Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
1.
Front Bioeng Biotechnol ; 12: 1463377, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39380895

RESUMO

Myoelectric control, the use of electromyogram (EMG) signals generated during muscle contractions to control a system or device, is a promising input, enabling always-available control for emerging ubiquitous computing applications. However, its widespread use has historically been limited by the need for user-specific machine learning models because of behavioural and physiological differences between users. Leveraging the publicly available 612-user EMG-EPN612 dataset, this work dispels this notion, showing that true zero-shot cross-user myoelectric control is achievable without user-specific training. By taking a discrete approach to classification (i.e., recognizing the entire dynamic gesture as a single event), a classification accuracy of 93.0% for six gestures was achieved on a set of 306 unseen users, showing that big data approaches can enable robust cross-user myoelectric control. By organizing the results into a series of mini-studies, this work provides an in-depth analysis of discrete cross-user models to answer unknown questions and uncover new research directions. In particular, this work explores the number of participants required to build cross-user models, the impact of transfer learning for fine-tuning these models, and the effects of under-represented end-user demographics in the training data, among other issues. Additionally, in order to further evaluate the performance of the developed cross-user models, a completely new dataset was created (using the same recording device) that includes known covariate factors such as cross-day use and limb-position variability. The results show that the large data models can effectively generalize to new datasets and mitigate the impact of common confounding factors that have historically limited the adoption of EMG-based inputs.

2.
Sci Rep ; 14(1): 20634, 2024 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-39232018

RESUMO

The redundancy present within the musculoskeletal system may offer a non-invasive source of signals for movement augmentation, where the set of muscle activations that do not produce force/torque (muscle-to-force null-space) could be controlled simultaneously to the natural limbs. Here, we investigated the viability of extracting movement augmentation control signals from the muscles of the wrist complex. Our study assessed (i) if controlled variation of the muscle activation patterns in the wrist joint's null-space is possible; and (ii) whether force and null-space cursor targets could be reached concurrently. During the null-space target reaching condition, participants used muscle-to-force null-space muscle activation to move their cursor towards a displayed target while minimising the exerted force as visualised through the cursor's size. Initial targets were positioned to require natural co-contraction in the null-space and if participants showed a consistent ability to reach for their current target, they would rotate 5 ∘ incrementally to generate muscle activation patterns further away from their natural co-contraction. In contrast, during the concurrent target reaching condition participants were required to match a target position and size, where their cursor position was instead controlled by their exerted flexion-extension and radial-ulnar deviation, while its size was changed by their natural co-contraction magnitude. The results collected from 10 participants suggest that while there was variation in each participant's co-contraction behaviour, most did not possess the ability to control this variation for muscle-to-force null-space virtual reaching. In contrast, participants did show a direction and target size dependent ability to vary isometric force and co-contraction activity concurrently. Our results indicate the limitations of using the muscle-to-force null-space activity of joints with a low level of redundancy as a possible command signal for movement augmentation.


Assuntos
Contração Muscular , Músculo Esquelético , Articulação do Punho , Punho , Humanos , Músculo Esquelético/fisiologia , Masculino , Feminino , Punho/fisiologia , Adulto , Articulação do Punho/fisiologia , Contração Muscular/fisiologia , Eletromiografia , Movimento/fisiologia , Adulto Jovem , Fenômenos Biomecânicos
3.
Sensors (Basel) ; 24(17)2024 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-39275739

