Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Biomed ; 5(1): 31, 2024 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-39117956

RESUMO

Sestrin2 (Sesn2) has been previously confirmed to be a stress-response molecule. However, the influence of Sesn2 on myogenic differentiation remains elusive. This study was conducted to analyze the role of Sesn2 in the myogenic differentiation of C2C12 myoblasts and related aspects in mdx mice, an animal model of Duchenne muscular dystrophy (DMD). Our results showed that knockdown of Sesn2 reduced the myogenic differentiation capacity of C2C12 myoblasts. Predictive analysis from two databases suggested that miR-182-5p is a potential regulator of Sesn2. Further experimental validation revealed that overexpression of miR-182-5p decreased both the protein and mRNA levels of Sesn2 and inhibited myogenesis of C2C12 myoblasts. These findings suggest that miR-182-5p negatively regulates myogenesis by repressing Sesn2 expression. Extending to an in vivo model of DMD, knockdown of Sesn2 led to decreased Myogenin (Myog) expression and increased Pax7 expression, while its overexpression upregulated Myog levels and enhanced the proportion of slow-switch myofibers. These findings indicate the crucial role of Sesn2 in promoting myogenic differentiation and skeletal muscle regeneration, providing potential therapeutic targets for muscular dystrophy.


Assuntos
Diferenciação Celular , Camundongos Endogâmicos mdx , MicroRNAs , Desenvolvimento Muscular , Mioblastos , Miogenina , Animais , Mioblastos/metabolismo , Camundongos , Desenvolvimento Muscular/fisiologia , Desenvolvimento Muscular/genética , Linhagem Celular , Miogenina/genética , Miogenina/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Técnicas de Silenciamento de Genes , Fator de Transcrição PAX7/metabolismo , Fator de Transcrição PAX7/genética , Regulação da Expressão Gênica , Sestrinas
2.
Int J Mol Sci ; 25(16)2024 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-39201664

RESUMO

Eccentric training induces greater hypertrophy while causing more muscle damage than concentric training. This study examined the effects of small-range eccentric contractions (SR-ECCs) and large-range eccentric contractions (LR-ECCs) on muscle morphology, contractility, and damage in rats. Thirty male Fischer 344 rats were divided into five groups: small-range ECC single-bout (SR-ECCSB, n = 4), large-range ECC single-bout (LR-ECCSB, n = 4), SR-ECC intervention (SR-ECCIntv, n = 7), LR-ECC intervention (LR-ECCIntv, n = 8), and control (Cont, n = 7). These groups underwent transcutaneous electrical stimulation involving 80 ECCs twice a week for four weeks. The results indicated that the LR-ECCSB group had more Evans blue dye-positive fibers than other groups. The SR-ECCIntv group showed no increase in the mean myofiber cross-sectional area. However, Pax7+ and Ki67+ cells significantly increased in both ECCIntv groups compared to the Cont group, and the connective tissue area was significantly greater in the LR-ECCIntv than in others. Muscle force was lower in both ECCIntv groups compared to the Cont group. These findings suggest that SR-ECC intervention may induce a smaller increase in the number of fibers with a large myofiber cross-sectional area and satellite cell proliferation with less muscle damage and myofibrosis compared to LR-ECCs.


Assuntos
Contração Muscular , Músculo Esquelético , Condicionamento Físico Animal , Ratos Endogâmicos F344 , Animais , Masculino , Ratos , Músculo Esquelético/fisiologia , Músculo Esquelético/metabolismo , Força Muscular , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/fisiologia , Hipertrofia
3.
J Agric Food Chem ; 72(30): 16687-16699, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-38990695

