Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
J Med Genet ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38508706

RESUMO

PURPOSE: To determine the degree to which likely causal missense variants of single-locus traits in domesticated species have features suggestive of pathogenicity in a human genomic context. METHODS: We extracted missense variants from the Online Mendelian Inheritance in Animals database for nine animals (cat, cattle, chicken, dog, goat, horse, pig, rabbit and sheep), mapped coordinates to the human reference genome and annotated variants using genome analysis tools. We also searched a private commercial laboratory database of genetic testing results from >400 000 individuals with suspected rare disorders. RESULTS: Of 339 variants that were mappable to the same residue and gene in the human genome, 56 had been previously classified with respect to pathogenicity: 31 (55.4%) pathogenic/likely pathogenic, 1 (1.8%) benign/likely benign and 24 (42.9%) uncertain/other. The odds ratio for a pathogenic/likely pathogenic classification in ClinVar was 7.0 (95% CI 4.1 to 12.0, p<0.0001), compared with all other germline missense variants in these same 220 genes. The remaining 283 variants disproportionately had allele frequencies and REVEL scores that supported pathogenicity. CONCLUSION: Cross-species comparisons could facilitate the interpretation of rare missense variation. These results provide further support for comparative medical genomics approaches that connect big data initiatives in human and veterinary genetics.

2.
J Med Genet ; 61(5): 490-501, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38296633

RESUMO

INTRODUCTION: KCTD15 encodes an oligomeric BTB domain protein reported to inhibit neural crest formation through repression of Wnt/beta-catenin signalling, as well as transactivation by TFAP2. Heterozygous missense variants in the closely related paralogue KCTD1 cause scalp-ear-nipple syndrome. METHODS: Exome sequencing was performed on a two-generation family affected by a distinctive phenotype comprising a lipomatous frontonasal malformation, anosmia, cutis aplasia of the scalp and/or sparse hair, and congenital heart disease. Identification of a de novo missense substitution within KCTD15 led to targeted sequencing of DNA from a similarly affected sporadic patient, revealing a different missense mutation. Structural and biophysical analyses were performed to assess the effects of both amino acid substitutions on the KCTD15 protein. RESULTS: A heterozygous c.310G>C variant encoding p.(Asp104His) within the BTB domain of KCTD15 was identified in an affected father and daughter and segregated with the phenotype. In the sporadically affected patient, a de novo heterozygous c.263G>A variant encoding p.(Gly88Asp) was present in KCTD15. Both substitutions were found to perturb the pentameric assembly of the BTB domain. A crystal structure of the BTB domain variant p.(Gly88Asp) revealed a closed hexameric assembly, whereas biophysical analyses showed that the p.(Asp104His) substitution resulted in a monomeric BTB domain likely to be partially unfolded at physiological temperatures. CONCLUSION: BTB domain substitutions in KCTD1 and KCTD15 cause clinically overlapping phenotypes involving craniofacial abnormalities and cutis aplasia. The structural analyses demonstrate that missense substitutions act through a dominant negative mechanism by disrupting the higher order structure of the KCTD15 protein complex.


Assuntos
Domínio BTB-POZ , Anormalidades Craniofaciais , Face , Humanos , Anormalidades Múltiplas , Proteínas Correpressoras/genética , Anormalidades Craniofaciais/genética , Displasia Ectodérmica , Face/anormalidades , Mutação de Sentido Incorreto/genética , Síndrome
3.
J Med Genet ; 61(2): 163-170, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-37816627