RESUMO

Gait phase recognition systems based on surface electromyographic signals (EMGs) are crucial for developing advanced myoelectric control schemes that enhance the interaction between humans and lower limb assistive devices. However, machine learning models used in this context, such as Linear Discriminant Analysis (LDA) and Support Vector Machine (SVM), typically experience performance degradation when modeling the gait cycle with more than just stance and swing phases. This study introduces a generalized phasor-based feature extraction approach (PHASOR) that captures spatial myoelectric features to improve the performance of LDA and SVM in gait phase recognition. A publicly available dataset of 40 subjects was used to evaluate PHASOR against state-of-the-art feature sets in a five-phase gait recognition problem. Additionally, fully data-driven deep learning architectures, such as Rocket and Mini-Rocket, were included for comparison. The separability index (SI) and mean semi-principal axis (MSA) analyses showed mean SI and MSA metrics of 7.7 and 0.5, respectively, indicating the proposed approach's ability to effectively decode gait phases through EMG activity. The SVM classifier demonstrated the highest accuracy of 82% using a five-fold leave-one-trial-out testing approach, outperforming Rocket and Mini-Rocket. This study confirms that in gait phase recognition based on EMG signals, novel and efficient muscle synergy information feature extraction schemes, such as PHASOR, can compete with deep learning approaches that require greater processing time for feature extraction and classification.


Assuntos
Eletromiografia , Marcha , Máquina de Vetores de Suporte , Humanos , Eletromiografia/métodos , Marcha/fisiologia , Análise Discriminante , Processamento de Sinais Assistido por Computador , Masculino , Feminino , Algoritmos , Adulto , Aprendizado Profundo
4.
Sensors (Basel) ; 24(15)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39123885

RESUMO

Pattern recognition (PR)-based myoelectric control systems can naturally provide multifunctional and intuitive control of upper limb prostheses and restore lost limb function, but understanding their robustness remains an open scientific question. This study investigates how limb positions and electrode shifts-two factors that have been suggested to cause classification deterioration-affect classifiers' performance by quantifying changes in the class distribution using each factor as a class and computing the repeatability and modified separability indices. Ten intact-limb participants took part in the study. Linear discriminant analysis (LDA) was used as the classifier. The results confirmed previous studies that limb positions and electrode shifts deteriorate classification performance (14-21% decrease) with no difference between factors (p > 0.05). When considering limb positions and electrode shifts as classes, we could classify them with an accuracy of 96.13 ± 1.44% and 65.40 ± 8.23% for single and all motions, respectively. Testing on five amputees corroborated the above findings. We have demonstrated that each factor introduces changes in the feature space that are statistically new class instances. Thus, the feature space contains two statistically classifiable clusters when the same motion is collected in two different limb positions or electrode shifts. Our results are a step forward in understanding PR schemes' challenges for myoelectric control of prostheses and further validation needs be conducted on more amputee-related datasets.


Assuntos
Amputados , Membros Artificiais , Eletrodos , Eletromiografia , Reconhecimento Automatizado de Padrão , Humanos , Eletromiografia/métodos , Masculino , Adulto , Reconhecimento Automatizado de Padrão/métodos , Amputados/reabilitação , Feminino , Análise Discriminante , Adulto Jovem , Extremidades/fisiologia
5.
Phys Eng Sci Med ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954380

RESUMO

Recognizing user intention in reach-to-grasp motions is a critical challenge in rehabilitation engineering. To address this, a Machine Learning (ML) algorithm based on the Extreme Learning Machine (ELM) was developed for identifying motor actions using surface Electromyography (sEMG) during continuous reach-to-grasp movements, involving multiple Degrees of Freedom (DoFs). This study explores feature extraction methods based on time domain and autoregressive models to evaluate ELM performance under different conditions. The experimental setup encompassed variations in neuron size, time windows, validation with each muscle, increase in the number of features, comparison with five conventional ML-based classifiers, inter-subjects variability, and temporal dynamic response. To evaluate the efficacy of the proposed ELM-based method, an openly available sEMG dataset containing data from 12 participants was used. Results highlight the method's performance, achieving Accuracy above 85%, F-score above 90%, Recall above 85%, Area Under the Curve of approximately 84% and compilation times (computational cost) of less than 1 ms. These metrics significantly outperform standard methods (p < 0.05). Additionally, specific trends were found in increasing and decreasing performance in identifying specific tasks, as well as variations in the continuous transitions in the temporal dynamics response. Thus, the ELM-based method effectively identifies continuous reach-to-grasp motions through myoelectric data. These findings hold promise for practical applications. The method's success prompts future research into implementing it for more reliable and effective Human-Machine Interface (HMI) control. This can revolutionize real-time upper limb rehabilitation, enabling natural and complex Activities of Daily Living (ADLs) like object manipulation. The robust results encourages further research and innovative solutions to improve people's quality of life through more effective interventions.