RESUMO

Slow oxidative myofibers play an important role in improving muscle endurance performance and maintaining body energy homeostasis. However, the targets and means to regulate slow oxidative myofibers proportion remain unknown. Here, we show that tangeretin (TG), a natural polymethoxylated flavone, significantly activates slow oxidative myofibers-related gene expression and increases type I myofibers proportion, resulting in improved endurance performance and aerobic metabolism in mice. Proteomics, molecular dynamics, cellular thermal shift assay (CETSA) and drug affinity responsive target stability (DARTS) investigations revealed that TG can directly bind to adiponectin receptor 1 (AdipoR1). Using AdipoR1-knockdown C2C12 cells and muscle-specific AdipoR1-knockout mice, we found that the positive effect of TG on regulating slow oxidative myofiber related markers expression is mediated by AdipoR1 and its downstream AMPK/PGC-1α pathway. Together, our data uncover TG as a natural compound that regulates the identity of slow oxidative myofibers via targeting the AdipoR1 signaling pathway. These findings further unveil the new function of TG in increasing the proportion of slow oxidative myofibers and enhancing skeletal muscle performance.


Assuntos
Flavonas , Camundongos Knockout , Músculo Esquelético , Receptores de Adiponectina , Animais , Receptores de Adiponectina/metabolismo , Receptores de Adiponectina/genética , Camundongos , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Flavonas/metabolismo , Camundongos Endogâmicos C57BL , Humanos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/efeitos dos fármacos , Oxirredução , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Transdução de Sinais/efeitos dos fármacos , Resistência Física/efeitos dos fármacos
4.
Cells ; 13(14)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39056794

RESUMO

The greater muscle fiber cross-sectional area (CSA) is associated with greater skeletal muscle mass and strength, whereas muscle fiber atrophy is considered a major feature of sarcopenia. Muscle fiber size is a polygenic trait influenced by both environmental and genetic factors. However, the genetic variants underlying inter-individual differences in muscle fiber size remain largely unknown. The aim of our study was to determine whether 1535 genetic variants previously identified in a genome-wide association study of appendicular lean mass are associated with the CSA of fast-twitch muscle fibers (which better predict muscle strength) in the m. vastus lateralis of 148 physically active individuals (19 power-trained and 28 endurance-trained females, age 28.0 ± 1.1; 28 power-trained and 73 endurance-trained males, age 31.1 ± 0.8). Fifty-seven single-nucleotide polymorphisms (SNPs) were identified as having an association with muscle fiber size (p < 0.05). Of these 57 SNPs, 31 variants were also associated with handgrip strength in the UK Biobank cohort (n = 359,729). Furthermore, using East Asian and East European athletic (n = 731) and non-athletic (n = 515) cohorts, we identified 16 SNPs associated with athlete statuses (sprinter, wrestler, strength, and speed-strength athlete) and weightlifting performance. All SNPs had the same direction of association, i.e., the lean mass-increasing allele was positively associated with the CSA of muscle fibers, handgrip strength, weightlifting performance, and power athlete status. In conclusion, we identified 57 genetic variants associated with both appendicular lean mass and fast-twitch muscle fiber size of m. vastus lateralis that may, in part, contribute to a greater predisposition to power sports.


Assuntos
Fibras Musculares Esqueléticas , Polimorfismo de Nucleotídeo Único , Humanos , Masculino , Feminino , Polimorfismo de Nucleotídeo Único/genética , Adulto , Fibras Musculares Esqueléticas/patologia , Estudo de Associação Genômica Ampla , Genômica , Força da Mão , Força Muscular/genética , Atletas
5.
Metabolites ; 14(5)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38786739

