danger to adjoining communities. In this work, we used the Analytical Hierarchy Process (AHP) in a G.I.S. suite and Multi-Criteria Evaluation to assess the current location and select a possible new site within the municipality. The criteria used are generally environmental and socio-economic parameters, including; distance from major roads, rivers, settlements, and the selection of an appropriate slope and soil type that suits the guidelines for the siting of a landfill. The outcome of this multi-criteria assessment is the selection of a new site far from the current disposal site indicating the inappropriate location of the current site. A combination of all weighted criteria through a model builder process produced a suitability index map for candidate landfill sites. The selected site at Sherigu is about 16 km by road from the proposed site, which is much bigger than the threshold of 500 sq. meters. The separation distance and size between the current and the proposed site are indications of how economically and environmentally inappropriate the Sherigu site is and the need for a better site that is better situated for socio-economic and environmental considerations.

8.
Chemosphere ; 334: 138924, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37209854

RESUMO

To understand sources and processes affecting per- and polyfluoroalkyl substances (PFAS), 32 PFAS were measured in landfill leachate from 17 landfills across Washington State in both pre-and post-total oxidizable precursor (TOP) assay samples, using an analytical method that was the precursor to EPA Draft Method 1633. As in other studies, 5:3FTCA was the dominant PFAS in the leachate, suggesting that carpets, textiles, and food packaging were the main sources of PFAS. Total PFAS concentrations (Σ32PFAS) ranged from 61 to 172,976 ng/L and 580-36,122 ng/L in pre-TOP and post-TOP samples, respectively, suggesting that little or no uncharacterized precursors remained in landfill leachate. Furthermore, due to chain-shortening reactions, the TOP assay often resulted in a loss of overall PFAS mass. Positive matrix factorization (PMF) analysis of the combined pre- and post-TOP samples produced five factors that represent sources and processes. Factor 1 consisted primarily of 5:3FTCA (intermediate of 6:2 fluorotelomer degradation and characteristic of landfill leachate), while factor 2 was dominated by PFBS (degradant of C-4 sulfonamide chemistry) and, to a lesser extent, by several PFCAs and 5:3FTCA. Factor 3 consisted primarily of both short-chain PFCAs (end-products of 6:2 fluorotelomer degradation) and PFHxS (derived from C-6 sulfonamide chemistry), while the main component of factor 4 was PFOS (dominant in many environmental media but minor in landfill leachate, perhaps reflecting a production shift from longer to shorter chain PFAS). Factor 5, highly loaded with PFCAs, was dominant in post-TOP samples and therefore represented the oxidation of precursors. Overall, PMF analysis suggests that the TOP assay approximates some redox processes which occur in landfills, including chain-shortening reactions which yield biodegradable products.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Fluorocarbonos/análise , Instalações de Eliminação de Resíduos , Washington
9.
Waste Dispos Sustain Energy ; : 1-14, 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36687498

RESUMO

In the context of circular economy, it is known that once waste is generated, it should be subject to proper treatment for recovering material or energy before being disposed. Many countries worldwide, especially developing countries such as Brazil, have been struggling to effectively apply sustainable waste management in municipalities and still rely on dumpsites and unsuitable landfills. Misinformation, a weak legal framework, lack of financial resources and poor infra-structure as well as pressure from organizations profiting from the expansion of landfills are some factors contributing to the preservation of the negative status quo: the "landfill culture". Material recovery, i.e., recycling and composting, is applied to less than 5% of Brazilian municipal waste, while 95% is disposed of in landfills or dumpsites. In this context, ABREN WtERT (Waste-to-Energy Research and Technology Council) Brazil was created in 2019 as the first permanent organization formed to promote the development of energy and material recovery from waste focused on the waste-to-energy (WTE) market. In this paper, the strategy proposed and implemented by the organization towards changing the status quo in Brazil through an integrated sustainable waste management approach is described. The proposed strategy integrates the concepts of Sustainability and Circular Economy for minimizing landfill disposal (avoiding methane emissions) and maximizing material/energy recovery. Among others, the approach focuses on changing the public opinion regarding thermal treatment facilities, mainly incinerators, which has been wrongly linked to pollution, excessive public expenditures and considered a harm to the recycling industry. The activities performed by ABREN include engaging public and private institutions, enhancing education, leading the publication of research and business studies, gathering industry members and academy experts, as well as creating strategic alliances with players around the globe. As a result, within a few years, major outcomes were achieved in Brazil, such as: (i) changes in the legal framework, (ii) launching of a specific public auction category for sponsoring electricity production from WTE facilities, and (iii) establishment of official targets for municipalities to decrease landfill disposal and increase recycling/biological treatment and energy recovery from thermal treatment. Among the national goals, it should be highlighted the target regarding the increase from zero to 994 MW of electricity production from municipal solid waste, which will require building dozens of new WTE facilities. Global outcomes are expected as well since Brazil is the seventh largest country of the globe and the most influential in Latin America. International and national business deals should thrive due to the need of operational skills and technology imports, and the avoidance of carbon emissions will positively reflect the world climate. In parallel, there is also potential for the academy to benefit from research projects and investments if the WTE national industry is to be developed in the long term.