6.
J Neural Eng ; 21(4)2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39079541

RESUMO

Objective.The use of electromyogram (EMG) signals recorded from the wrist is emerging as a desirable input modality for human-machine interaction (HMI). Although forearm-based EMG has been used for decades in prosthetics, there has been comparatively little prior work evaluating the performance of wrist-based control, especially in online, user-in-the-loop studies. Furthermore, despite different motivating use cases for wrist-based control, research has mostly adopted legacy prosthesis control evaluation frameworks.Approach.Gaining inspiration from rhythm games and the Schmidt's law speed-accuracy tradeoff, this work proposes a new temporally constrained evaluation environment with a linearly increasing difficulty to compare the online usability of wrist and forearm EMG. Compared to the more commonly used Fitts' Law-style testing, the proposed environment may offer different insights for emerging use cases of EMG as it decouples the machine learning algorithm's performance from proportional control, is easily generalizable to different gesture sets, and enables the extraction of a wide set of usability metrics that describe a users ability to successfully accomplish a task at a certain time with different levels of induced stress.Main results.The results suggest that wrist EMG-based control is comparable to that of forearm EMG when using traditional prosthesis control gestures and can even be better when using fine finger gestures. Additionally, the results suggest that as the difficulty of the environment increased, the online metrics and their correlation to the offline metrics decreased, highlighting the importance of evaluating myoelectric control in real-time evaluations over a range of difficulties.Significance.This work provides valuable insights into the future design and evaluation of myoelectric control systems for emerging HMI applications.


Assuntos
Eletromiografia , Antebraço , Punho , Humanos , Eletromiografia/métodos , Antebraço/fisiologia , Punho/fisiologia , Masculino , Adulto , Feminino , Adulto Jovem , Sistemas On-Line , Jogos de Vídeo , Algoritmos
7.
Bioengineering (Basel) ; 11(5)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38790340

RESUMO

In this paper, we propose a daily living situation where objects in a kitchen can be grasped and stored in specific containers using a virtual robot arm operated by different myoelectric control modes. The main goal of this study is to prove the feasibility of providing virtual environments controlled through surface electromyography that can be used for the future training of people using prosthetics or with upper limb motor impairments. We propose that simple control algorithms can be a more natural and robust way to interact with prostheses and assistive robotics in general than complex multipurpose machine learning approaches. Additionally, we discuss the advantages and disadvantages of adding intelligence to the setup to automatically assist grasping activities. The results show very good performance across all participants who share similar opinions regarding the execution of each of the proposed control modes.

8.
J Neural Eng ; 21(3)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38742365

RESUMO

Objective.An active myoelectric interface responds to the user's muscle signals to enable movements. Machine learning can decode user intentions from myoelectric signals. However, machine learning-based interface control lacks continuous, intuitive feedback about task performance, needed to facilitate the acquisition and retention of myoelectric control skills.Approach.We propose DistaNet as a neural network-based framework that extracts smooth, continuous, and low-dimensional signatures of the hand grasps from multi-channel myoelectric signals and provides grasp-specific biofeedback to the users.Main results.Experimental results show its effectiveness in decoding user gestures and providing biofeedback, helping users retain the acquired motor skills.Significance.We demonstrates myoelectric skill retention in a pattern recognition setting for the first time.