RESUMO

Skeletal muscles are heterogenous tissues composed of different myofiber types that can be classified as slow oxidative, fast oxidative, and fast glycolytic which are distinguished on the basis of their contractile and metabolic properties. Improving oxidative metabolism in skeletal muscles can prevent metabolic diseases and plays a protective role against muscle wasting in a number of neuromuscular diseases. Therefore, achieving a detailed understanding of the factors that regulate myofiber metabolic properties might provide new therapeutic opportunities for these diseases. Here, we investigated whether peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (PIN1) is involved in the control of myofiber metabolic behaviors. Indeed, PIN1 controls glucose and lipid metabolism in a number of tissues, and it is also abundant in adult skeletal muscles; however, its role in the control of energy homeostasis in this tissue is still to be defined. To start clarifying this topic, we compared the metabolome of the tibialis anterior muscle (mainly glycolytic) and soleus muscle (oxidative) in wild-type and Pin1 knockout mice with High-Resolution Magic Angle Spinning (HR-MAS) NMR on intact tissues. Our analysis reveals a clear demarcation between the metabolomes in the two types of muscles and allows us to decode a signature able to discriminate the glycolytic versus oxidative muscle phenotype. We also detected some changes in Pin1-depleted muscles that suggest a role for PIN1 in regulating the metabolic phenotype of skeletal muscles.

6.
Adv Funct Mater ; 34(3)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38707790

RESUMO

Skeletal muscle connective tissue (MCT) surrounds myofiber bundles to provide structural support, produce force transduction from tendons, and regulate satellite cell differentiation during muscle regeneration. Engineered muscle tissue composed of myofibers layered within MCT has not yet been developed. Herein, a bioengineering strategy to create MCT-layered myofibers through the development of stem cell fate-controlling biomaterials that achieve both myogenesis and fibroblast differentiation in a locally controlled manner at the single construct is introduced. The reciprocal role of transforming growth factor-beta 1 (TGF-ß1) and its inhibitor as well as 3D matrix stiffness to achieve co-differentiation of MCT fibroblasts and myofibers from a human-induced pluripotent stem cell (hiPSC)-derived paraxial mesoderm is studied. To avoid myogenic inhibition, TGF-ß1 is conjugated on the gelatin-based hydrogel to control the fibroblasts' populations locally; the TGF-ß1 degrades after 2 weeks, resulting in increased MCT-specific extracellular matrix (ECM) production. The locations of myofibers and fibroblasts are precisely controlled by using photolithography and co-axial wet spinning techniques, which results in the formation of MCT-layered functional myofibers in 3D constructs. This advanced engineering strategy is envisioned as a possible method for obtaining biomimetic human muscle grafts for various biomedical applications.

7.
Front Physiol ; 15: 1368646, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38444764

RESUMO

Blood flow restriction applied during low-load resistance training (LL-BFR) induces a similar increase in the cross-sectional area of muscle fibers (fCSA) compared to traditional high-load resistance training (HL-RT). However, it is unclear whether LL-BFR leads to differential changes in myofibrillar spacing in muscle fibers and/or extracellular area compared to HL-RT. Therefore, this study aimed to investigate whether the hypertrophy of type I and II fibers induced by LL-BFR or HL-RT is accompanied by differential changes in myofibrillar and non-myofibrillar areas. In addition, we examined if extracellular spacing was differentially affected between these two training protocols. Twenty recreationally active participants were assigned to LL-BFR or HL-RT groups and underwent a 6-week training program. Muscle biopsies were taken before and after the training period. The fCSA of type I and II fibers, the area occupied by myofibrillar and non-myofibrillar components, and extracellular spacing were analyzed using immunohistochemistry techniques. Despite the significant increase in type II and mean (type I + II) fCSA (p < 0.05), there were no significant changes in the proportionality of the myofibrillar and non-myofibrillar areas [∼86% and ∼14%, respectively (p > 0.05)], indicating that initial adaptations to LL-BFR are primarily characterized by conventional hypertrophy rather than disproportionate non-myofibrillar expansion. Additionally, extracellular spacing was not significantly altered between protocols. In summary, our study reveals that LL-BFR, like HL-RT, induces skeletal muscle hypertrophy with proportional changes in the areas occupied by myofibrillar, non-myofibrillar, and extracellular components.

