Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
2.
Front Physiol ; 15: 1401717, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38784114

RESUMO

Initially, the two members of class 18 myosins, Myo18A and Myo18B, appeared to exhibit highly divergent functions, complicating the assignment of class-specific functions. However, the identification of a striated muscle-specific isoform of Myo18A, Myo18Aγ, suggests that class 18 myosins may have evolved to complement the functions of conventional class 2 myosins in sarcomeres. Indeed, both genes, Myo18a and Myo18b, are predominantly expressed in the heart and somites, precursors of skeletal muscle, of developing mouse embryos. Genetic deletion of either gene in mice is embryonic lethal and is associated with the disorganization of cardiac sarcomeres. Moreover, Myo18Aγ and Myo18B localize to sarcomeric A-bands, albeit the motor (head) domains of these unconventional myosins have been both deduced and biochemically demonstrated to exhibit negligible ATPase activity, a hallmark of motor proteins. Instead, Myo18Aγ and Myo18B presumably coassemble with thick filaments and provide structural integrity and/or internal resistance through interactions with F-actin and/or other proteins. In addition, Myo18Aγ and Myo18B may play distinct roles in the assembly of myofibrils, which may arise from actin stress fibers containing the α-isoform of Myo18A, Myo18Aα. The ß-isoform of Myo18A, Myo18Aß, is similar to Myo18Aα, except that it lacks the N-terminal extension, and may serve as a negative regulator through heterodimerization with either Myo18Aα or Myo18Aγ. In this review, we contend that Myo18Aγ and Myo18B are essential for myofibril structure and function in striated muscle cells, while α- and ß-isoforms of Myo18A play diverse roles in nonmuscle cells.

3.
Biochem Soc Trans ; 52(2): 505-515, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38629612

RESUMO

In eukaryotic cells, organelle and vesicle transport, positioning, and interactions play crucial roles in cytoplasmic organization and function. These processes are governed by intracellular trafficking mechanisms. At the core of that trafficking, the cytoskeleton and directional transport by motor proteins stand out as its key regulators. Plant cell tip growth is a well-studied example of cytoplasm organization by polarization. This polarization, essential for the cell's function, is driven by the cytoskeleton and its associated motors. This review will focus on myosin XI, a molecular motor critical for vesicle trafficking and polarized plant cell growth. We will center our discussion on recent data from the moss Physcomitrium patens and the liverwort Marchantia polymorpha. The biochemical properties and structure of myosin XI in various plant species are discussed, highlighting functional conservation across species. We further explore this conservation of myosin XI function in the process of vesicle transport in tip-growing cells. Existing evidence indicates that myosin XI actively organizes actin filaments in tip-growing cells by a mechanism based on vesicle clustering at their tips. A hypothetical model is presented to explain the essential function of myosin XI in polarized plant cell growth based on vesicle clustering at the tip. The review also provides insight into the in vivo localization and dynamics of myosin XI, emphasizing its role in cytosolic calcium regulation, which influences the polymerization of F-actin. Lastly, we touch upon the need for additional research to elucidate the regulation of myosin function.


Assuntos
Miosinas , Células Vegetais , Miosinas/metabolismo , Células Vegetais/metabolismo , Bryopsida/metabolismo , Bryopsida/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Citoesqueleto de Actina/metabolismo , Marchantia/metabolismo , Marchantia/crescimento & desenvolvimento , Desenvolvimento Vegetal/fisiologia
4.
Proc Natl Acad Sci U S A ; 121(9): e2315472121, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38377203

RESUMO

Mutations at a highly conserved homologous residue in three closely related muscle myosins cause three distinct diseases involving muscle defects: R671C in ß-cardiac myosin causes hypertrophic cardiomyopathy, R672C and R672H in embryonic skeletal myosin cause Freeman-Sheldon syndrome, and R674Q in perinatal skeletal myosin causes trismus-pseudocamptodactyly syndrome. It is not known whether their effects at the molecular level are similar to one another or correlate with disease phenotype and severity. To this end, we investigated the effects of the homologous mutations on key factors of molecular power production using recombinantly expressed human ß, embryonic, and perinatal myosin subfragment-1. We found large effects in the developmental myosins but minimal effects in ß myosin, and magnitude of changes correlated partially with clinical severity. The mutations in the developmental myosins dramatically decreased the step size and load-sensitive actin-detachment rate of single molecules measured by optical tweezers, in addition to decreasing overall enzymatic (ATPase) cycle rate. In contrast, the only measured effect of R671C in ß myosin was a larger step size. Our measurements of step size and bound times predicted velocities consistent with those measured in an in vitro motility assay. Finally, molecular dynamics simulations predicted that the arginine to cysteine mutation in embryonic, but not ß, myosin may reduce pre-powerstroke lever arm priming and ADP pocket opening, providing a possible structural mechanism consistent with the experimental observations. This paper presents direct comparisons of homologous mutations in several different myosin isoforms, whose divergent functional effects are a testament to myosin's highly allosteric nature.


Assuntos
Miosinas , Miosinas Ventriculares , Humanos , Miosinas Ventriculares/genética , Miosinas/metabolismo , Adenosina Trifosfatases/metabolismo , Mutação , Actinas/metabolismo , Músculo Esquelético/metabolismo
5.
J Exp Bot ; 75(8): 2313-2329, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38280207

RESUMO

Myosins are important motor proteins that associate with the actin cytoskeleton. Structurally, myosins function as heteromeric complexes where smaller light chains, such as calmodulin (CaM), bind to isoleucine-glutamine (IQ) domains in the neck region to facilitate mechano-enzymatic activity. We recently identified Arabidopsis CaM-like (CML) proteins CML13 and CML14 as interactors of proteins containing multiple IQ domains, including a myosin VIII. Here, we demonstrate that CaM, CML13, and CML14 bind the neck region of all four Arabidopsis myosin VIII isoforms. Among CMLs tested for binding to myosins VIIIs, CaM, CML13, and CML14 gave the strongest signals using in planta split-luciferase protein interaction assays. In vitro, recombinant CaM, CML13, and CML14 showed specific, high-affinity, calcium-independent binding to the IQ domains of myosin VIIIs. CaM, CML13, and CML14 co-localized to plasma membrane-bound puncta when co-expressed with red fluorescent protein-myosin fusion proteins containing IQ and tail domains of myosin VIIIs. In vitro actin motility assays using recombinant myosin VIIIs demonstrated that CaM, CML13, and CML14 function as light chains. Suppression of CML13 or CML14 expression using RNA silencing resulted in a shortened-hypocotyl phenotype, similar to that observed in a quadruple myosin mutant, myosin viii4KO. Collectively, our data indicate that Arabidopsis CML13 and CML14 are novel myosin VIII light chains.


Assuntos
Arabidopsis , Calmodulina , Calmodulina/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Cadeias Leves de Miosina/química , Cadeias Leves de Miosina/metabolismo , Actinas/metabolismo , Citoesqueleto de Actina/metabolismo , Ligação Proteica
6.
Circ Res ; 134(1): 117-134, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38175910

RESUMO

The Anrep effect is an adaptive response that increases left ventricular contractility following an acute rise in afterload. Although the mechanistic origin remains undefined, recent findings suggest a two-phase activation of resting myosin for contraction, involving strain-sensitive and posttranslational phases. We propose that this mobilization represents a transition among the relaxed states of myosin-specifically, from the super-relaxed (SRX) to the disordered-relaxed (DRX)-with DRX myosin ready to participate in force generation. This hypothesis offers a unified explanation that connects myosin's SRX-DRX equilibrium and the Anrep effect as parts of a singular phenomenon. We underscore the significance of this equilibrium in modulating contractility, primarily studied in the context of hypertrophic cardiomyopathy, the most common inherited cardiomyopathy associated with diastolic dysfunction, hypercontractility, and left ventricular hypertrophy. As we posit that the cellular basis of the Anrep effect relies on a two-phased transition of myosin from the SRX to the contraction-ready DRX configuration, any dysregulation in this equilibrium may result in the pathological manifestation of the Anrep phenomenon. For instance, in hypertrophic cardiomyopathy, hypercontractility is linked to a considerable shift of myosin to the DRX state, implying a persistent activation of the Anrep effect. These valuable insights call for additional research to uncover a clinical Anrep fingerprint in pathological states. Here, we demonstrate through noninvasive echocardiographic pressure-volume measurements that this fingerprint is evident in 12 patients with hypertrophic obstructive cardiomyopathy before septal myocardial ablation. This unique signature is characterized by enhanced contractility, indicated by a leftward shift and steepening of the end-systolic pressure-volume relationship, and a prolonged systolic ejection time adjusted for heart rate, which reverses post-procedure. The clinical application of this concept has potential implications beyond hypertrophic cardiomyopathy, extending to other genetic cardiomyopathies and even noncongenital heart diseases with complex etiologies across a broad spectrum of left ventricular ejection fractions.


Assuntos
Cardiomiopatia Hipertrófica , Miosinas , Humanos , Miosinas/metabolismo , Miocárdio/metabolismo , Cardiomiopatia Hipertrófica/patologia , Volume Sistólico , Função Ventricular Esquerda , Contração Miocárdica/fisiologia
7.
Genetics ; 226(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37793087

RESUMO

Protein-protein interactions (PPIs) drive many cellular processes. Some interactions are directed by Src homology 3 (SH3) domains that bind proline-rich motifs on other proteins. The evolution of the binding specificity of SH3 domains is not completely understood, particularly following gene duplication. Paralogous genes accumulate mutations that can modify protein functions and, for SH3 domains, their binding preferences. Here, we examined how the binding of the SH3 domains of 2 paralogous yeast type I myosins, Myo3 and Myo5, evolved following duplication. We found that the paralogs have subtly different SH3-dependent interaction profiles. However, by swapping SH3 domains between the paralogs and characterizing the SH3 domains freed from their protein context, we find that very few of the differences in interactions, if any, depend on the SH3 domains themselves. We used ancestral sequence reconstruction to resurrect the preduplication SH3 domains and examined, moving back in time, how the binding preference changed. Although the most recent ancestor of the 2 domains had a very similar binding preference as the extant ones, older ancestral domains displayed a gradual loss of interaction with the modern interaction partners when inserted in the extant paralogs. Molecular docking and experimental characterization of the free ancestral domains showed that their affinity with the proline motifs is likely not the cause for this loss of binding. Taken together, our results suggest that a SH3 and its host protein could create intramolecular or allosteric interactions essential for the SH3-dependent PPIs, making domains not functionally equivalent even when they have the same binding specificity.


Assuntos
Proteínas , Domínios de Homologia de src , Sequência de Aminoácidos , Simulação de Acoplamento Molecular , Proteínas/metabolismo , Prolina/química , Ligação Proteica , Sítios de Ligação/genética
8.
Endocrinology ; 164(10)2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37633264

RESUMO

In males, skeletal muscle function may be altered by shifts in either circulating testosterone or estrogen. We examined the effect of acute (2-week) exposures to 17α-ethinyl estradiol (EE2), an estrogen receptor (ER) agonist, or flutamide, an androgen receptor (AR) antagonist, on the contractile function of individual skeletal muscle fibers from slow-contracting soleus and fast-contracting extensor digitorum longus muscles from adult male mice. Single fiber specific tension (force divided by cross-sectional area) was decreased with flutamide treatment in all myosin heavy chain (MHC) fiber types examined (I, IIA, and IIB); similar effects were observed with EE2 treatment but only in the fastest-contracting MHC IIB fibers. The decreases in maximally Ca2+-activated specific tension were primarily a result of fewer strongly bound myosin-actin cross-bridges, with flutamide treatment also showing lower myofilament lattice stiffness. Myosin-actin cross-bridge kinetics were slower in MHC IIA fibers in flutamide-treated mice, but faster in EE2-treated mice, indicating that contractile velocity may be affected differently in this fiber type, which is commonly expressed in human skeletal muscle. Importantly, these effects were observed in the absence of outcomes previously used to evaluate ER agonists or AR antagonists in rodents including weight of reproductive organs or mammary gland morphology. Our findings indicate that substantial shifts in skeletal muscle function occur in male mice following acute exposures to low doses of a pharmacological ER agonist and an AR antagonist. These results suggest that countermeasures to maintain physical function may be needed early in situations that induce similar ER agonist and AR antagonist conditions.


Assuntos
Actinas , Antagonistas de Receptores de Andrógenos , Adulto , Humanos , Masculino , Animais , Camundongos , Flutamida/farmacologia , Músculo Esquelético , Estrogênios
9.
bioRxiv ; 2023 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-37425764

RESUMO

Mutations at a highly conserved homologous residue in three closely related muscle myosins cause three distinct diseases involving muscle defects: R671C in ß-cardiac myosin causes hypertrophic cardiomyopathy, R672C and R672H in embryonic skeletal myosin cause Freeman Sheldon syndrome, and R674Q in perinatal skeletal myosin causes trismus-pseudocamptodactyly syndrome. It is not known if their effects at the molecular level are similar to one another or correlate with disease phenotype and severity. To this end, we investigated the effects of the homologous mutations on key factors of molecular power production using recombinantly expressed human ß, embryonic, and perinatal myosin subfragment-1. We found large effects in the developmental myosins, with the most dramatic in perinatal, but minimal effects in ß myosin, and magnitude of changes correlated partially with clinical severity. The mutations in the developmental myosins dramatically decreased the step size and load-sensitive actin-detachment rate of single molecules measured by optical tweezers, in addition to decreasing ATPase cycle rate. In contrast, the only measured effect of R671C in ß myosin was a larger step size. Our measurements of step size and bound times predicted velocities consistent with those measured in an in vitro motility assay. Finally, molecular dynamics simulations predicted that the arginine to cysteine mutation in embryonic, but not ß, myosin may reduce pre-powerstroke lever arm priming and ADP pocket opening, providing a possible structural mechanism consistent with the experimental observations. This paper presents the first direct comparisons of homologous mutations in several different myosin isoforms, whose divergent functional effects are yet another testament to myosin's highly allosteric nature.

10.
Plant Cell Environ ; 46(8): 2470-2491, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37222394

RESUMO

In response to Ca2+ signals, the evolutionarily-conserved Ca2+ sensor calmodulin (CaM) regulates protein targets via direct interaction. Plants possess many CaM-like (CML) proteins, but their binding partners and functions are mostly unknown. Here, using Arabidopsis CML13 as 'bait' in a yeast two-hybrid screen, we isolated putative targets from three, unrelated protein families, namely, IQD proteins, calmodulin-binding transcriptional activators (CAMTAs) and myosins, all of which possess tandem isoleucine-glutamine (IQ) structural domains. Using the split-luciferase complementation assay in planta and the yeast 2-hybrid system, CML13 and CML14 showed a preference for interaction with tandem over single IQ domains. Relative to CaM, CML13 and CML14 displayed weaker signals when tested with the non-IQ, CaM-binding domain of glutamate decarboxylase or the single IQ domains of CNGC20 (cyclic-nucleotide gated channel-20) or IQM1 (IQ motif protein1). We examined IQD14 as a representative tandem IQ-protein and found that only CaM, CML13 and CML14 interacted with IQD14 among 12 CaM/CMLs tested. CaM, CML13 and CML14 bound in vitro to IQD14 in the presence or absence of Ca2+ . Binding affinities were in the nM range and were higher when two tandem IQ domains from IQD14 were present. Green fluorescent protein-tagged versions of CaM, CML13 and CML14 localized to both the cytosol and nucleus in plant cells but were partially relocalized to the microtubules when co-expressed with IQD14 tagged with mCherry. These and other data are discussed in the context of possible roles for these CMLs in gene regulation via CAMTAs and cytoskeletal activity via myosins and IQD proteins.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Calmodulina/genética , Calmodulina/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Saccharomyces cerevisiae/metabolismo , Sinalização do Cálcio , Ligação Proteica , Cálcio/metabolismo
11.
Front Immunol ; 14: 1041079, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37207213

RESUMO

γδT intraepithelial lymphocyte represents up to 60% of the small intestine intraepithelial compartment. They are highly migrating cells and constantly interact with the epithelial cell layer and lamina propria cells. This migratory phenotype is related to the homeostasis of the small intestine, the control of bacterial and parasitic infections, and the epithelial shedding induced by LPS. Here, we demonstrate that Myo1f participates in the adhesion and migration of intraepithelial lymphocytes. Using long-tailed class I myosins KO mice, we identified the requirement of Myo1f for their migration to the small intestine intraepithelial compartment. The absence of Myo1f affects intraepithelial lymphocytes' homing due to reduced CCR9 and α4ß7 surface expression. In vitro, we confirm that adhesion to integrin ligands and CCL25-dependent and independent migration of intraepithelial lymphocytes are Myo1f-dependent. Mechanistically, Myo1f deficiency prevents correct chemokine receptor and integrin polarization, leading to reduced tyrosine phosphorylation which could impact in signal transduction. Overall, we demonstrate that Myo1f has an essential role in the adhesion and migration in γδT intraepithelial lymphocytes.


Assuntos
Linfócitos Intraepiteliais , Camundongos , Animais , Linfócitos Intraepiteliais/metabolismo , Receptores de Quimiocinas/metabolismo , Intestino Delgado/metabolismo , Mucosa/metabolismo , Integrinas/metabolismo , Miosina Tipo I/genética , Miosina Tipo I/metabolismo
12.
Fac Rev ; 12: 7, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37081903

RESUMO

In many cellular contexts, intracellular actomyosin networks must generate directional forces to carry out cellular tasks such as migration and endocytosis, which play important roles during normal developmental processes. A number of different actin binding proteins have been identified that form linear or branched actin, and that regulate these filaments through activities such as bundling, crosslinking, and depolymerization to create a wide variety of functional actin assemblies. The helical nature of actin filaments allows them to better accommodate tensile stresses by untwisting, as well as to bend to great curvatures without breaking. Interestingly, this latter property, the bending of actin filaments, is emerging as an exciting new feature for determining dynamic actin configurations and functions. Indeed, recent studies using in vitro assays have found that proteins including IQGAP, Cofilin, Septins, Anillin, α-Actinin, Fascin, and Myosins-alone or in combination-can influence the bending or curvature of actin filaments. This bending increases the number and types of dynamic assemblies that can be generated, as well as the spectrum of their functions. Intriguingly, in some cases, actin bending creates directionality within a cell, resulting in a chiral cell shape. This actin-dependent cell chirality is highly conserved in vertebrates and invertebrates and is essential for cell migration and breaking L-R symmetry of tissues/organs. Here, we review how different types of actin binding protein can bend actin filaments, induce curved filament geometries, and how they impact on cellular functions.

13.
J Cell Sci ; 136(6)2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36994763

RESUMO

Looking back at two decades of research on SPIRE actin nucleator proteins, the first decade was clearly dominated by the discovery of SPIRE proteins as founding members of the novel WH2-domain-based actin nucleators, which initiate actin filament assembly through multiple WH2 actin-binding domains. Through complex formation with formins and class 5 myosins, SPIRE proteins coordinate actin filament assembly and myosin motor-dependent force generation. The discovery of SPIRE-regulated cytoplasmic actin filament meshworks in oocytes initiated the next phase of SPIRE research, which has found that SPIRE proteins are integrated in a diverse range of cell biological processes. In addition to regulating vesicle-based actin filament meshworks, SPIRE proteins function in the organisation of actin structures driving the inward movement of pronuclei of the mouse zygote. Localisation at cortical ring structures and the results of knockdown experiments indicate that SPIRE proteins function in the formation of meiotic cleavage sites in mammalian oocytes and the externalisation of von Willebrand factor from endothelial cells. Alternative splicing targets mammalian SPIRE1 towards mitochondria, where it has a role in fission. In this Review, we summarise the past two decades of SPIRE research by addressing the biochemical and cell biological functions of SPIRE proteins in mammalian reproduction, skin pigmentation and wound healing, as well as in mitochondrial dynamics and host-pathogen interactions.


Assuntos
Actinas , Proteínas dos Microfilamentos , Animais , Camundongos , Actinas/metabolismo , Proteínas dos Microfilamentos/metabolismo , Células Endoteliais/metabolismo , Citoesqueleto de Actina/metabolismo , Forminas/metabolismo , Mamíferos/metabolismo , Proteínas do Tecido Nervoso/metabolismo
15.
Circulation ; 146(25): 1930-1945, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36417924

RESUMO

BACKGROUND: Autoimmunity is increasingly recognized as a key contributing factor in heart muscle diseases. The functional features of cardiac autoimmunity in humans remain undefined because of the challenge of studying immune responses in situ. We previously described a subset of c-mesenchymal epithelial transition factor (c-Met)-expressing (c-Met+) memory T lymphocytes that preferentially migrate to cardiac tissue in mice and humans. METHODS: In-depth phenotyping of peripheral blood T cells, including c-Met+ T cells, was undertaken in groups of patients with inflammatory and noninflammatory cardiomyopathies, patients with noncardiac autoimmunity, and healthy controls. Validation studies were carried out using human cardiac tissue and in an experimental model of cardiac inflammation. RESULTS: We show that c-Met+ T cells are selectively increased in the circulation and in the myocardium of patients with inflammatory cardiomyopathies. The phenotype and function of c-Met+ T cells are distinct from those of c-Met-negative (c-Met-) T cells, including preferential proliferation to cardiac myosin and coproduction of multiple cytokines (interleukin-4, interleukin-17, and interleukin-22). Furthermore, circulating c-Met+ T cell subpopulations in different heart muscle diseases identify distinct and overlapping mechanisms of heart inflammation. In experimental autoimmune myocarditis, elevations in autoantigen-specific c-Met+ T cells in peripheral blood mark the loss of immune tolerance to the heart. Disease development can be halted by pharmacologic c-Met inhibition, indicating a causative role for c-Met+ T cells. CONCLUSIONS: Our study demonstrates that the detection of circulating c-Met+ T cells may have use in the diagnosis and monitoring of adaptive cardiac inflammation and definition of new targets for therapeutic intervention when cardiac autoimmunity causes or contributes to progressive cardiac injury.


Assuntos
Doenças Autoimunes , Cardiomiopatias , Miocardite , Humanos , Camundongos , Animais , Autoimunidade , Células T de Memória , Miocardite/etiologia , Miocárdio , Cardiomiopatias/complicações , Miosinas Cardíacas , Inflamação/complicações
16.
Methods Mol Biol ; 2478: 513-557, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36063333

RESUMO

Interactions between biological molecules occur on very different time scales, from the minutes of strong protein-protein bonds, down to below the millisecond duration of rapid biomolecular interactions. Conformational changes occurring on sub-ms time scales and their mechanical force dependence underlie the functioning of enzymes (e.g., motor proteins) that are fundamental for life. However, such rapid interactions are beyond the temporal resolution of most single-molecule methods. We developed ultrafast force-clamp spectroscopy (UFFCS), a single-molecule technique based on laser tweezers that allows us to investigate early and very fast dynamics of a variety of enzymes and their regulation by mechanical load. The technique was developed to investigate the rapid interactions between skeletal muscle myosin and actin, and then applied to the study of different biological systems, from cardiac myosin to processive myosin V, microtubule-binding proteins, transcription factors, and mechanotransducer proteins. Here, we describe two different implementations of UFFCS instrumentation and protocols using either acousto- or electro-optic laser beam deflectors, and their application to the study of processive and non-processive motor proteins.


Assuntos
Miosinas , Pinças Ópticas , Actinas/metabolismo , Miosinas/metabolismo , Óptica e Fotônica , Ligação Proteica
17.
Biochem J ; 479(13): 1409-1428, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35722941

RESUMO

Myosin VI is the only minus-end actin motor and it is coupled to various cellular processes ranging from endocytosis to transcription. This multi-potent nature is achieved through alternative isoform splicing and interactions with a network of binding partners. There is a complex interplay between isoforms and binding partners to regulate myosin VI. Here, we have compared the regulation of two myosin VI splice isoforms by two different binding partners. By combining biochemical and single-molecule approaches, we propose that myosin VI regulation follows a generic mechanism, independently of the spliced isoform and the binding partner involved. We describe how myosin VI adopts an autoinhibited backfolded state which is released by binding partners. This unfolding activates the motor, enhances actin binding and can subsequently trigger dimerization. We have further expanded our study by using single-molecule imaging to investigate the impact of binding partners upon myosin VI molecular organization and dynamics.


Assuntos
Actinas , Cadeias Pesadas de Miosina , Actinas/metabolismo , Endocitose , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Isoformas de Proteínas/genética
18.
FASEB J ; 36(5): e22290, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35344227

RESUMO

The actomyosin cytoskeleton serves as a key regulator of the integrity and remodeling of epithelial barriers by controlling assembly and functions of intercellular junctions and cell-matrix adhesions. Although biochemical mechanisms that regulate the activity of non-muscle myosin II (NM-II) in epithelial cells have been extensively investigated, little is known about assembly of the contractile myosin structures at the epithelial adhesion sites. UNC-45A is a cytoskeletal chaperone that is essential for proper folding of NM-II heavy chains and myofilament assembly. We found abundant expression of UNC-45A in human intestinal epithelial cell (IEC) lines and in the epithelial layer of the normal human colon. Interestingly, protein level of UNC-45A was decreased in colonic epithelium of patients with ulcerative colitis. CRISPR/Cas9-mediated knock-out of UNC-45A in HT-29cf8 and SK-CO15 IEC disrupted epithelial barrier integrity, impaired assembly of epithelial adherence and tight junctions and attenuated cell migration. Consistently, decreased UNC-45 expression increased permeability of the Drosophila gut in vivo. The mechanisms underlying barrier disruptive and anti-migratory effects of UNC-45A depletion involved disorganization of the actomyosin bundles at epithelial junctions and the migrating cell edge. Loss of UNC-45A also decreased contractile forces at apical junctions and matrix adhesions. Expression of deletion mutants revealed roles for the myosin binding domain of UNC-45A in controlling IEC junctions and motility. Our findings uncover a novel mechanism that regulates integrity and restitution of the intestinal epithelial barrier, which may be impaired during mucosal inflammation.


Assuntos
Actomiosina , Miosinas , Actomiosina/metabolismo , Células Epiteliais/metabolismo , Humanos , Junções Intercelulares/metabolismo , Mucosa Intestinal/metabolismo , Chaperonas Moleculares/metabolismo , Miosinas/metabolismo , Junções Íntimas/metabolismo
19.
Biochem Soc Trans ; 50(1): 597-607, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35212367

RESUMO

Myosins, a class of actin-based motor proteins existing in almost any organism, are originally considered only involved in driving muscle contraction, reshaping actin cytoskeleton, and anchoring or transporting cargoes, including protein complexes, organelles, vesicles. However, accumulating evidence reveals that myosins also play vital roles in viral infection, depending on viral species and infection stages. This review systemically summarizes the described various myosins, the performed functions, and the involved mechanisms or molecular pathways during viral infection. Meanwhile, the existing issues are also discussed. Additionally, the important technologies or agents, including siRNA, gene editing, and myosin inhibitors, would facilitate dissecting the actions and mechanisms for described and undescribed myosins, which could be adopted to prevent or control viral infection are also characterized.


Assuntos
Miosinas , Viroses , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Humanos , Miosinas/metabolismo , Organelas/metabolismo , Viroses/metabolismo
20.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-954415

RESUMO

Objective:Based on the degradation of skeletal muscle protein MuRF mediated by pFoxO1 when insulin resistance occurs, this paper explores the content change of skeletal muscle protein and the effect of Jianpi Qinghua formula when insulin resistance occurs.Methods:C57 mice were fed with high-fat food and made as the model of obesity accompanied by insulin resistance. Then they were divided into model group, Jianpi Qinghua formula group and metformin group according to random number table method with 10 mice in each group. Jianpi Qinghua formula group was orally administered with water decoction 20.961 g/kg, and the metformin group was orally administered with metformin suspension 18.498 g/kg, once a day for 12 consecutive weeks. Intraperitoneal Glucose Tolerance Tests (IPGTT) was used after the model was established and intervened respectively. The relative protein content of pFoxO1, FoxO1, MuRF, MyoD and myosin were detected by Western blot method, and the localization of MyoD and myosin was detected by immuno-histochemistry.Results:Compared with the model group, the blood glucose of IPGTT at 0 min, 60 min and 120 min of both Jianpi Qinghua formula group and Metformin group decreased ( P<0.05). Compared with model group, the ratio of pFoxO1/FoxO1 protein expression level (0.27±0.07, 0.24±0.14 vs. 0.05±0.03) of both Jianpi Qinghua formula group and Metformin group increased ( P<0.05), and the relative expression of MuRF protein (1.22±0.42, 1.15±0.32 vs. 3.21±0.35) of both Jianpi Qinghua formula group and Metformin group decreased ( P<0.05). The relative protein expression of MyoD (1.42±0.45 vs. 0.40±0.11) and myosin (0.80±0.11 vs. 0.51±0.08) relative protein expression of Jianpi Qinghua formula group was significantly higher than that of model group ( P<0.05). Immunohistochemical staining showed that MyoD (5.06±1.72 vs.2.28±0.83) and myosin (60.28±7.47 vs. 39.77±3.34) of Jianpi Qinghua formula group significantly increased compared with model group ( P<0.05). Conclusion:Jianpi Qinghua formula could effectively increase the content of skeletal muscle protein, enhancing the phosphorylation of FoxO1 in skeletal muscle and the inhibition of MuRF degradation pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...