10.
J Environ Manage ; 328: 117014, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36516712

RESUMO

An artificial neural network (ANN) is a biologically inspired computational technique that imitates the behavior and learning process of the human brain. In this study, ANN technique was applied to assess the gasification of municipal solid waste (MSW) with the aim of enhancing the H2 production. The experiments were conducted using a horizontal tube reactor under different parameters: temperatures, MSW loadings, residence times, and equivalence ratios. The input and output variables (released gases) were tested and trained using back-propagation algorithm, and the data distribution by K-fold contrivance. The values of the training (80% data) and validation (20% data) dataset were found satisfactory. The values of regression coefficient (R2) for the training phase were lied between 0.9392 and 0.9991, and 0.9363 and 0.993824 for the testing phase. Whereas; the values of root mean square error (RSME) for the training phase were lied between 0.4111 and 0.8422, and between 0.1476 and 0.7320 for the testing phase. Higher H2 production of 42.1 vol% was produced at the higher reaction temperature of 900 °C with LHV of 11.2 MJ/Nm3. According to the tar analysis, the dominant compounds were aromatics (17 compounds) followed by polycyclic aromatic, phenyl, aliphatic, aromatic heterocyclic, polycyclic, and aromatic ketone compounds.


Assuntos
Eliminação de Resíduos , Resíduos Sólidos , Humanos , Gases , Temperatura , Temperatura Alta , Redes Neurais de Computação , Eliminação de Resíduos/métodos
11.
Waste Manag ; 157: 69-81, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36527777

RESUMO

Waste management processes have developed significantly in recent decades and will continue to change alongside the associated environmental impacts. This paper examines the climate change impacts of historical development in waste management, which has not received significant attention in the existing literature, while also exploring possible future developments. The city of Lappeenranta in Finland was selected as a case study, and the climate impacts of household waste (HW) management were calculated for the actual situations in 2009 and 2019 and the foreseen situation in 2029. Separately collected waste fractions of mixed residual waste (MRW), biowaste, cardboard, plastic, metal, and glass were included in the analysis. The results show that the net climate change impact decreased considerably from 945 kgCO2-eq./tHW in 2009 to -141 kgCO2-eq./tHW in 2019 mainly by directing the MRW to energy recovery instead of landfill. The emissions responsible for climate change could be further reduced in 2029 by directing biowaste to digestion instead of composting and by directing more fractions to recycling; e.g., plastic, the impact of which is affected by the demand for recycled plastic. For the year 2029, the net climate change impact was -181 kgCO2-eq./tHW when heat produced from MRW displaced natural gas and was as high as 142 kgCO2-eq./tHW if the heat substituted biomass heat. The findings reveal that as energy production mixes and materials become less fossil carbon intensive, they have a significant impact on the net climate impacts of waste management.