8.
Endocr J ; 71(5): 437-445, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38281756

RESUMO

Androgens play a vital role not only in promoting the development of male sexual characteristics but also in exerting diverse physiological effects, including the regulation of skeletal muscle growth and function. Given that the effects of androgens are mediated through androgen receptor (AR) binding, an understanding of AR functionality is crucial for comprehending the mechanisms of androgen action on skeletal muscles. Drawing from insights gained using conditional knockout mouse models facilitated by Cre/loxP technology, we review the cell-specific functions of AR in skeletal muscles. We focus on three specific cell populations expressing AR within skeletal muscles: skeletal muscle cells, responsible for muscle contraction; satellite cells, which are essential stem cells contributing to the growth and regeneration of skeletal muscles; and mesenchymal progenitors, situated in interstitial areas and playing a crucial role in muscle homeostasis. Furthermore, the indirect effects of androgens on skeletal muscle through extra-muscle tissue are essential, especially for the regulation of skeletal muscle mass. The regulation of genes by AR varies across different cell types and contexts, including homeostasis, regeneration and hypertrophy of skeletal muscles. The varied mechanisms orchestrated by AR collectively influence the physiology of skeletal muscles.


Assuntos
Músculo Esquelético , Receptores Androgênicos , Receptores Androgênicos/metabolismo , Receptores Androgênicos/genética , Receptores Androgênicos/fisiologia , Animais , Músculo Esquelético/metabolismo , Humanos , Células Satélites de Músculo Esquelético/metabolismo , Células Satélites de Músculo Esquelético/fisiologia , Camundongos , Androgênios/metabolismo , Androgênios/fisiologia , Masculino , Células-Tronco Mesenquimais/metabolismo
9.
Mol Metab ; 78: 101814, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37802398

RESUMO

OBJECTIVE: Estrogen related receptor α (ERRα) occupies a central node in the transcriptional control of energy metabolism, including in skeletal muscle, but whether modulation of its activity can directly contribute to extend endurance to exercise remains to be investigated. The goal of this study was to characterize the benefit of mice engineered to express a physiologically relevant activated form of ERRα on skeletal muscle exercise metabolism and performance. METHODS: We recently shown that mutational inactivation of three regulated phosphosites in the amino terminal domain of the nuclear receptor ERRα impedes its degradation, leading to an accumulation of ERRα proteins and perturbation of metabolic homeostasis in ERRα3SA mutant mice. Herein, we used a multi-omics approach in combination with physical endurance tests to ascertain the consequences of expressing the constitutively active phospho-deficient ERRα3SA form on muscle exercise performance and energy metabolism. RESULTS: Genetic heightening of ERRα activity enhanced exercise capacity, fatigue-resistance, and endurance. This phenotype resulted from extensive reprogramming of ERRα global DNA occupancy and transcriptome in muscle leading to an increase in oxidative fibers, mitochondrial biogenesis, fatty acid oxidation, and lactate homeostasis. CONCLUSION: Our findings support the potential to enhance physical performance and exercise-induced health benefits by targeting molecular pathways regulating ERRα transcriptional activity.


Assuntos
Músculo Esquelético , Corrida , Camundongos , Animais , Músculo Esquelético/metabolismo , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Regulação da Expressão Gênica , Receptor ERRalfa Relacionado ao Estrogênio
10.
BMC Genomics ; 24(1): 499, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37644462

RESUMO

This paper aims to explore the role of circRNA expression profiles and circRNA-associated ceRNA networks in the regulation of myogenesis in the longissimus dorsi of cattle breeds surviving under subtropical conditions in southern China by RNA sequencing and bioinformatics analysis. It also aims to provide comprehensive understanding of the differences in muscle fibers in subtropical cattle breeds and to expand the knowledge of the molecular networks that regulate myogenesis. With regard to meat quality indicators, results showed that the longissimus dorsi of LQC had lower pH (P < 0.0001), lower redness (P < 0.01), lower shear force (P < 0.05), and higher brightness (P < 0.05) than the longissimus dorsi of LFC. With regard to muscle fiber characteristics, the longissimus dorsi of LQC had a smaller diameter (P < 0.0001) and higher density of muscle fibers (P < 0.05). The analysis results show that the function of many circRNA-targeted mRNAs was related to myogenesis and metabolic regulation. Furthermore, in the analysis of the function of circRNA source genes, we hypothesized that btacirc_00497 and btacirc_034497 may regulate the function and type of myofibrils by affecting the expression of MYH6, MYH7, and NEB through competitive linear splicing.