Assuntos
Biorretroalimentação Psicológica , Eletromiografia , Força da Mão , Humanos , Eletromiografia/métodos , Biorretroalimentação Psicológica/métodos , Biorretroalimentação Psicológica/fisiologia , Força da Mão/fisiologia , Masculino , Feminino , Adulto , Adulto Jovem , Destreza Motora/fisiologia , Redes Neurais de Computação
9.
J Neural Eng ; 21(3)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38722304

RESUMO

Discrete myoelectric control-based gesture recognition has recently gained interest as a possible input modality for many emerging ubiquitous computing applications. Unlike the continuous control commonly employed in powered prostheses, discrete systems seek to recognize the dynamic sequences associated with gestures to generate event-based inputs. More akin to those used in general-purpose human-computer interaction, these could include, for example, a flick of the wrist to dismiss a phone call or a double tap of the index finger and thumb to silence an alarm. Moelectric control systems have been shown to achieve near-perfect classification accuracy, but in highly constrained offline settings. Real-world, online systems are subject to 'confounding factors' (i.e. factors that hinder the real-world robustness of myoelectric control that are not accounted for during typical offline analyses), which inevitably degrade system performance, limiting their practical use. Although these factors have been widely studied in continuous prosthesis control, there has been little exploration of their impacts on discrete myoelectric control systems for emerging applications and use cases. Correspondingly, this work examines, for the first time, three confounding factors and their effect on the robustness of discrete myoelectric control: (1)limb position variability, (2)cross-day use, and a newly identified confound faced by discrete systems (3)gesture elicitation speed. Results from four different discrete myoelectric control architectures: (1) Majority Vote LDA, (2) Dynamic Time Warping, (3) an LSTM network trained with Cross Entropy, and (4) an LSTM network trained with Contrastive Learning, show that classification accuracy is significantly degraded (p<0.05) as a result of each of these confounds. This work establishes that confounding factors are a critical barrier that must be addressed to enable the real-world adoption of discrete myoelectric control for robust and reliable gesture recognition.


Assuntos
Eletromiografia , Gestos , Reconhecimento Automatizado de Padrão , Humanos , Eletromiografia/métodos , Masculino , Reconhecimento Automatizado de Padrão/métodos , Feminino , Adulto , Adulto Jovem , Membros Artificiais
10.
J Neuroeng Rehabil ; 21(1): 70, 2024 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702813

RESUMO

Despite its rich history of success in controlling powered prostheses and emerging commercial interests in ubiquitous computing, myoelectric control continues to suffer from a lack of robustness. In particular, EMG-based systems often degrade over prolonged use resulting in tedious recalibration sessions, user frustration, and device abandonment. Unsupervised adaptation is one proposed solution that updates a model's parameters over time based on its own predictions during real-time use to maintain robustness without requiring additional user input or dedicated recalibration. However, these strategies can actually accelerate performance deterioration when they begin to classify (and thus adapt) incorrectly, defeating their own purpose. To overcome these limitations, we propose a novel adaptive learning strategy, Context-Informed Incremental Learning (CIIL), that leverages in situ context to better inform the prediction of pseudo-labels. In this work, we evaluate these CIIL strategies in an online target acquisition task for two use cases: (1) when there is a lack of training data and (2) when a drastic and enduring alteration in the input space has occurred. A total of 32 participants were evaluated across the two experiments. The results show that the CIIL strategies significantly outperform the current state-of-the-art unsupervised high-confidence adaptation and outperform models trained with the conventional screen-guided training approach, even after a 45-degree electrode shift (p < 0.05). Consequently, CIIL has substantial implications for the future of myoelectric control, potentially reducing the training burden while bolstering model robustness, and leading to improved real-time control.


Assuntos
Eletromiografia , Humanos , Masculino , Adulto , Feminino , Adulto Jovem , Aprendizagem/fisiologia , Membros Artificiais , Aprendizado de Máquina , Desempenho Psicomotor/fisiologia
11.
Front Bioeng Biotechnol ; 12: 1376000, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38665814