Assuntos
Eliminação de Resíduos , Gerenciamento de Resíduos , Resíduos Sólidos/análise , Eliminação de Resíduos/métodos , Dióxido de Carbono , Finlândia , Mudança Climática , Gerenciamento de Resíduos/métodos , Instalações de Eliminação de Resíduos
12.
Bioresour Technol ; 361: 127715, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35917860

RESUMO

Municipal solid waste (MSW) leachate treatment through the anaerobic ammonium oxidation (anammox) process has received increasing attention due to less oxygen consumption, carbon source demand, and sludge production. The recent advances in anammox-mediated MSW leachate treatment are systematically reviewed. During MSW leachate treatment, the anammox technology could be flexibly combined with partial nitrification, partial denitrification, fermentation, and methane oxidation. Additionally, this review comprehensively discussed the specific effects on anammox bacteria (AnAOB) of key stressors in MSW leachate such as dissolved organic matters, salinity, and antibiotics, and introduced the corresponding pretreatment methods. The key control strategies focusing on achieving effective AnAOB retention, amelioration of microenvironments, and stable nitrite source were summarized. Moreover, the potential for nitrous oxide emission mitigation in anammox-based MSW leachate treatment systems was evaluated. Finally, this review highlighted the full-scale applications of anammox-mediated MSW leachate treatment and proposed the prospects as well as research gaps in this field.


Assuntos
Desnitrificação , Poluentes Químicos da Água , Oxidação Anaeróbia da Amônia , Reatores Biológicos/microbiologia , Nitrificação , Nitrogênio , Oxirredução , Esgotos , Resíduos Sólidos , Águas Residuárias
13.
Bioresour Technol ; 361: 127720, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35914673

RESUMO

Four simulated bioreactors were loaded with only MSW, 5 % BA + MSW, 10 % BA + MSW and 20 % BA + MSW to investigate the leachate property and bacterial community change trends during the colandfilling process. The results showed that with increasing BA addition proportion (5 %∼20 %), the leachate oxidation-reduction potential (ORP) was lower, the leachate pH quickly entered the neutral stage, and the chemical oxygen demand (COD), volatile fatty acids (VFA), NH4+-N, Ca2+ and SO42- presented faster downward trends. The leachate SUVA254 and E300/400 confirmed that BA can accelerate the leachate humification process. BA can quickly increase bacterial diversity, and the higher the addition proportion of BA, the more significant the change in microbial community structure during the landfilling process. The leachate pH and COD greatly influenced the bacterial community structure. A low BA proportion can increase metabolism pathway abundance during the initial stage, but a high BA proportion had an inhibitory effect on the metabolism pathway.


Assuntos
Eliminação de Resíduos , Poluentes Químicos da Água , Estruturas Bacterianas/química , Cinza de Carvão/química , Incineração/métodos , Eliminação de Resíduos/métodos , Resíduos Sólidos/análise , Instalações de Eliminação de Resíduos
14.
Fuel (Lond) ; 320: 123981, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-36000017

RESUMO

The current COVID-19 pandemic situation and the associated restrictions have increased the amount of generated waste. It results from the necessity to wear personal protective equipment. Thus, the disposal of masks and gloves is a topical issue and requires immediate investigation. The main aims of this work are management and environmental studies of municipal solid wastes (MSW), which have been generated during the COVID-19 pandemic time. Effective waste management in relation to a circular economy is presented. A sample of refuse derived fuel (RDF) with a high content of plastics was used for the experimental and calculation studies. Pyrolysis was selected as the best thermal decomposition process for this kind of wastes. Proximate and ultimate analyses were performed for RDF and its products. Pyrolysis was carried out using a pilot-scale reactor with a continuous flow of 250 kg/h at 900 °C. Thermogravimetric analysis was applied during the pyrolysis investigation and showed that the main decomposition of RDF took place in the temperature range of 250-500 °C. The pyrolysis gas contained combustible compounds like CO (19.8%), H2 (13.2%), CH4 (18.9%) and C2H4 (7.1%), giving a high calorific value - 24.4 MJ/m3. The experimental results were implemented for numerical calculations. Chemkin-Pro software was applied to predict the chemical composition of the pyrolysis gas. The performed computer simulations demonstrated very good agreement with the results obtained during the experiments. They also indicated that there is a strong relationship between the chemical composition of the pyrolysis gas, the process temperature and residence time in the reactor.

15.
Artigo em Inglês | MEDLINE | ID: mdl-35886280

RESUMO

Energy recovery from waste presents a promising alternative for several countries, including Ghana, which has struggled with unsustainable waste treatment methods and an inadequate power supply for several decades. The current study adopts a comprehensive multi-criteria decision-making approach for the selection of an optimal waste-to-energy (WtE) technology for implementation in Ghana. Four WtE technologies are evaluated against twelve selection criteria. An integrated AHP-fuzzy TOPSIS method is applied to estimate the criteria's weights and rank the WtE alternatives. From the AHP results, technical criteria obtained the highest priority weight, while social criteria emerged as the least important in the selection process. The overall ranking order of WtE technologies obtained by fuzzy TOPSIS is as follows: anaerobic digestion > gasification > pyrolysis > plasma gasification. The sensitivity analysis indicates highly consistent and sturdy results regarding the optimal selection. This study recommends adopting a hybrid system of anaerobic digestion and gasification technologies, as this offers a well-balanced system under all of the evaluation criteria compared to the standalone systems. The results of the current study may help the government of Ghana and other prospective investors select a suitable WtE technology, and could serve as an index system for future WtE research in Ghana.


Assuntos
Eliminação de Resíduos , Gerenciamento de Resíduos , Estudos de Viabilidade , Gana , Estudos Prospectivos , Eliminação de Resíduos/métodos , Tecnologia , Gerenciamento de Resíduos/métodos
16.
Artigo em Inglês | MEDLINE | ID: mdl-35627572

RESUMO

One of the key problems associated with the functioning of landfills is the generation of leachate. In order to reduce their negative impact on the environment, various treatment technologies are applied. Among them, solutions based on the use of phytotechnology deserve special attention. The aim of this study was to evaluate the impact of landfill leachate on the content of micro- and macroelements in plant material. The research was carried out in four municipal waste landfills located in Poland. Emergent macrophytes (P. australis) and submergent macrophytes (C. demersum) were used in this research. The migration and distribution of pollutants reaching the roots and shoots of P. australis from water solutions were also studied. The concentrations of heavy metals in the studied plants were low in all analysed cases. Higher metal contents could often be observed in roots rather than in shoots, but these differences were insignificant. The chemical composition of the studied plant samples was primarily related to the source of origin of the treated leachate (landfill), as clearly demonstrated by cluster analysis. In the conducted studies, no important differences were noted in the accumulation of the studied components between submergent plants (C. demersum) and emergent macrophytes (P. australis).


Assuntos
Poluentes Ambientais , Metais Pesados , Poluentes Químicos da Água , Poluentes Ambientais/análise , Metais Pesados/análise , Poaceae , Instalações de Eliminação de Resíduos , Poluentes Químicos da Água/análise
17.
Sci Total Environ ; 826: 154212, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35245558

RESUMO

The Hazardous air pollutants (HAPs) released from increasing municipal solid waste incineration (MSWI) plants have drawn great concerns in China. However, a full picture of their emission characteristics is still urgently needed, especially after the implementation of stricter emission limits on MSWI. In this study, a comprehensive historical emission inventory of HAPs emitted from MSWI plants in China during the period of 2006-2017 was dedicatedly established by integrating with detailed plant-level activity data and renewed localized emission factors. Overall, HAPs emissions initially increased with years, then peaked or slowed increase in the year 2014, but leveled off after 2016 due to the gradually and fully implementing of newly revised national emission standard (GB18485-2014) applied to mainland China and much stricter local standards for several provinces and cities. It was estimated that totally 50,716 tons (t) of NOx, 13,026 t of CO, 7988 t of SO2, 4399 t of PM, 1943 t of HCl, 9916 kg of Pb, 5901 kg of Mn, 4805 kg of Cu, 3574 kg of Cr, 3329 kg of Ni, 2154 kg of Hg, 1168 kg of Cd, 862 kg of As, 409 kg of Co, 216 kg of Sb, 13 kg of Tl, and 19 g toxic equivalent quantity of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans were emitted from 337 MSWI plants scattered in 30 provinces of mainland China in 2017, respectively. HAPs emissions were heavily concentrated in developed coastal provinces and cities. Scenario analysis highlighted the importance of continuous improvement and upgrade on advanced air pollution control devices and MSWI management to meet the future ultra-low emission limits and minimize the harmful impacts of HAPs on atmospheric environment and public health.


Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/análise , China , Dibenzofuranos Policlorados/análise , Incineração , Resíduos Sólidos/análise
18.
J Mater Cycles Waste Manag ; 24(3): 1140-1155, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35317222

RESUMO

​The present study is concerned with an overview of the main aspects of the selective collection from the municipal solid waste in São Paulo City and the limitations of its two automated Material Recovery Facilities (MRFs) to tackle the problem of reducing recyclable plastic waste sent to landfills as rejects. The research aimed to characterize the composition of screened mass flows of as-received mixes from the selective collection at the two MRFs through in situ random collection campaigns. The results of the gravimetric analysis have shown that both MRFs provided higher recovery yields (> 40%) for paper, cardboard, Tetrapack®, ferrous and non-ferrous metals (aluminium), akin to some post-consumer plastics (PET, HDPE/LDPE and PP) that ranged from 38% for PP up to 89% for HDPE, Losses in recovery yields of recyclable plastics after the screening process resulted from lack of clear resin label identification, inefficient materials sortation by households and poor recognition capabilities of the MRFs screening devices to target and segregate specific types of plastics such as PS and vinylic. Packaging design complexity, multi-layered material diversity, and food contaminated post-consumer packaging pose further challenges to improve the plastics recovery capabilities of the two MRFs.

19.
Environ Monit Assess ; 194(4): 276, 2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35286502

RESUMO

Kolkata being a metropolitan city in India has its main municipal solid waste dumpsite situated at Dhapa just adjacent to the East Kolkata Wetlands (Ramsar site). The current prevalent situation at Dhapa is open dumping leading to various contaminations and hazards putting forth the need to look for alternative sites where the landfiilling operation can be shifted to using scientific methods. A user interface (UI)-based analytical hierarchy process (AHP) tool has been developed within the Google Earth Engine (GEE) cloud platform to find out the alternative dumping sites using geospatial layers. AHP function is not available as a native algorithm or developed by any researcher in GEE. The tool has three major functionalities, of which the first one handles the UI elements. The AHP procedure is within another function, and the last function integrates the AHP coefficients to the layers generating the final suitability layer. Users can also upload comparison matrix as GEE asset in the form of CSV file which gets automatically integrated into the AHP to calculate the coefficients and consistency ratio to generate the spatial suitability layers. This approach showcases a generalized AHP function within the GEE environment, which has been done for the first time. The tool is designed in the cloud platform which is dynamic, robust and suitable for use in various AHP-based suitability analysis in environmental monitoring and assessment.


Assuntos
Eliminação de Resíduos , Processo de Hierarquia Analítica , Monitoramento Ambiental/métodos , Sistemas de Informação Geográfica , Eliminação de Resíduos/métodos , Ferramenta de Busca , Instalações de Eliminação de Resíduos
20.
Chemosphere ; 287(Pt 3): 132320, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34826951

RESUMO

Phosphate solubilizing bacteria (PSB) that can withstand high cadmium (Cd) stress is a desired combination for bioremediation. This study evaluated the Cd bioremediation potential of four PSB strains isolated from the contaminated soils of a municipal solid waste (MSW) discarding site (Guwahati, India). PSB strains were cultured in Pikovskaya (PVK) media, which led to higher acid phosphatase (ACP) activity and the release of organic acid. Optical density (OD) measurements were performed to determine the growth pattern of PSB; furthermore, Cd uptake by PSB was evaluated using infrared spectroscopy (IR) and X-Ray Diffraction (XRD) analyses. The 16S rRNA taxonomic analysis revealed that all the four promising PSB strains belonged to either Bacillus sp. or Enterobacter sp. One strain (SM_SS8) demonstrated higher tolerance towards Cd (up to 100 mg L-1). Flow cytometry analysis revealed 70.92%, 46.93% and 20.4% viability of SM_SS8 in 10, 50 and 100 mg L-1, respectively in PVK media containing Cd. This study has therefore substantiated the bioremediation of Cd from polluted soil by the PSB isolates. Thus, experimental results revealed a potential combo benefit, phosphate solubilization along with Cd remediation.


Assuntos
Poluentes do Solo , Solo , Bactérias , Biodegradação Ambiental , Cádmio/análise , Fosfatos , RNA Ribossômico 16S/genética , Microbiologia do Solo , Poluentes do Solo/análise , Instalações de Eliminação de Resíduos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...