Assuntos
Biologia Computacional , RNA Circular , Animais , Bovinos/genética , China , Carne , Músculos Paraespinais
11.
Cell Stem Cell ; 30(5): 689-705.e4, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37080206

RESUMO

Exercise has the ability to rejuvenate stem cells and improve tissue regeneration in aging animals. However, the cellular and molecular changes elicited by exercise have not been systematically studied across a broad range of cell types in stem cell compartments. We subjected young and old mice to aerobic exercise and generated a single-cell transcriptomic atlas of muscle, neural, and hematopoietic stem cells with their niche cells and progeny, complemented by whole transcriptome analysis of single myofibers. We found that exercise ameliorated the upregulation of a number of inflammatory pathways associated with old age and restored aspects of intercellular communication mediated by immune cells within these stem cell compartments. Exercise has a profound impact on the composition and transcriptomic landscape of circulating and tissue-resident immune cells. Our study provides a comprehensive view of the coordinated responses of multiple aged stem cells and niche cells to exercise at the transcriptomic level.


Assuntos
Envelhecimento , Condicionamento Físico Animal , Camundongos , Animais , Envelhecimento/fisiologia , Células-Tronco Hematopoéticas , Transcriptoma/genética , Perfilação da Expressão Gênica , Músculo Esquelético , Nicho de Células-Tronco , Mamíferos
12.
Acta Physiol (Oxf) ; 239(1): e13982, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37097015

RESUMO

AIM: While manual quantification is still considered the gold standard for skeletal muscle histological analysis, it is time-consuming and prone to investigator bias. To address this challenge, we assembled an automated image analysis pipeline, FiNuTyper (Fiber and Nucleus Typer). METHODS: We integrated recently developed deep learning-based image segmentation methods, optimized for unbiased evaluation of fresh and postmortem human skeletal muscle, and utilized SERCA1 and SERCA2 as type-specific myonucleus and myofiber markers after validating them against the traditional use of MyHC isoforms. RESULTS: Parameters including cross-sectional area, myonuclei per fiber, myonuclear domain, central myonuclei per fiber, and grouped myofiber ratio were determined in a fiber-type-specific manner, revealing that a large degree of sex- and muscle-related heterogeneity could be detected using the pipeline. Our platform was also tested on pathological muscle tissue (ALS and IBM) and adapted for the detection of other resident cell types (leucocytes, satellite cells, capillary endothelium). CONCLUSION: In summary, we present an automated image analysis tool for the simultaneous quantification of myofiber and myonuclear types, to characterize the composition and structure of healthy and diseased human skeletal muscle.


Assuntos
Aprendizado Profundo , Células Satélites de Músculo Esquelético , Humanos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético , Núcleo Celular/metabolismo
13.
Transgenic Res ; 32(3): 153-167, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37071377