RESUMO

Effective upper-limb rehabilitation for severely impaired stroke survivors is still missing. Recent studies endorse novel motor rehabilitation approaches such as robotic exoskeletons and virtual reality systems to restore the function of the paretic limb of stroke survivors. However, the optimal way to promote the functional reorganization of the central nervous system after a stroke has yet to be uncovered. Electromyographic (EMG) signals have been employed for prosthetic control, but their application to rehabilitation has been limited. Here we propose a novel approach to promote the reorganization of pathological muscle activation patterns and enhance upper-limb motor recovery in stroke survivors by using an EMG-controlled interface to provide personalized assistance while performing movements in virtual reality (VR). We suggest that altering the visual feedback to improve motor performance in VR, thereby reducing the effect of deviations of the actual, dysfunctional muscle patterns from the functional ones, will actively engage patients in motor learning and facilitate the restoration of functional muscle patterns. An EMG-controlled VR interface may facilitate effective rehabilitation by targeting specific changes in the structure of muscle synergies and in their activations that emerged after a stroke-offering the possibility to provide rehabilitation therapies addressing specific individual impairments.

12.
Front Rehabil Sci ; 5: 1345364, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38500790

RESUMO

Introduction: Myoelectric pattern recognition systems have shown promising control of upper limb powered prostheses and are now commercially available. These pattern recognition systems typically record from up to 8 muscle sites, whereas other control systems use two-site control. While previous offline studies have shown 8 or fewer sites to be optimal, real-time control was not evaluated. Methods: Six individuals with no limb absence and four individuals with a transradial amputation controlled a virtual upper limb prosthesis using pattern recognition control with 8 and 16 channels of EMG. Additionally, two of the individuals with a transradial amputation performed the Assessment for Capacity of Myoelectric Control (ACMC) with a multi-articulating hand and wrist prosthesis with the same channel count conditions. Results: Users had significant improvements in control when using 16 compared to 8 EMG channels including decreased classification error (p = 0.006), decreased completion time (p = 0.019), and increased path efficiency (p = 0.013) when controlling a virtual prosthesis. ACMC scores increased by more than three times the minimal detectable change from the 8 to the 16-channel condition. Discussion: The results of this study indicate that increasing EMG channel count beyond the clinical standard of 8 channels can benefit myoelectric pattern recognition users.

13.
J Neural Eng ; 21(3)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38489845

RESUMO

Objective.The advent of surgical reconstruction techniques has enabled the recreation of myoelectric controls sites that were previously lost due to amputation. This advancement is particularly beneficial for individuals with higher-level arm amputations, who were previously constrained to using a single degree of freedom (DoF) myoelectric prostheses due to the limited number of available muscles from which control signals could be extracted. In this study, we explore the use of surgically created electro-neuromuscular constructs to intuitively control multiple bionic joints during daily life with a participant who was implanted with a neuromusculoskeletal prosthetic interface.Approach.We sequentially increased the number of controlled joints, starting at a single DoF allowing to open and close the hand, subsequently adding control of the wrist (2 DoF) and elbow (3 DoF).Main results.We found that the surgically created electro-neuromuscular constructs allow for intuitive simultaneous and proportional control of up to three degrees of freedom using direct control. Extended home-use and the additional bionic joints resulted in improved prosthesis functionality and disability outcomes.Significance.Our findings indicate that electro-neuromuscular constructs can aid in restoring lost functionality and thereby support a person who lost their arm in daily-life tasks.


Assuntos
Membros Artificiais , Humanos , Masculino , Desenho de Prótese , Eletromiografia/métodos , Amputados/reabilitação , Atividades Cotidianas
14.
Bioengineering (Basel) ; 11(2)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38391605

RESUMO

The design of human-machine interfaces of occupational exoskeletons is essential for their successful application, but at the same time demanding. In terms of information gain, biosensoric methods such as surface electromyography (sEMG) can help to achieve intuitive control of the device, for example by reduction of the inherent time latencies of a conventional, non-biosensoric, control scheme. To assess the reliability of sEMG onset detection under close to real-life circumstances, shoulder sEMG of 55 healthy test subjects was recorded during seated free arm lifting movements based on assembly tasks. Known algorithms for sEMG onset detection are reviewed and evaluated regarding application demands. A constant false alarm rate (CFAR) double-threshold detection algorithm was implemented and tested with different features. Feature selection was done by evaluation of signal-to-noise-ratio (SNR), onset sensitivity and precision, as well as timing error and deviation. Results of visual signal inspection by sEMG experts and kinematic signals were used as references. Overall, a CFAR algorithm with Teager-Kaiser-Energy-Operator (TKEO) as feature showed the best results with feature SNR = 14.48 dB, 91% sensitivity, 93% precision. In average, sEMG analysis hinted towards impending movements 215 ms before measurable kinematic changes.