RESUMO

BACKGROUND: Complex regional pain syndrome type 1 (CRPS-1) is a rare, disabling and sometimes chronic disorder usually arising after a trauma. This exploratory study examined whether patients with chronic CRPS-1 have a different genetic profile compared with those who do not have the condition. METHODS: Exome sequencing was performed to seek altered non-synonymous SNP allele frequencies in a discovery cohort of well-characterised patients with chronic CRPS-1 (n=34) compared with population databases. Identified SNP alleles were confirmed by Sanger sequencing and sought in a replication cohort (n=50). Gene expression of peripheral blood macrophages was assessed. RESULTS: In the discovery cohort, the rare allele frequencies of four non-synonymous SNPs were statistically increased. The replication cohort confirmed this finding. In a chronic pain cohort, these alleles were not overexpressed. In total, 25 out of 84 (29.8%) patients with CRPS-1 expressed a rare allele. The SNPs were rs41289586 in ANO10, rs28360457 in P2RX7, rs1126930 in PRKAG1 and rs80308281 in SLC12A9. Males were more likely than females to have a rare SNP allele, 8 out of 14 (57.1%) vs 17 out of 70 (24.3%) (Fisher's p=0.023). ANO10, P2RX7, PRKAG1 and SLC12A9 were all expressed in macrophages from healthy human controls. CONCLUSION: A single SNP in each of the genes ANO10, P2RX7, PRKAG1 and SLC12A9 was associated with developing chronic CRPS-1, with more males than females expressing these rare alleles. Our work suggests the possibility that a permissive genetic background is an important factor in the development of CRPS-1.


Assuntos
Síndromes da Dor Regional Complexa , Masculino , Feminino , Humanos , Síndromes da Dor Regional Complexa/genética , Síndromes da Dor Regional Complexa/epidemiologia , Frequência do Gene , Polimorfismo de Nucleotídeo Único/genética , Alelos , Patrimônio Genético
4.
J Med Genet ; 61(2): 117-124, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-37399313

RESUMO

BACKGROUND: Otosclerosis is a common cause of adult-onset progressive hearing loss, affecting 0.3%-0.4% of the population. It results from dysregulation of bone homeostasis in the otic capsule, most commonly leading to fixation of the stapes bone, impairing sound conduction through the middle ear. Otosclerosis has a well-known genetic predisposition including familial cases with apparent autosomal dominant mode of inheritance. While linkage analysis and genome-wide association studies suggested an association with several genomic loci and with genes encoding structural proteins involved in bone formation or metabolism, the molecular genetic pathophysiology of human otosclerosis is yet mostly unknown. METHODS: Whole-exome sequencing, linkage analysis, generation of CRISPR mutant mice, hearing tests and micro-CT. RESULTS: Through genetic studies of kindred with seven individuals affected by apparent autosomal dominant otosclerosis, we identified a disease-causing variant in SMARCA4, encoding a key component of the PBAF chromatin remodelling complex. We generated CRISPR-Cas9 transgenic mice carrying the human mutation in the mouse SMARCA4 orthologue. Mutant Smarca4+/E1548K mice exhibited marked hearing impairment demonstrated through acoustic startle response and auditory brainstem response tests. Isolated ossicles of the auditory bullae of mutant mice exhibited a highly irregular structure of the incus bone, and their in situ micro-CT studies demonstrated the anomalous structure of the incus bone, causing disruption in the ossicular chain. CONCLUSION: We demonstrate that otosclerosis can be caused by a variant in SMARCA4, with a similar phenotype of hearing impairment and abnormal bone formation in the auditory bullae in transgenic mice carrying the human mutation in the mouse SMARCA4 orthologue.


Assuntos
Perda Auditiva , Otosclerose , Adulto , Humanos , Camundongos , Animais , Otosclerose/genética , Otosclerose/cirurgia , Vesícula/complicações , Estudo de Associação Genômica Ampla , Reflexo de Sobressalto , Fenótipo , Camundongos Transgênicos , Mutação , DNA Helicases/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genética
5.
Arq. neuropsiquiatr ; 82(4): s00441781463, 2024. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1557143

RESUMO

Abstract Background Hereditary transthyretin amyloidosis (ATTRv) is an inherited, progressive, and fatal disease still largely underdiagnosed. Mutations in the transthyretin (TTR) gene cause the TTR protein to destabilize, misfold, aggregate, and deposit in body tissues, which makes ATTRv a disease with heterogeneous clinical phenotype. Objective To describe the long-term efficacy and safety of inotersen therapy in patients with ATTRv peripheral neuropathy (ATTRv-PN). Methods Patients who completed the NEURO-TTR pivotal study and the NEURO-TTR OLE open-label extension study migrated to the present study and were followed-up for at least 18 more months to an average of 67 months and up to 76 months since day 1 of the inotersen therapy (D1-first dose of inotersen). Disease progression was evaluated by standard measures. Results Ten ATTRv-PN patients with Val30Met mutation were included. The mean disease duration on D1 was of 3 years, and the mean age of the patients was of 46.8 years. During an additional 18-month follow up, neurological function, based on the Neuropathy Impairment Score and the Polyneuropathy Disability Score, functionality aspects (Karnofsky Performance Status), and nutritional and cardiac aspects were maintained. No new safety signs have been noted. Conclusion The treatment with inotersen was effective and well tolerated for the average of 67 months and up to 76 months. Our results are consistent with those of larger phase-III trials.