RESUMO

Muscle mass development depends on increased protein synthesis and reduced muscle protein degradation. Muscle ring-finger protein-1 (MuRF1) plays a key role in controlling muscle atrophy. Its E3 ubiquitin ligase activity recognizes and degrades skeletal muscle proteins through the ubiquitin-proteasome system. The loss of Murf1, which encodes MuRF1, in mice leads to the accumulation of skeletal muscle proteins and alleviation of muscle atrophy. However, the function of Murf1 in agricultural animals remains unclear. Herein, we bred F1 generation Murf1+/- and F2 generation Murf1-/- Duroc pigs from F0 Murf1-/- pigs to investigate the effect of Murf1 knockout on skeletal muscle development. We found that the Murf1+/- pigs retained normal levels of muscle growth and reproduction, and their percentage of lean meat increased by 6% compared to that of the wild type (WT) pigs. Furthermore, the meat color, pH, water-holding capacity, and tenderness of the Murf1+/- pigs were similar to those of the WT pigs. The drip loss rate and intramuscular fat decreased slightly in the Murf1+/- pigs. However, the cross-sectional area of the myofibers in the longissimus dorsi increased in the adult Murf1+/- pigs. The skeletal muscle proteins MYBPC3 and actin, which are targeted by MuRF1, accumulated in the Murf1+/- and Murf1-/- pigs. Our findings show that inhibiting muscle protein degradation in MuRF1-deficient Duroc pigs increases the size of their myofibers and their percentage of lean meat without influencing their growth or pork quality. Our study demonstrates that Murf1 is a target gene for promoting skeletal muscle hypertrophy in pig breeding.


Assuntos
Músculo Esquelético , Atrofia Muscular , Animais , Camundongos , Suínos , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Complexo de Endopeptidases do Proteassoma/farmacologia , Hipertrofia/genética , Hipertrofia/metabolismo
14.
Methods Mol Biol ; 2587: 165-182, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36401030

RESUMO

Antisense oligonucleotide (AO)-based exon-skipping and cell therapies are the main therapeutic approaches for Duchenne muscular dystrophy (DMD). Insufficient systemic delivery leading to low therapeutic efficacy limits the former; low transplantation efficiency hampers the latter. Here we describe how glycine can address these issues by augmenting satellite proliferation and muscle regeneration, resulting in enhanced AO uptake in regenerating myofibers and cell transplantation efficiency in dystrophic mice. The dual functionality of glycine demonstrated in AO-based exon-skipping and cell therapies presents a simple and efficient method to augment AO potency and cell transplantation efficacy in DMD and other muscle diseases.


Assuntos
Fabaceae , Distrofia Muscular de Duchenne , Camundongos , Animais , Distrofia Muscular de Duchenne/terapia , Distrofia Muscular de Duchenne/tratamento farmacológico , Distrofina/genética , Glicina/uso terapêutico , Éxons/genética , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/uso terapêutico
15.
Arch Razi Inst ; 77(1): 285-291, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35891762

RESUMO

It has been approved that atrovastatin is a preferred treatment for hyperlipidemia. One of the atrovastatin drawbacks would be the detrimental effects on skeletal muscles. Therefore, the current study was designed to evaluate all the skeletal muscles alteration in rats' after administration of atrovastatin and identification the mechanisms involved in these structural alterations in the skeletal muscles. A total of 12 healthy adult male rats (Rattus norvegicus) were randomly divided into two groups (n=6). The control group (G1) included rats that received distilled water as the placebo, and the treatment group (G2) included animals that were treated with atorvastatin (80 mg/kg/day) dissolved in distilled water and administrated by a gastric tube for eight weeks. At the end of the experiment, trapezius and vastus medialis muscle tissues were sampled and fixed with 10% formalin for histopathological studies. Atorvastatin administration gave rise to morphological changes in the skeletal muscle fibers and the nerve fibers, including atrophied myofibers, infarction, irregular arrangement of myonuclei, disappearance of nuclei from their normal peripheral position with acute skeletal muscular infarction, and infiltration of accumulated inflammatory cells. Atorvastatin has been revealed to have several adverse effects on the skeletal muscle and the nerve supply. Based on the data in the current study, it is evident that atorvastatin administration for less than two months resulted in some sorts of myotoxic structural changes and apoptosis as evident by deformity and lack of striation degeneration of nuclei, as well as splitting of the muscle fibers in the adult male rats' skeletal muscle.