15.
Front Bioeng Biotechnol ; 12: 1329209, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38318193

RESUMO

Myoelectric pattern recognition (MPR) has evolved into a sophisticated technology widely employed in controlling myoelectric interface (MI) devices like prosthetic and orthotic robots. Current MIs not only enable multi-degree-of-freedom control of prosthetic limbs but also demonstrate substantial potential in consumer electronics. However, the non-stationary random characteristics of myoelectric signals poses challenges, leading to performance degradation in practical scenarios such as electrode shifting and switching new users. Conventional MIs often necessitate meticulous calibration, imposing a significant burden on users. To address user frustration during the calibration process, researchers have focused on identifying MPR methods that alleviate this burden. This article categorizes common scenarios that incur calibration burdens as based on data distribution shift and based on dynamic data categories. Then further investigated and summarized the popular robust MPR algorithms used to reduce the user's calibration burden. We categorize these algorithms as based on data manipulate, feature manipulation and, model structure. And describes the scenarios to which each method is applicable and the conditions required for calibration. Finally, this review is concluded with the advantages of robust MPR and the remaining challenges and future opportunities.

16.
J Neural Eng ; 21(1)2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38225863

RESUMO

Objective.Most existing machine learning models for myoelectric control require a large amount of data to learn user-specific characteristics of the electromyographic (EMG) signals, which is burdensome. Our objective is to develop an approach to enable the calibration of a pre-trained model with minimal data from a new myoelectric user.Approach.We trained a random forest (RF) model with EMG data from 20 people collected during the performance of multiple hand grips. To adapt the decision rules for a new user, first, the branches of the pre-trained decision trees were pruned using the validation data from the new user. Then new decision trees trained merely with data from the new user were appended to the pruned pre-trained model.Results.Real-time myoelectric experiments with 18 participants over two days demonstrated the improved accuracy of the proposed approach when compared to benchmark user-specific RF and the linear discriminant analysis models. Furthermore, the RF model that was calibrated on day one for a new participant yielded significantly higher accuracy on day two, when compared to the benchmark approaches, which reflects the robustness of the proposed approach.Significance.The proposed model calibration procedure is completely source-free, that is, once the base model is pre-trained, no access to the source data from the original 20 people is required. Our work promotes the use of efficient, explainable, and simple models for myoelectric control.


Assuntos
Membros Artificiais , Algoritmo Florestas Aleatórias , Humanos , Eletromiografia/métodos , Gestos , Calibragem , Extremidade Superior
17.
Biomimetics (Basel) ; 8(3)2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37504205

RESUMO

Degenerative diseases and injuries that compromise hand movement reduce individual autonomy and tend to cause financial and psychological problems to their family nucleus. To mitigate these limitations, over the past decade, hand exoskeletons have been designed to rehabilitate or enhance impaired hand movements. Although promising, these devices still have limitations, such as weight and cost. Moreover, the movements performed are not kinematically compatible with the joints, thereby reducing the achievements of the rehabilitation process. This article presents the biomimetic design of a soft hand exoskeleton actuated using artificial tendons designed to achieve low weight, volume, and cost, and to improve kinematic compatibility with the joints, comfort, and the sensitivity of the hand by allowing direct contact between the hand palm and objects. We employed two twisted string actuators and Bowden cables to move the artificial tendons and perform the grasping and opening of the hand. With this configuration, the heavy part of the system was reallocated to a test bench, allowing for a lightweight set of just 232 g attached to the arm. The system was triggered by the myoelectric signals of the biceps captured from the user's skin to encourage the active participation of the user in the process. The device was evaluated by five healthy subjects who were asked to simulate a paralyzed hand, and manipulate different types of objects and perform grip strength. The results showed that the system was able to identify the intention of movement of the user with an accuracy of 90%, and the orthosis was able to enhance the ability of handling objects with gripping force up to 1.86 kgf.