Resumo Antecedentes Amiloidose hereditária por transtirretina (ATTRv) é uma doença hereditária, progressiva e fatal ainda largamente subdiagnosticada. Mutações no gene transtirretina (TTR) promovem desestabilização, desdobramento, agregação e depósito da proteína TTR em tecidos do corpo, o que faz da ATTRv uma doença de fenótipo clínico heterogêneo. Objetivo Descrever a eficácia e segurança da terapia com inotersena no longo prazo em pacientes com neuropatia periférica ATTRv (ATTRv-PN). Métodos Pacientes que completaram o estudo pivotal NEURO-TTR e o estudo de extensão aberta NEURO-TTR OLE migraram para este estudo e foram acompanhados por no mínimo 18 meses adicionais, em média por 67 meses, e por até 76 meses, desde o dia 1 da terapia com inotersena (D1-primeira dose de inotersena). A progressão da doença foi avaliada por medidas padronizadas. Resultados Dez pacientes com ATTRv-PN com mutação Val30Met foram incluídos. A duração média da doença no D1 era de 3 anos, e a média de idade dos pacientes era de 46,8 anos. Durante o período de acompanhamento adicional de 18 meses, a função neurológica, baseada no Neuropathy Impairment Score e no Polyneuropathy Disability Score, os aspectos de funcionalidade (Karnofsky Performance Status), nutricional e cardíacos estavam mantidos. Não se observou nenhum novo sinal de segurança. Conclusão O tratamento com inotersena foi eficaz e bem tolerado por 67 meses em média, e por até 76 meses. Nossos resultados são consistentes com os de estudos maiores de fase III.

6.
Rev. neurol. (Ed. impr.) ; 77(6): 141-145, Juli-Dic. 2023. tab, ilus
Artigo em Espanhol | IBECS | ID: ibc-225559

RESUMO

Introducción: La encefalopatía KIF1A-associated-neurological-disorder (KAND) es un grupo de patologías neurodegenerativas progresivas de diversa gravedad ocasionadas por mutaciones en el gen KIF1A (kinesin family member 1A) situado en el cromosoma 2q37.3. Dicho gen codifica una proteína de la familia de las cinesinas 3 que participa en el transporte anterógrado de las vesículas presinápticas dependientes del trifosfato de adenosina a través de microtúbulos neuronales. Casos clínicos: Se describen cuatro pacientes, con edades entre 1 y 13 años, con mediana de inicio de los síntomas de cinco meses (rango intercuartílico: 0-11 meses), lo que supone una prevalencia aproximada de 1 de cada 64.000 menores de 14 años para nuestra población pediátrica. Clínicamente, destacaron discapacidad intelectual, hipotonía axial y paraparesia espástica en 4/4, y síntomas cerebelosos en 2/4. Otras manifestaciones fueron incontinencia urinaria, polineuropatía sensitivomotora y alteración conductual. Destaca, en el caso 2, la alteración en el videoelectroencefalograma, que mostraba epilepsia focal con generalización secundaria y focalidad paroxística occipitoparietal posterior derecha con transmisión contralateral. También mostraba crisis oculógiras en supraversión instantáneas pluricotidianas sin correlato electroencefalográfico. Conclusiones: En nuestra serie, la encefalopatía KAND, fenotipo trastorno neurodegenerativo con retraso global del desarrollo, de la marcha y espasticidad progresiva de los miembros inferiores, atrofia cerebelosa y/o afectación de la corteza visual, fue predominante, y en uno de los casos asoció polineuropatía sensitivomotora. La mutación de novo missense fue más frecuente y en tres casos es la primera descripción conocida. Un caso mostraba epilepsia focal y crisis oculógiras no epilépticas.(AU)