Assuntos
Atorvastatina , Músculo Esquelético , Animais , Masculino , Ratos , Apoptose , Atorvastatina/farmacologia , Infarto/patologia , Músculo Esquelético/patologia
16.
Int J Mol Sci ; 23(13)2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35806032

RESUMO

The local inflammatory environment of injured skeletal muscle contributes to the resolution of the injury by promoting the proliferation of muscle precursor cells during the initial stage of muscle regeneration. However, little is known about the extent to which the inflammatory response influences the later stages of regeneration when newly formed (regenerating myofibers) are accumulating myonuclei and undergoing hypertrophy. Our prior work indicated that the inflammatory molecule ICAM-1 facilitates regenerating myofiber hypertrophy through a process involving myonuclear positioning and/or transcription. The present study tested the hypothesis that ICAM-1 enhances global transcription within regenerating myofibers by augmenting the transcriptional activity of myonuclei positioned in linear arrays (nuclear chains). We found that transcription in regenerating myofibers was ~2-fold higher in wild type compared with ICAM-1-/- mice at 14 and 28 days post-injury. This occurred because the transcriptional activity of individual myonuclei in nuclei chains, nuclear clusters, and a peripheral location were ~2-fold higher in wild type compared with ICAM-1-/- mice during regeneration. ICAM-1's enhancement of transcription in nuclear chains appears to be an important driver of myofiber hypertrophy as it was statistically associated with an increase in myofiber size during regeneration. Taken together, our findings indicate that ICAM-1 facilitates myofiber hypertrophy after injury by enhancing myonuclear transcription.


Assuntos
Molécula 1 de Adesão Intercelular/metabolismo , Células Satélites de Músculo Esquelético , Animais , Hipertrofia , Molécula 1 de Adesão Intercelular/genética , Camundongos , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/fisiologia
17.
Biology (Basel) ; 11(6)2022 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-35741457

RESUMO

Findings from studies of muscle regeneration can significantly contribute to the treatment of age-related loss of skeletal muscle mass, which may predispose older adults to severe morbidities. We established a human experimental model using excised skeletal muscle tissues from reconstructive surgeries in eight older adults. Muscle samples from each participant were preserved immediately or maintained in agarose medium for the following 5, 9, or 11 days. Immunofluorescence analyses of the structural proteins, actin and desmin, confirmed the integrity of muscle fibers over 11 days of maintenance. Similarly, the numbers of CD80-positive M1 and CD163-positive M2 macrophages were stable over 11 days in vitro. However, the numbers of PAX7-positive satellite cells and MYOD-positive myoblasts changed in opposite ways, suggesting that satellite cells partially differentiated in vitro. Further experiments revealed that stimulation with unsaturated fatty acid C18[2]c (linoleic acid) increased resident M1 macrophages and satellite cells specifically. Thus, the use of human skeletal muscle tissue in vitro provides a direct experimental approach to study the regulation of muscle tissue regeneration by macrophages and stem cells and their responses to therapeutic compounds.

18.
Front Physiol ; 13: 845504, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35492593

RESUMO

Fundamental aspects underlying downstream processes of skeletal muscle regeneration, such as myonuclear positioning and transcription are poorly understood. This investigation begins to address deficiencies in knowledge by examining the kinetics of myonuclear accretion, positioning, and global transcription during injury-induced muscle regeneration in mice. We demonstrate that myonuclear accretion plateaus within 7 days of an injury and that the majority (∼70%) of myonuclei are centrally aligned in linear arrays (nuclear chains) throughout the course of regeneration. Relatively few myonuclei were found in a peripheral position (∼20%) or clustered (∼10%) together during regeneration. Importantly, transcriptional activity of individual myonuclei in nuclear chains was high, and greater than that of peripheral or clustered myonuclei. Transcription occurring primarily in nuclear chains elevated the collective transcriptional activity of regenerating myofibers during the later stage of regeneration. Importantly, the number of myonuclei in chains and their transcriptional activity were statistically correlated with an increase in myofiber size during regeneration. Our findings demonstrate the positional context of transcription during regeneration and highlight the importance of centralized nuclear chains in facilitating hypertrophy of regenerating myofibers after injury.

19.
Int J Mol Sci ; 23(10)2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35628242

RESUMO

The acute resistance exercise (RE)-induced phosphorylation of mTOR-related signaling proteins in skeletal muscle can be blunted after repeated RE. The time frame in which the phosphorylation (p) of mTORS2448, p70S6kT421/S424, and rpS6S235/236 will be reduced during an RE training period in humans and whether progressive (PR) loading can counteract such a decline has not been described. (1) To enclose the time frame in which pmTORS2448, prpS6S235/236, and pp70S6kT421/S424 are acutely reduced after RE occurs during repeated RE. (2) To test whether PR will prevent that reduction compared to constant loading (CO) and (3) whether 10 days without RE may re-increase blunted signaling. Fourteen healthy males (24 ± 2.8 yrs.; 1.83 ± 0.1 cm; 79.3 ± 8.5 kg) were subjected to RE with either PR (n = 8) or CO (n = 6) loading. Subjects performed RE thrice per week, conducting three sets with 10−12 repetitions on a leg press and leg extension machine. Muscle biopsies were collected at rest (T0), 45 min after the first (T1), seventh (T7), 13th (T13), and 14th (X-T14) RE session. No differences were found between PR and CO for any parameter. Thus, the groups were combined, and the results show the merged values. prpS6S235/236 and pp70s6kT421/S424 were increased at T1, but were already reduced at T7 and up to T13 compared to T1. Ten days without RE re-increased prpS6S235/236 and pp70S6kT421/S424 at X-T14 to a level comparable to that of T1. pmTORS2448 was increased from T1 to X-T14 and did not decline over the training period. Single-fiber immunohistochemistry revealed a reduction in prpS6S235/236 in type I fibers from T1 to T13 and a re-increase at X-T14, which was more augmented in type II fibers at T13 (p < 0.05). The entity of myofibers revealed a high heterogeneity in the level of prpS6S235/236, possibly reflecting individual contraction-induced stress during RE. The type I and II myofiber diameter increased from T0 and T1 to T13 and X-T14 (p < 0.05) prpS6S235/236 and pp70s6kT421/S424 reflect RE-induced states of desensitization and re-sensitization in dependency on frequent loading by RE, but also by its cessation.


Assuntos
Treinamento Resistido , Proteínas Quinases S6 Ribossômicas 70-kDa , Humanos , Masculino , Fibras Musculares Esqueléticas/metabolismo , Treinamento Resistido/métodos , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/metabolismo
20.
Meat Sci ; 189: 108810, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35381569

RESUMO

Cooking induces modifications in meat structure and composition, affecting its sensory and nutritional properties. These changes depend on the cooking method and meat characteristics. In the present study, beef were cooked in three different ways-grilling, boiling, and sous-vide cooking-with two endpoint temperatures, 55 °C and 77 °C, to better understand the general impact of cooking on the structure of fatty meat. Light microscopy was used to visualize muscle, connective, and adipose tissues. After cooking, muscle fibers were more compact, which can be attributed to perimysium shrinkage and water transfer, for all cooking processes except grilling at 55 °C. The cross-sectional area of muscle fibers was not impacted by cooking, regardless of the temperature or cooking method. Connective tissue between adipocytes was affected by cooking at 77 °C, but not at 55 °C. Despite the cooking method used, cooking to well-done (77 °C) clearly affected the structure of the perimysium of beef, possibly because of collagen denaturation.


Assuntos
Culinária , Carne , Animais , Bovinos , Carne/análise , Culinária/métodos , Músculo Esquelético , Temperatura , Tecido Conjuntivo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA