Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.012
Filtrar
1.
Regul Toxicol Pharmacol ; : 105672, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38968965

RESUMO

Nitrosamine drug substance related impurities or NDSRIs can be formed if an active pharmaceutical ingredient (API) has an intrinsic secondary amine that can undergo nitrosation. This is a concern as 1) nitrosamines are potentially highly potent carcinogens, 2) secondary amines in API are common, and 3) NDSRIs that might form from such secondary amines will be of unknown carcinogenic potency. Approaches for evaluating NDSRIs include read across, quantum mechanical modeling of reactivity, in vitro mutation data, and transgenic in vivo mutation data. These approaches were used here to assess NDSRIs that could potentially form from the drugs fluoxetine, duloxetine and atomoxetine. Based on a read across informed by modeling of physicochemical properties and mechanistic activation from quantum mechanical modeling, NDSRIs of fluoxetine, duloxetine, and atomoxetine were 10-100-fold less potent compared with highly potent nitrosamines such as NDMA or NDEA. While the NDSRIs were all confirmed to be mutagenic in vitro (Ames assay) and in vivo (TGR) studies, the latter data indicated that the potency of the mutation response was > 4400 ng/day for all compounds- an order of magnitude higher than published regulatory limits for these NDSRIs. The approaches described herein can be used qualitatively to better categorize NDSRIs with respect to potency and inform whether they are in the ICH M7R2-designated Cohort of Concern.

2.
J Sci Food Agric ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38975867

RESUMO

BACKGROUND: Discussion of the benefits of moderate alcohol consumption is ongoing. Broadly, research focusing on ethanol consumption tends to report no benefits. However, studies that distinguish between different types of alcoholic beverages, particularly beers, often reveal positive effects. The present study evaluated the genotoxic and mutagenic effects of moderate chronic consumption of India Pale Ale (IPA) craft beer. Sixty-four adult male Swiss mice were used and divided into control and treatment groups receiving water, IPA beer with 55.23 g of ethanol per liter of beer, aqueous solution with 55.23 g of ethanol per liter, and hop infusion ad libitum for 30 days. After this period, the animals were genetically evaluated with a comet assay. For the ex vivo comet assay, blood was collected and exposed to hydrogen peroxide (H2O2). For the in vivo assay, the alkylating agent cyclophosphamide (CP) was administered to the groups after blood collection and sacrificed after 24 h. Brain, liver, and heart tissues were analyzed. Bone marrow was collected and submitted to the micronucleus test. RESULTS: The groups treated with IPA beer, ethanol, and hops did not show genotoxic and mutagenic action in the blood, brain, heart, or liver. The antigenotoxic action of IPA beer and hops was observed in both in vivo and ex vivo models, showing a similar reduction in DNA damage caused by CP. There was no significant difference between the groups with regard to the formation of micronuclei by CP. CONCLUSION: Moderate chronic consumption of IPA beer and hops infusion showed antigenotoxic effects in mice but no antimutagenic action. © 2024 Society of Chemical Industry.

3.
Drug Chem Toxicol ; : 1-8, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38984405

RESUMO

Mancozeb is a fungicide of the dithiocarbamate functional group, and it is widely used in agriculture to control various fungal diseases. Thus, studies detailing its toxicological characteristics are necessary, as the population may be exposed through the consumption of food or water contaminated with mancozeb. The aim of this study was to evaluate the cytotoxic, genotoxic, and mutagenic potentials of this dithiocarbamate using the Allium cepa L. test system as well as its cytotoxicity in erythrocytes of female rats (Rattus norvegicus). The meristematic roots of A. cepa bulbs were exposed to various concentrations of mancozeb (62.5, 125, 250, and 500 mg/L) for 24, 48, and 72 h to determine cytotoxicity by evaluating the mitotic index (MI), chromosomal aberrations (CA), and nuclear anomalies (NA) for genotoxicity analysis and micronuclei (MN) for mutagenicity analysis. Distilled water and copper sulfate (0.0006 mg/L) were used as the negative control (NC) and positive control (PC), respectively. The MI and the sum of CA and NA of all the mancozeb concentrations showed a significant difference (p ≤ 0.05) in relation to the NC, indicating possible cytotoxicity and genotoxicity induced by mancozeb. Additionally, MN significantly increased with mancozeb concentration from 250 mg/L to 500 mg/L in 24 h when compared to NC. In another study model, mancozeb showed to be cytolytic at concentrations starting from 125 mg/L. Therefore, these results indicate that mancozeb causes cytogenetic alterations and mutagenicity at lower concentrations than those used in agriculture, which emphasizes the need for more care when managing this fungicide.

4.
Regul Toxicol Pharmacol ; 151: 105669, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38936796

RESUMO

Potentially mutagenic impurities are likely to be formed in any drug substance, since their synthesis requires reactive intermediates which may also react with DNA. The ICH M7 guideline, which defines how to risk assess and control mutagenic impurities, was first published in 2014 and is not to be applied retrospectively; however, some impurities have been found above the permitted limits in drug products which were already on the market. This study assessed the implications of applying ICH M7 retrospectively to anti-hypertensive drugs marketed in Brazil by performing a risk assessment and establishing control strategies. The manufacturing processes of 15 drug substances were evaluated and 262 impurities were identified, from which 21% were classified as potentially mutagenic. Most of the impurities were identified below ICH M7 acceptable limits, except for impurities described in a pharmacopoeial monograph. Compendial specifications are defined based on scientific evidence and play an important role in setting quality and safety standards for pharmaceuticals, however there are opportunities for further alignment with ICH guidelines, aiming for a holistic assessment of the impurities profile to ensure the safety of medicines.

5.
Antioxidants (Basel) ; 13(6)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38929134

RESUMO

This explorative study aimed to assess the mutagenicity and genotoxicity of stored-cooked beef patties formulated with and without phenols (7.00 mg of phenols/80-g patty) extracted from olive vegetation water (OVW), as related to the formation of cholesterol oxidation products (COPs) and heterocyclic amines (HCAs). The patties were packaged in a modified atmosphere, sampled during cold storage (4 °C) for 9 days, and grilled at 200 °C. The genotoxicity was evaluated by the Comet assay. The patty extract was found to be genotoxic on primary peripheral blood mononuclear cells (PBMCs), while no mutagenicity was detected. The addition of OVW phenols significantly decreased the genotoxicity of the patty extract and reduced the total COPs content in stored-cooked patties (4.59 times lower than control); however, it did not affect the content of total HCAs (31.51-36.31 ng/patty) and the revertants' number. Therefore, these results demonstrate that the OVW phenols were able to counteract the formation of genotoxic compounds in stored-cooked beef patties.

6.
Life (Basel) ; 14(6)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38929742

RESUMO

Atmospheric nonthermal plasma (ANTP) has rapidly evolved as an innovative tool in biomedicine with various applications, especially in treating skin diseases. In particular, the formation of reactive oxygen species (ROS) and nitrogen species (RNS), which are generated by ANTP, plays an important role in the biological signaling pathways of human cells. Unfortunately, excessive amounts of these reactive species significantly result in cellular damage and cell death induction. To ensure the safe application of ANTP, preclinical in vitro studies must be conducted before proceeding to in vivo or clinical trials involving humans. Our study aimed to investigate adverse effects on genetic substances in murine fibroblast cells exposed to ANTP. Cell viability and proliferation were markedly reduced after exposing the cells with plasma. Both extracellular and intracellular reactive species, especially RNS, were significantly increased upon plasma exposure in the culture medium and the cells. Notably, significant DNA damage in the cells was observed in the cells exposed to plasma. However, plasma was not classified as a mutagen in the Ames test. This suggested that plasma led to the generation of both extracellular and intracellular reactive species, particularly nitrogen species, which affect cell proliferation and are also known to induce genetic damage in fibroblast cells. These results highlight the genotoxic and mutagenic effects of ANTP, emphasizing the need for the cautious selection of plasma intensity in specific applications to avoid adverse side effects resulting from reactive species production.

7.
Biomed Pharmacother ; 177: 116969, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38908200

RESUMO

Cannabidiol (CBD), a naturally occurring cyclic terpenoid found in Cannabis sativa L., is renowned for its diverse pharmacological benefits. Marketed as a remedy for various health issues, CBD products are utilized by patients as a supplementary therapy or post-treatment failure, as well as by healthy individuals seeking promised advantages. Despite its widespread use, information regarding potential adverse effects, especially genotoxic properties, is limited. The present study is focused on the mutagenic and genotoxic activity of a CBD isolate (99.4 % CBD content) and CBD-rich Cannabis sativa L extract (63.6 % CBD content) in vitro. Both CBD samples were non-mutagenic, as determined by the AMES test (OECD 471) but exhibited cytotoxicity for HepG2 cells (∼IC50(4 h) 26 µg/ml, ∼IC50(24 h) 6-8 µg/ml, MTT assay). Noncytotoxic concentrations induced upregulation of genes encoding metabolic enzymes involved in CBD metabolism, and CBD oxidative as well as glucuronide metabolites were found in cell culture media, demonstrating the ability of HepG2 cells to metabolize CBD. In this study, the CBD samples were found non-genotoxic. No DNA damage was observed with the comet assay, and no influence on genomic instability was observed with the cytokinesis block micronucleus and the γH2AX and p-H3 assays. Furthermore, no changes in the expression of genes involved in genotoxic stress response were detected in the toxicogenomic analysis, after 4 and 24 h of exposure. Our comprehensive study contributes valuable insights into CBD's safety profile, paving the way for further exploration of CBD's therapeutic applications and potential adverse effects.

8.
Food Chem ; 456: 139948, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38852444

RESUMO

The natural vanilla market, which generates millions annually, is predominantly dependent on Vanilla planifolia, a species characterized by low genetic variability and susceptibility to pathogens. There is an increasing demand for natural vanilla, prized for its complex, authentic, and superior quality compared to artificial counterparts. Therefore, there is a necessity for innovative production alternatives to ensure a consistent and stable supply of vanilla flavors. In this context, vanilla crop wild relatives (WRs) emerge as promising natural sources of the spice. However, these novel species must undergo toxicity assessments to evaluate potential risks and ensure safety for consumption. This study aimed to assess the non-mutagenic and non-carcinogenic properties of ethanolic extracts from V. bahiana, V. chamissonis, V. cribbiana, and V. planifolia through integrated metabolomic profiling, in vitro toxicity assays, and in silico analyses. The integrated approach of metabolomics, in vitro assays, and in silico analyses has highlighted the need for further safety assessments of Vanilla cribbiana ethanolic extract. While the extracts of V. bahiana, V. chamissonis, and V. planifolia generally demonstrated non-mutagenic properties in the Ames assay, V. cribbiana exhibited mutagenicity at high concentrations (5000 µg/plate) in the TA98 strain without metabolic activation. This finding, coupled with the dose-dependent cytotoxicity observed in WST-1 (Water Soluble Tetrazolium) assays, a colorimetric method that assesses the viability of cells exposed to a test substance, underscores the importance of concentration in the safety evaluation of these extracts. Kaempferol and pyrogallol, identified with higher intensity in V. cribbiana, are potential candidates for in vitro mutagenicity. Although the results are not conclusive, they suggest the safety of these extracts at low concentrations. This study emphasizes the value of an integrated approach in providing a nuanced understanding of the safety profiles of natural products, advocating for cautious use and further research into V. cribbiana mutagenicity.

9.
Chem Biol Interact ; 397: 111088, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38823534

RESUMO

Tris(2-butoxyethyl) phosphate (TBOEP) is an organophosphorus flame retardant ubiquitously present in the environment and even the human body. TBOEP is toxic in multiple tissues, which forms dealkylated and hydroxylated metabolites under incubation with human hepatic microsomes; however, the impact of TBOEP metabolism on its toxicity, particularly mutagenicity (typically requiring metabolic activation), is left unidentified. In this study, the mutagenicity of TBOEP in human hepatoma cell lines (HepG2 and C3A) and the role of specific CYPs were studied. Through molecular docking, TBOEP bound to human CYP1A1, 1B1, 2B6 and 3A4 with energies and conformations favorable for catalyzing reactions, while the conformations of its binding with human CYP1A2 and 2E1 appeared unfavorable. In C3A cells (endogenous CYPs being substantial), TBOEP exposing for 72 h (2-cell cycle) at low micromolar levels induced micronucleus, which was abolished by 1-aminobenzotriazole (inhibitor of CYPs); in HepG2 cells (CYPs being insufficient) TBOEP did not induce micronucleus, whose effect was however potentiated by pretreating the cells with PCB126 (CYP1A1 inducer) or rifampicin (CYP3A4 inducer). TBOEP induced micronucleus in Chinese hamster V79-derived cell lines genetically engineered for stably expressing human CYP1A1 and 3A4, but not in cells expressing the other CYPs. In C3A cells, TBOEP selectively induced centromere protein B-free micronucleus (visualized by immunofluorescence) and PIG-A gene mutations, and elevated γ-H2AX rather than p-H3 (by Western blot) which indicated specific double-strand DNA breaks. Therefore, this study suggests that TBOEP may induce DNA/chromosome breaks and gene mutations in human cells, which requires metabolic activation by CYPs, primarily CYP1A1 and 3A4.


Assuntos
Sistema Enzimático do Citocromo P-450 , Retardadores de Chama , Simulação de Acoplamento Molecular , Animais , Humanos , Retardadores de Chama/toxicidade , Cricetinae , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Mutagênicos/toxicidade , Compostos Organofosforados/toxicidade , Cricetulus , Organofosfatos/toxicidade , Células Hep G2 , Testes para Micronúcleos
10.
PDA J Pharm Sci Technol ; 78(3): 237-311, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38942479

RESUMO

This article describes the development of a representative dataset of extractables and leachables (E&L) from the combined Extractables and Leachables Safety Information Exchange (ELSIE) Consortium and the Product Quality Research Institute (PQRI) published datasets, representing a total of 783 chemicals. A chemical structure-based clustering of the combined dataset identified 142 distinct chemical classes with two or more chemicals across the combined dataset. The majority of these classes (105 chemical classes out of 142) contained chemicals from both datasets, whereas 8 classes contained only chemicals from the ELSIE dataset and 29 classes contain only chemicals from the PQRI dataset. This evaluation also identified classes containing chemicals that were flagged as potentially mutagenic as well as potent (strong or extreme) dermal sensitizers by in silico tools. The prevalence of alerting structures in the E&L datasets was approximately 9% (69 examples) for mutagens and 3% (25 examples) for potent sensitizers. This analysis showed that most (80%; 20 of 25) E&L predicted to be strong or extreme dermal sensitizers were also flagged as potential mutagens. Only two chemical classes, each containing three chemicals (alkyl bromides and isothiocyanates), were uniquely identified in the PQRI dataset and contained chemicals predicted to be potential mutagens and/or potent dermal sensitizers.


Assuntos
Simulação por Computador , Mutagênicos , Medição de Risco/métodos , Mutagênicos/toxicidade , Humanos , Contaminação de Medicamentos/prevenção & controle , Preparações Farmacêuticas/química , Embalagem de Medicamentos/normas
11.
Comput Biol Med ; 178: 108731, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38870727

RESUMO

Non-sugar sweeteners (NSSs) or artificial sweeteners have long been used as food chemicals since World War II. NSSs, however, also raise a concern about their mutagenicity. Evaluating the mutagenic ability of NSSs is crucial for food safety; this step is needed for every new chemical registration in the food and pharmaceutical industries. A computational assessment provides less time, money, and involved animals than the in vivo experiments; thus, this study developed a novel computational method from an ensemble convolutional deep neural network and read-across algorithms, called DeepRA, to classify the mutagenicity of chemicals. The mutagenicity data were obtained from the curated Ames test data set. The DeepRA model was developed using both molecular descriptors and molecular fingerprints. The obtained DeepRA model provides accurate and reliable mutagenicity classification through an independent test set. This model was then used to examine the NSSs-related chemicals, enabling the evaluation of mutagenicity from the NSSs-like substances. Finally, this model was publicly available at https://github.com/taraponglab/deepra for further use in chemical regulation and risk assessment.

12.
Microorganisms ; 12(5)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38792783

RESUMO

The present study involves the precise identification and safety evaluation of Enterococcus casseliflavus KB1733, previously identified using 16S rRNA analysis, through whole-genome sequencing, phenotypic analysis, and preclinical toxicity studies. Analyses based on the genome sequencing data confirm the identity of KB1733 as E. casseliflavus and show that the genes related to vancomycin resistance are only present on the chromosome, while no virulence factor genes are present on the chromosome or plasmid. Phenotypic analyses of antibiotic resistance and hemolytic activity also indicated no safety concerns. A bacterial reverse mutation test showed there was no increase in revertant colonies of heat-killed KB1733. An acute toxicity test employing heat-killed KB1733 at a dose of 2000 mg/kg body weight in rats resulted in no deaths and no weight gain or other abnormalities in the general condition of the animals, with renal depression foci and renal cysts only occurring at the same frequency as in the control. Taking the background data into consideration, the effects on the kidneys observed in the current study were not caused by KB1733. Our findings suggest that KB1733 is non-pathogenic to humans/animals, although further studies involving repeated oral toxicity tests and/or clinical tests are required.

13.
J Pharm Anal ; 14(5): 100919, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38799236

RESUMO

The presence of N-nitroso compounds, particularly N-nitrosamines, in pharmaceutical products has raised global safety concerns due to their significant genotoxic and mutagenic effects. This systematic review investigates their toxicity in active pharmaceutical ingredients (APIs), drug products, and pharmaceutical excipients, along with novel analytical strategies for detection, root cause analysis, reformulation strategies, and regulatory guidelines for nitrosamines. This review emphasizes the molecular toxicity of N-nitroso compounds, focusing on genotoxic, mutagenic, carcinogenic, and other physiological effects. Additionally, it addresses the ongoing nitrosamine crisis, the development of nitrosamine-free products, and the importance of sensitive detection methods and precise risk evaluation. This comprehensive overview will aid molecular biologists, analytical scientists, formulation scientists in research and development sector, and researchers involved in management of nitrosamine-induced toxicity and promoting safer pharmaceutical products.

14.
Aquat Toxicol ; 271: 106926, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38713993

RESUMO

Worldwide, the indiscriminate and escalating application of pesticides has led to extensive impacts on both the environment and non-target organisms. Phytoremediation, which employs plants to decontaminate environments, is a potential strategy for the mitigation of this damage. The present study assessed the phytoremedial potential of Salvinia auriculata, an aquatic macrophyte known to be effective for the removal of environmental contaminants. In the laboratory, Dendropsophus minutus tadpoles were exposed to different concentrations (0.035, 0.1, 1.0, and 1.5 mg/l) of the commercial insecticide Fipronil 800wg in two treatments - (i) simple exposure for 96 h, and (ii) exposure for 168 h in aquariums containing S. auriculata. In the first experiment, a mortality rate of 33.3 % was recorded at the highest Fipronil concentration (1.5 mg/l), and genotoxic parameters increased at all concentrations except 0.035 mg/L, in comparison with the control. In the second experiment, phytoremediation occurred at all the concentrations tested, with lower frequencies of cells with micronuclei, and binucleated, anucleated, and pyknotic nuclei being observed, in comparison with the first experiment. These findings highlight the potential effectiveness of S. auriculata for the phytoremediation of environments contaminated by pesticides and contribute to the understanding of the benefits of this approach for the protection and preservation of aquatic biodiversity.


Assuntos
Biodegradação Ambiental , Inseticidas , Larva , Pirazóis , Poluentes Químicos da Água , Animais , Larva/efeitos dos fármacos , Pirazóis/toxicidade , Poluentes Químicos da Água/toxicidade , Inseticidas/toxicidade , Anuros/fisiologia
15.
Comput Biol Med ; 176: 108560, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38754218

RESUMO

Mutagenicity assessment plays a pivotal role in the safety evaluation of chemicals, pharmaceuticals, and environmental compounds. In recent years, the development of robust computational models for predicting chemical mutagenicity has gained significant attention, driven by the need for efficient and cost-effective toxicity assessments. In this paper, we proposed AMPred-CNN, an innovative Ames mutagenicity prediction model based on Convolutional Neural Networks (CNNs), uniquely employing molecular structures as images to leverage CNNs' powerful feature extraction capabilities. The study employs the widely used benchmark mutagenicity dataset from Hansen et al. for model development and evaluation. Comparative analyses with traditional ML models on different molecular features reveal substantial performance enhancements. AMPred-CNN outshines these models, demonstrating superior accuracy, AUC, F1 score, MCC, sensitivity, and specificity on the test set. Notably, AMPred-CNN is further benchmarked against seven recent ML and DL models, consistently showcasing superior performance with an impressive AUC of 0.954. Our study highlights the effectiveness of CNNs in advancing mutagenicity prediction, paving the way for broader applications in toxicology and drug development.


Assuntos
Testes de Mutagenicidade , Mutagênicos , Redes Neurais de Computação , Mutagênicos/toxicidade
16.
Regul Toxicol Pharmacol ; 150: 105640, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38754805

RESUMO

N-Nitrosamine impurities, including nitrosamine drug substance-related impurities (NDSRIs), have challenged pharmaceutical industry and regulators alike and affected the global drug supply over the past 5 years. Nitrosamines are a class of known carcinogens, but NDSRIs have posed additional challenges as many lack empirical data to establish acceptable intake (AI) limits. Read-across analysis from surrogates has been used to identify AI limits in some cases; however, this approach is limited by the availability of robustly-tested surrogates matching the structural features of NDSRIs, which usually contain a diverse array of functional groups. Furthermore, the absence of a surrogate has resulted in conservative AI limits in some cases, posing practical challenges for impurity control. Therefore, a new framework for determining recommended AI limits was urgently needed. Here, the Carcinogenic Potency Categorization Approach (CPCA) and its supporting scientific rationale are presented. The CPCA is a rapidly-applied structure-activity relationship-based method that assigns a nitrosamine to 1 of 5 categories, each with a corresponding AI limit, reflecting predicted carcinogenic potency. The CPCA considers the number and distribution of α-hydrogens at the N-nitroso center and other activating and deactivating structural features of a nitrosamine that affect the α-hydroxylation metabolic activation pathway of carcinogenesis. The CPCA has been adopted internationally by several drug regulatory authorities as a simplified approach and a starting point to determine recommended AI limits for nitrosamines without the need for compound-specific empirical data.


Assuntos
Carcinógenos , Contaminação de Medicamentos , Nitrosaminas , Nitrosaminas/análise , Nitrosaminas/toxicidade , Carcinógenos/análise , Carcinógenos/toxicidade , Contaminação de Medicamentos/prevenção & controle , Humanos , Animais , Relação Estrutura-Atividade , Medição de Risco , Testes de Carcinogenicidade
17.
Environ Monit Assess ; 196(5): 456, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630192

RESUMO

The increasing pressure on freshwater systems due to intensive anthropogenic use is a big challenge in central-northern Namibia and its catchment areas, the Kunene and the Kavango Rivers, and the Cuvelai-Etosha Basin, that provide water for more than 1 million people. So far, there is no comprehensive knowledge about the ecological status and only few knowledge about the water quality. Therefore, it is crucial to learn about the state of the ecosystem and the ecological effects of pollutants to ensure the safe use of these resources. The surface waters of the three systems were sampled, and three bioassays were applied on three trophic levels: algae, daphnia, and zebrafish embryos. Additionally, in vitro assays were performed to analyze mutagenicity (Ames fluctuation), dioxin-like potential (micro-EROD), and estrogenicity (YES) by mechanism-specific effects. The results show that acute toxicity to fish embryos and daphnia has mainly been detected at all sites in the three catchment areas. The systems differ significantly from each other, with the sites in the Iishana system showing the highest acute toxicity. At the cellular level, only weak effects were identified, although these were stronger in the Iishana system than in the two perennial systems. Algae growth was not inhibited, and no cytotoxic effects could be detected in any of the samples. Mutagenic effects and an estrogenic potential were detected at three sites in the Iishana system. These findings are critical in water resource management as the effects can adversely impact the health of aquatic ecosystems and the organisms within them.


Assuntos
Ecossistema , Peixe-Zebra , Humanos , Animais , Namíbia , Monitoramento Ambiental , Bioensaio , Daphnia , Estrona , Mutagênicos
18.
Bioorg Chem ; 147: 107379, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38643567

RESUMO

Coronaviruses are a group of enveloped viruses with non-segmented, single-stranded, and positive-sense RNA genomes. It belongs to the 'Coronaviridae family', responsible for various diseases, including the common cold, SARS, and MERS. The COVID-19 pandemic, which began in March 2020, has affected 209 countries, infected over a million people, and claimed over 50,000 lives. Significant efforts have been made by repurposing several approved drugs including antiviral, to combat the COVID-19 pandemic. Molnupiravir is found to be the first orally acting efficacious drug to treat COVID-19 cases. It was approved for medical use in the UK in November 2021 and other countries, including USFDA, which granted approval an emergency use authorization (EUA) for treating adults with mild to moderate COVID-19 patients. Considering the importance of molnupiravir, the present review deals with its various synthetic strategies, pharmacokinetics, bio-efficacy, toxicity, and safety profiles. The comprehensive information along with critical analysis will be very handy for a wide range of audience including medicinal chemists in the arena of antiviral drug discovery especially anti-viral drugs against any variant of COVID-19.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , COVID-19 , Citidina , Hidroxilaminas , SARS-CoV-2 , Humanos , Antivirais/farmacologia , Antivirais/química , Antivirais/uso terapêutico , Antivirais/síntese química , Hidroxilaminas/uso terapêutico , Hidroxilaminas/química , Hidroxilaminas/farmacologia , COVID-19/virologia , SARS-CoV-2/efeitos dos fármacos , Citidina/análogos & derivados , Citidina/uso terapêutico , Citidina/farmacologia , Citidina/química , Citidina/síntese química , Uridina/farmacologia , Uridina/análogos & derivados , Uridina/síntese química , Uridina/química , Uridina/uso terapêutico , Pandemias , Betacoronavirus/efeitos dos fármacos , Infecções por Coronavirus/tratamento farmacológico , Pneumonia Viral/tratamento farmacológico
19.
Artigo em Inglês | MEDLINE | ID: mdl-38566478

RESUMO

There has been growing interest in the use of human-derived metabolically competent cells for genotoxicity testing. The HepaRG cell line is considered one of the most promising cell models because it is TP53-proficient and retains many characteristics of primary human hepatocytes. In recent years, HepaRG cells, cultured in both a traditional two-dimensional (2D) format and as more advanced in-vivo-like 3D spheroids, have been employed in assays that measure different types of genetic toxicity endpoints, including DNA damage, mutations, and chromosomal damage. This review summarizes published studies that have used HepaRG cells for genotoxicity assessment, including cell model evaluation studies and risk assessment for various compounds. Both 2D and 3D HepaRG models can be adapted to several high-throughput genotoxicity assays, generating a large number of data points that facilitate quantitative benchmark concentration modeling. With further validation, HepaRG cells could serve as a unique, human-based new alternative methodology for in vitro genotoxicity testing.

20.
J Toxicol Environ Health A ; 87(12): 516-531, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38619152

RESUMO

The bark extract from Endopleura uchi has been widely used in traditional medicine to treat gynecological-related disorders, diabetes, and dyslipidemias albeit without scientific proof. In addition, E. uchi bark extract safety, especially regarding mutagenic activities, is not known. The aim of this study was to determine the chemical composition, antitumor, and toxicological parameters attributed to an E. uchi bark aqueous extract. The phytochemical constitution was assessed by colorimetric and chromatographic analyzes. The antiproliferative effect was determined using sulforhodamine B (SRB) assay using 4 cancer cell lines. Cytotoxic and genotoxic activities were assessed utilizing MTT and comet assays, respectively, while mutagenicity was determined through micronucleus and Salmonella/microsome assays. The chromatographic analysis detected predominantly the presence of gallic acid and isoquercitrin. The antiproliferative effect was more pronounced in human colon adenocarcinoma (HT-29) and human breast cancer (MCF-7) cell lines. In the MTT assay, the extract presented an IC50 = 39.1 µg/ml and exhibited genotoxic (comet assay) and mutagenic (micronucleus test) activities at 20 and 40 µg/ml in mouse fibroblast cell line (L929) and mutagenicity in the TA102 and TA97a strains in the absence of S9 mix. Data demonstrated that E. uchi bark possesses bioactive compounds which exert cytotoxic and genotoxic effects that might be associated with its antitumor potential. Therefore, E. uchi bark aqueous extract consumption needs to be approached with caution in therapeutic applications.


Assuntos
Adenocarcinoma , Antineoplásicos , Neoplasias do Colo , Humanos , Camundongos , Animais , Extratos Vegetais/química , Casca de Planta/química , Dano ao DNA , Água , Mutagênicos , Células MCF-7
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...