Introduction: KIF1A-associated-neurological-disorder (KAND) encephalopathy is a group of progressive neurodegenerative pathologies of varying severity caused by mutations in the KIF1A gene (Kinesin family member 1A) located on chromosome 2q37.3. This gene encodes a protein of the kinesin-3 family that participates in the ATP-dependent anterograde transport of presynaptic vesicles through neuronal microtubules. Case report: Four patients are described, aged 1-13 years, with a median onset of symptoms of 5 months (IQR 0-11 months), which represents an approximate prevalence of 1 per 64,000 children under 14 years of age for our pediatric population. Clinically, intellectual disability (ID), axial hypotonia and spastic paraparesis stood out in 4/4 and cerebellar symptoms in 2/4. Other manifestations were urinary incontinence, sensory-motor polyneuropathy, and behavioral alteration. In case 2, the alteration in the video-EEG stands out, which showed focal epilepsy with secondary generalization and right posterior occipito-parietal paroxysmal focality with contralateral transmission. She also showed instantaneous pluricotidian supraversion oculogyric seizures without EEG correlates. Conclusions: In our series, KAND encephalopathy had a predominant neurodegenerative disorder phenotype with global developmental delay, gait delay, and progressive spasticity of the lower limbs, cerebellar atrophy, and/or involvement of the visual cortex, which in one case was associated with sensory-motor polyneuropathy. The de novo missense mutation was more frequent and in three cases it is the first known description. One case showed focal epilepsy and nonepileptic oculogyric seizures.(AU)


Assuntos
Humanos , Masculino , Feminino , Recém-Nascido , Lactente , Pré-Escolar , Criança , Adolescente , Encefalopatias/diagnóstico por imagem , Mutação de Sentido Incorreto , Cinesinas , Deficiência Intelectual , Fenótipo , Microtúbulos , Neurologia , Doenças do Sistema Nervoso , Pacientes Internados , Exame Físico , Prevalência
7.
J Med Genet ; 60(11): 1057-1060, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37076289

RESUMO

Germline (likely) pathogenic TP53 variants cause Li-Fraumeni syndrome (LFS), typically associated with sarcoma, brain, breast and adrenal tumours. Although classical LFS is highly penetrant, the p.R337H variant, common in Brazil, is typically associated with childhood adrenal tumours and an older onset age of other LFS tumours. Previously, we reported the finding of p.P152L in 6 children from 5 families with adrenal tumours. We have now assessed cancer risks over the subsequent 23 years, and in one further family with p.P152L. Cancer risks were compared with those in the 11 families known to our service with classical dominant negative mutations affecting neighbouring codons 245 and 248 (codon 245/248).Compared with codon 245/248 families, we found lower age-related risks for all non-adrenal tumours in codon 152 families (p<0.0001) with an absence of breast cancer as compared with 100% penetrance by age 36 years in codon 245/248 families (p<0.0001), and lower rates of sarcoma in non-irradiated individuals (p=0.0001). Although there were more adrenal tumours in codon 152 families (6/26 individuals, 1/27 for codon 245/248), this was not significant (p=0.05).Understanding codon-specific cancer risks in LFS is important for accurate personalised cancer risk assessment, and subsequent prevention and early detection strategies.

8.
J Med Genet ; 60(9): 859-865, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36690427

RESUMO

BACKGROUND: Hereditary maculopathy is a group of clinically and genetically heterogeneous disorders. With distinctive clinical features, subtypes of macular atrophy may correlate with their genetic defects. METHODS: Seven patients from six families with adolescent/adult-onset maculopathy were examined in this clinical case series. A detailed medical history and eye examination were performed. Genomic DNA sequencing was performed using whole exome sequencing or direct sequencing of retinol dehydrogenase 12 (RDH12) coding exons. RESULTS: Seven patients, including one male and six female patients, with pseudocoloboma-like maculopathy had biallelic missense RDH12 mutations. The most common mutant allele found in six of the seven patients was p.Ala269Gly. The average disease onset was at age 19.3 years, and visual acuity ranged from count fingers to 1.0. Most of the patients had mild myopic refraction. Common findings on fundus examination and spectral-domain optical coherence tomography include discrete margins of pseudocoloboma-like macular lesions with variable degrees of chorioretinal atrophy, excavation of retinal tissue and pigmentary changes mainly in the macular area. The electroretinograms were relatively normal to subnormal in all participants. CONCLUSIONS: Progressive macular degeneration with a relatively normal peripheral retina and subsequent development of a pseudocoloboma-like appearance were the main clinical features in patients with compound heterozygous RDH12 missense mutations. Genetic testing may be crucial for early diagnosis and may play a key role in the development of future treatment strategies.


Assuntos
Degeneração Macular , Doenças Retinianas , Adulto , Adolescente , Humanos , Masculino , Feminino , Adulto Jovem , Mutação de Sentido Incorreto/genética , Mutação , Análise Mutacional de DNA , Degeneração Macular/diagnóstico , Degeneração Macular/genética , Doenças Retinianas/diagnóstico , Doenças Retinianas/genética , Atrofia , Oxirredutases do Álcool/genética
9.
J Med Genet ; 60(3): 223-232, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35595279

RESUMO

BACKGROUND: RAC3 encodes a Rho family small GTPase that regulates the behaviour and organisation of actin cytoskeleton and intracellular signal transduction. Variants in RAC3 can cause a phenotypically heterogeneous neurodevelopmental disorder with structural brain anomalies and dysmorphic facies. The pathomechanism of this recently discovered genetic disorder remains unclear. METHODS: We investigated an early adolescent female with intellectual disability, drug-responsive epilepsy and white matter abnormalities. Through exome sequencing, we identified the novel de novo variant (NM_005052.3): c.83T>C (p.Phe28Ser) in RAC3. We then examined the pathophysiological significance of the p.F28S variant in comparison with the recently reported disease-causing p.Q61L variant, which results in a constitutively activated version of RAC3. RESULTS: In vitro analyses revealed that the p.F28S variant was spontaneously activated by substantially increased intrinsic GTP/GDP-exchange activity and bound to downstream effectors tested, such as PAK1 and MLK2. The variant suppressed the differentiation of primary cultured hippocampal neurons and caused cell rounding with lamellipodia. In vivo analyses using in utero electroporation showed that acute expression of the p.F28S variant caused migration defects of excitatory neurons and axon growth delay during corticogenesis. Notably, defective migration was rescued by a dominant negative version of PAK1 but not MLK2. CONCLUSION: Our results indicate that RAC3 is critical for brain development and the p.F28S variant causes morphological and functional defects in cortical neurons, likely due to the hyperactivation of PAK1.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Adolescente , Humanos , Feminino , Mutação com Ganho de Função , Transtornos do Neurodesenvolvimento/genética , Neurogênese , Deficiência Intelectual/genética , Diferenciação Celular , Proteínas rac de Ligação ao GTP/genética , Proteínas rac de Ligação ao GTP/metabolismo
10.
Ann Dermatol ; 34(2): 139-143, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35450306

RESUMO

Trichorhinophalangeal syndrome (TRPS) is a rare autosomal dominant genetic disorder characterized by distinctive craniofacial features, skeletal abnormalities and short stature; it is classified into three subtypes according to genetics and clinical manifestations. We report a Han Chinese family with 2 TRPS type III patients, the proband and his mother, with typical clinical presentation. There were also 3 ankylosing spondylitis (AS) patients in this family, the proband's mother and 2 uncles. A missense mutation, c.2762G>A (p.Arg921Gln), in the transcriptional repressor GATA binding 1 (TRPS1) gene was detected in the proband and his mother. The association between TRPS and AS and the diagnostic criteria for TRPS are discussed.

11.
J Hematol ; 11(1): 29-33, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35356632

RESUMO

Factor VII (FVII) deficiency manifests as prolonged prothrombin time (PT) and reduced FVII activity. We report a case of an asymptomatic 60-year-old gentleman with discrepancies in PT and FVII coagulant activity levels (FVII:C) on three different thromboplastin reagents used. Further sequence analysis on genomic DNA showed double heterozygosity for c.1025G>A p.Arg342Gln and c.194C>G p.Ala65Gly in the F7 gene. To date, p.Ala65Gly in exon 2 of the F7 gene represents a novel variant in patients with FVII deficiency and is classified as likely pathogenic. Computational prediction tools support a deleterious effect on the gene. The genotype-phenotype association and the clinical significance of this exon 2 missense variant is proposed in this case report.

13.
J Med Genet ; 58(10): 712-716, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-32820033

RESUMO

OBJECTIVE: To determine the potential disease association between variants in LMBRD2 and complex multisystem neurological and developmental delay phenotypes. METHODS: Here we describe a series of de novo missense variants in LMBRD2 in 10 unrelated individuals with overlapping features. Exome sequencing or genome sequencing was performed on all individuals, and the cohort was assembled through GeneMatcher. RESULTS: LMBRD2 encodes an evolutionary ancient and widely expressed transmembrane protein with no known disease association, although two paralogues are involved in developmental and metabolic disorders. Exome or genome sequencing revealed rare de novo LMBRD2 missense variants in 10 individuals with developmental delay, intellectual disability, thin corpus callosum, microcephaly and seizures. We identified five unique variants and two recurrent variants, c.1448G>A (p.Arg483His) in three cases and c.367T>C (p.Trp123Arg) in two cases. All variants are absent from population allele frequency databases, and most are predicted to be deleterious by multiple in silico damage-prediction algorithms. CONCLUSION: These findings indicate that rare de novo variants in LMBRD2 can lead to a previously unrecognised early-onset neurodevelopmental disorder. Further investigation of individuals harbouring LMBRD2 variants may lead to a better understanding of the function of this ubiquitously expressed gene.


Assuntos
Deficiências do Desenvolvimento/diagnóstico , Deficiências do Desenvolvimento/genética , Transtornos das Habilidades Motoras/diagnóstico , Transtornos das Habilidades Motoras/genética , Mutação de Sentido Incorreto , Malformações do Sistema Nervoso/diagnóstico , Malformações do Sistema Nervoso/genética , Proteínas de Transporte Nucleocitoplasmático/genética , Alelos , Substituição de Aminoácidos , Estudos de Coortes , Predisposição Genética para Doença , Genótipo , Humanos , Fenótipo
14.
BMC Med Genet ; 21(1): 22, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-32013889

RESUMO

BACKGROUND: Methylmalonic acidemia (MMA), which is an autosomal recessive metabolic disorder, is caused by mutations in methylmalonyl-CoA mutase (MUT) gene. As a result, the conversion of methylmalonyl-CoA to succinyl-CoA is impaired in this disorder, leading to a wide range of clinical manifestations varying from no signs or symptoms to severe lethargy and metabolic crisis in newborn infants. Since identification of novel mutations in MUT gene can help discover the exact pathogenesis of MMA and also use these disease-causing mutations in prenatal diagnosis, this study was conducted to uncover the possible mutations in an Iranian couple with a deceased offspring clinically diagnosed as having organic acidemia. Moreover, to prevent the occurrence of the mutation in the next pregnancy, we took the advantage of pre-implantation genetic diagnosis (PGD), which resulted in a successful pregnancy. CASE PRESENTATION: The affected individual was a 15-month-old boy who passed away due to aspiration pneumonia. The child presented at the age of 3 months with lethargy, protracted vomiting, hypotonia, and decreased level of consciousness. To find the mutated gene, Next Generation Sequencing (NGS) was performed as carrier testing for the parents and the results revealed a novel (private) heterozygous missense mutation in MUT gene (c.1055A > G, p.Q352R). After performing PGD on three blastomeres, one was identified as being homozygous wild-type that was followed by successful pregnancy. CONCLUSIONS: Our study identified a novel, deleterious, heterozygous missense mutation in MUT gene in a couple and helps to consider the genetic counselling and prenatal diagnosis more seriously for this family with clinical phenotypes of organic acidemia.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/genética , Metilmalonil-CoA Mutase/genética , Diagnóstico Pré-Implantação , Acil Coenzima A/genética , Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Erros Inatos do Metabolismo dos Aminoácidos/fisiopatologia , Criança , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Homozigoto , Humanos , Lactente , Recém-Nascido , Irã (Geográfico) , Masculino , Mutação de Sentido Incorreto/genética , Fenótipo , Gravidez
15.
Pesqui. bras. odontopediatria clín. integr ; 19(1): 4709, 01 Fevereiro 2019. ilus
Artigo em Inglês | LILACS, BBO - Odontologia | ID: biblio-998221

RESUMO

Objective: To determine the DUSP6 gene mutation in three generations of Malaysian Malay subjects having Class III malocclusion. Material and Methods: Genetic analyses of DUSP6 gene were carried out in 30 subjects by selecting three individuals representing three generations, respectively, from ten Malaysian Malay families having Class III malocclusion and 30 healthy controls. They were submitted Clinical Evaluation to clinical examination, lateral cephalometric radiographs, dental casts, and/ or facial and intra-oral photographs. Buccal cell was taken from each participant of Class III malocclusion and control groups. DNA extractions from buccal cell were carried out using Gentra puregene buccal cell kit. Bio Edit Sequence Alignment Editor software was used to see the sequencing result. Results: A heterozygous missense mutation c.1094C>T (p. Thr 365 Ile) was identified in DUSP6 gene in three members of one family with Class III malocclusion, whereas no mutation was found in the control group. Conclusion: Current study successfully identified a missense mutation in DUSP6 gene among one Malaysian Malay family affected by Class III malocclusion. The outcome of this study broadened the mutation spectrum of Class III malocclusion and the importance of DUSP6 gene in skeletal functions.


Assuntos
Humanos , Masculino , Feminino , Adolescente , Adulto , Variação Genética/genética , Cefalometria/métodos , Mutação de Sentido Incorreto , Má Oclusão , Arábia , Estudos de Casos e Controles , Fotografia Dentária/instrumentação
16.
Chinese Journal of Neurology ; (12): 478-486, 2019.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-756023

RESUMO

Objective To investigate the clinical manifestations,imaging features,molecular genetic characteristics and possible pathogenic mechanisms of hereditary cerebral small vessel disease (CSVD) caused by heterozygous mutation of HtrA serine protease-1 (HTRA1) gene.Methods The clinical data of a Chinese Han family with CSVD carrying a heterozygous mutation of HTRA 1 gene,which came from the Department of Neurology,Henan Provincial People's Hospital in March 2018,were analyzed retrospectively.The clinical and radiographic features were summarized.Several high-throughput whole exon high-throughput sequencing was used to capture the mutation sites and the Sanger sequencing was used to validate the results.The family diagram was drawn and the 3D model construction and mutation function prediction were performed using silico tools.The relevant literature was reviewed and the pathogenesis was explored.Results The pedigree map showed that the family had an autosomal dominant inheritance pattern.Three generations of the family were investigated,and three family members in the same generation suffered from the disease.The first symptom of the proband was diplopia at the age of 39,accompanied by recurrent stroke,cognitive impairment and mood disorders,without alopecia.Head magnetic resonance imaging revealed bilateral diffuse,symmetric lesions,multiple lacunar infarcts,perivascular space,and microbleeds.The elder sister of the proband developed symptoms of left limb weakness at the age of 46,whose other clinical and imaging features were similar to those of the proband.The proband's mother died at the age of 59 due to repeated strokes.Whole exon sequencing indicated heterozygous missense mutation at c.821G>A locus of HTRA1 gene in the proband and her 4th elder sibling,which was a new pathogenic mutation after consulting several mutation sites of databases.Function prediction suggested pathogenicity.Conclusions The heterozygous mutation of c.821G>A in HTRA1 gene may lead to autosomal dominant CVSD.This genetic type should be given clinical attention.

18.
Rev. méd. Chile ; 146(7): 929-932, jul. 2018. tab, graf
Artigo em Espanhol | LILACS | ID: biblio-961480

RESUMO

We report a 21 years old woman, without offspring, with diabetes mellitus diagnosed at 17 years of age, without ketosis or weight loss. Her body mass index was 18 kg/m2. Her C peptide was normal (2.3 ng/ml) and diabetes mellitus type 1 autoantibodies were negative. A monogenic diabetes Maturity Onset Diabetes of the Young (MODY) was proposed. Her family study disclosed a diabetic father and a brother with altered fasting glucose levels. The University of Exeter score for MODY yielded a 75.5% probability of MODY2. In the genetic-molecular study of the glucokinase gene (MODY2), the patient had a mutation at position 1343 of exon 10, corresponding to a heterozygous substitution of guanine by adenine (1343 G >A). The same mutation was found in her father and brother. This mutation is different from those previously described in the literature. The described change determines that a glycine is replaced by aspartic at amino acid 448 of the enzyme (non-synonymous substitution). The diagnosis of MODY2 was therefore confirmed in the patient and her father. The mutation was inherited by paternal line.


Assuntos
Humanos , Feminino , Adulto Jovem , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/genética , Chile , Glucoquinase , Mutação
19.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-712148

RESUMO

Objective To analyze the phenotype and genotype of inherited dysfibrinogenemia pedigree associated with a novel heterozygous and deletion mutation in the FGG gene,and to investigate its molecular mechanism.Methods The clinical data were collected from the proband found at our hospital and her family members in April 2016.The activity plasma fibrinogen(Fg:C), activated partial thromboplastin time(APTT),prothrombin time(PT), thrombin time(TT)were detected by coagulation method and the antigen plasma fibrinogen(Fg:Ag), D-Dimer(D-D), fibrinogen degradation products (FDPs)were analyzed by immunoturbidimetry method.All of the exons and exon-intron boundaries of the genes of FGA, FGB and FGG with the fibrinogen(Fg)were amplified by PCR and followed by direct sequencing.And further verification were performed by cloning sequence and non-denatured polyacrylamide gel electrophoresis and silver staining.The conservatism of mutated gene locus were analyzed by ClustalX-2.1-win.The change of the protein spatial structure and the intermolecular forces with mutation were analyzed by Pymol.Results The Fg:C of the proband was significantly reduced(0.30 g/L)and the Fg:Ag of the proband was normal(2.00 g/L).Their Fg:C were both significantly reduced and the Fg:Ag were both normal(0.42 g/L,2.09 g/L & 0.47 g/L,2.42 g/L, respectively), these were found in her mother and grandma.Genetic analysis revealed a novel heterozygous and deletion mutation with c.944 _c.952 delCCTTTGATG in exon 8 of FGG gene in the proband,predicting a heterozygous 289_291delAla,Phe,Asp mutation.The same mutations were carried by her mother and grandma, but her father and grandpa were normal.Homology analysis indicated that the Ala 289,Phe290 and Asp291 were maintained highly conservative in homogenous species.Protein model analysis found that the original hydrogen bonds were disappeared when the deletion mutation happened with the Ala 289,Phe290 and Asp291.Conclusion The heterozygous and deletion mutation with 289_291delAla,Phe,Asp in the γchain of fibrinogen were identified that could cause the rearrangement of the Fg molecular space structure and the reduction of the structure stability,so the mutation probably underly the dysfibrinogenemia in this pedigree.(Chin J Lab Med,2018, 41:305-311)

20.
Chinese Journal of Neurology ; (12): 618-622, 2018.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-710994

RESUMO

To screen the pathogenic mutation location in a genetic family with the neurofibromatosis (NF1) by the next generation sequencing and analyze the clinical phenotype,Illumina Miseq sequencing was applied to capture and analyze the target regions of NF1 family's probands,and furtherly find out the suspicious mutations,as well as to verify the family members by Sanger sequencing.Two rare variants were identified in proband,including the heterozygous missense mutation c.C3649T (p.P1217S) in KIF1B gene and the missense mutation c.T6311C (p.L2104P) on exon 41 of NF1 gene (NM_000267.3).The amino acid at position 2104 was found to be changed from leucine to proline in NF1.The protein prediction SIFT and Polyphen-2 values were 0,0.997,which predicted a conformational change in the encoded protein and eventually affected its function.The mutation c.T6311C in NF1 gene was detected in all patients in this family,which showed genetic co-segregation.The clinical phenotype was neurofibroma in the spinal canal.There were no café au lait spots,iris Lisch nodules,scoliosis,tinnitus,heating loss,or elevated intracranial pressure.The missense mutation c.T6311C (p.L2104P) in NF1 gene might be the genetic cause of this hereditary disease of neurofibromatosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...