18.
Biomimetics (Basel) ; 8(3)2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37504216

RESUMO

Myoelectric control for prosthetic hands is an important topic in the field of rehabilitation. Intuitive and intelligent myoelectric control can help amputees to regain upper limb function. However, current research efforts are primarily focused on developing rich myoelectric classifiers and biomimetic control methods, limiting prosthetic hand manipulation to simple grasping and releasing tasks, while rarely exploring complex daily tasks. In this article, we conduct a systematic review of recent achievements in two areas, namely, intention recognition research and control strategy research. Specifically, we focus on advanced methods for motion intention types, discrete motion classification, continuous motion estimation, unidirectional control, feedback control, and shared control. In addition, based on the above review, we analyze the challenges and opportunities for research directions of functionality-augmented prosthetic hands and user burden reduction, which can help overcome the limitations of current myoelectric control research and provide development prospects for future research.

19.
Biomed Eng Lett ; 13(3): 353-373, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37519867

RESUMO

Surface electromyography (sEMG) meets extensive applications in the field of prosthesis in the current period. The effectiveness of sEMG in prosthesis applications has been verified by numerous revolutionary developments and extensive research attempts. A large volume of research and literature works have explored and validated the vast use of these signals in prostheses as an assistive technology. The objective of this paper is to conduct a systematic review and offer a detailed overview of the work record in the prosthesis and myoelectric interfaces framework. This review utilized a systematic search strategy to identify published articles discussing the state-of-the-art applications of sEMG in prostheses (including upper limb prosthesis and lower limb prostheses). Relevant studies were identified using electronic databases such as PubMed, IEEE Explore, SCOPUS, ScienceDirect, Google Scholar and Web of Science. Out of 3791 studies retrieved from the databases, 188 articles were found to be potentially relevant (after screening of abstracts and application of inclusion-exclusion criteria) and included in this review. This review presents an investigative analysis of sEMG-based prosthetic applications to assist the readers in making further advancements in this field. It also discusses the fundamental advantages and disadvantages of using sEMG in prosthetic applications. It also includes some important guidelines to follow in order to improve the performance of sEMG-based prosthesis. The findings of this study support the widespread use of sEMG in prosthetics. It is concluded that sEMG-based prosthesis technology, still in its sprouting phase, requires significant explorations for further development. Supplementary investigations are necessary in the direction of making a seamless mechanism of biomechatronics for sEMG-based prosthesis by cohesive efforts of robotic researchers and biomedical engineers.

20.
ACS Nano ; 17(11): 9661-9672, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37196348

RESUMO

Development and implementation of neuroprosthetic hands is a multidisciplinary field at the interface between humans and artificial robotic systems, which aims at replacing the sensorimotor function of the upper-limb amputees as their own. Although prosthetic hand devices with myoelectric control can be dated back to more than 70 years ago, their applications with anthropomorphic robotic mechanisms and sensory feedback functions are still at a relatively preliminary and laboratory stage. Nevertheless, a recent series of proof-of-concept studies suggest that soft robotics technology may be promising and useful in alleviating the design complexity of the dexterous mechanism and integration difficulty of multifunctional artificial skins, in particular, in the context of personalized applications. Here, we review the evolution of neuroprosthetic hands with the emerging and cutting-edge soft robotics, covering the soft and anthropomorphic prosthetic hand design and relating bidirectional neural interactions with myoelectric control and sensory feedback. We further discuss future opportunities on revolutionized mechanisms, high-performance soft sensors, and compliant neural-interaction interfaces for the next generation of neuroprosthetic hands.


Assuntos
Amputados , Membros Artificiais , Robótica , Humanos , Mãos , Extremidade Superior , Desenho de Prótese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA