Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Cell Infect Microbiol ; 12: 952720, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36601306

RESUMO

Neospora caninum is a member of Apicomplexa Phylum and the causative agent of neosporosis, a disease responsible for abortions in cattle. Apicomplexan parasites have a limited set of actin-binding proteins conducting the regulation of the dynamics of nonconventional actin. The parasite actin-based motility is implicated in the parasite invasion process in the host cell. Once no commercial strategy for the neosporosis control is available, the interference in the parasite actin function may result in novel drug targets. Actin-depolymerization factor (ADF) is a member of the ADF/cofilin family, primarily known for its function in actin severing and depolymerization. ADF/cofilins are versatile proteins modulated by different mechanisms, including reduction and oxidation. In apicomplexan parasites, the mechanisms involved in the modulation of ADF function are barely explored and the effects of oxidation in the protein are unknown so far. In this study, we used the oxidants N-chlorotaurine (NCT) and H2O2 to investigate the susceptibility of the recombinant N. caninum ADF (NcADF) to oxidation. After exposing the protein to either NCT or H2O2, the dimerization status and cysteine residue oxidation were determined. Also, the interference of NcADF oxidation in the interaction with actin was assessed. The treatment of the recombinant protein with oxidants reversibly induced the production of dimers, indicating that disulfide bonds between NcADF cysteine residues were formed. In addition, the exposure of NcADF to NCT resulted in more efficient oxidation of the cysteine residues compared to H2O2. Finally, the oxidation of NcADF by NCT reduced the ability of actin-binding and altered the function of NcADF in actin polymerization. Altogether, our results clearly show that recombinant NcADF is sensitive to redox conditions, indicating that the function of this protein in cellular processes involving actin dynamics may be modulated by oxidation.


Assuntos
Actinas , Neospora , Gravidez , Feminino , Animais , Bovinos , Actinas/metabolismo , Destrina/genética , Destrina/química , Destrina/metabolismo , Neospora/genética , Cisteína/metabolismo , Peróxido de Hidrogênio , Fatores de Despolimerização de Actina/metabolismo , Oxirredução , Oxidantes
2.
Food Environ Virol ; 11(2): 157-166, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30719622

RESUMO

Millions of people use contaminated water sources for direct consumption. Chlorine is the most widely disinfection product but can produce toxic by-products. In this context, natural and synthetic compounds can be an alternative to water disinfection. Therefore, the aim of this study was to assess the inactivation of human adenovirus by N-chlorotaurine (NCT), bromamine-T (BAT) and Grape seed extract (GSE) in water. Distilled water artificially contaminated with recombinant human adenovirus type 5 (rAdV-GFP) was treated with different concentrations of each compound for up to 120 min, and viral infectivity was assessed by fluorescence microscopy. The decrease in activity of the compounds in the presence of organic matter was evaluated in water supplemented with peptone. As results, NCT and GSE inactivated approximately 2.5 log10 of adenovirus after 120 min. With BAT, more than 4.0 log10 decrease was observed within 10 min. The oxidative activity of 1% BAT decreased by 50% in 0.5% peptone within a few minutes, while the reduction was only 30% for 1% NCT in 5% peptone after 60 min. Organic matter had no effect on the activity of GSE. Moreover, the minimal concentration of BAT and GSE to kill viruses was lower than that known to kill human cells. It was concluded that the three compounds have potential to be used for water disinfection for drinking or reuse purposes.


Assuntos
Adenovírus Humanos/efeitos dos fármacos , Desinfetantes/farmacologia , Desinfecção/métodos , Água Doce/virologia , Extrato de Sementes de Uva/farmacologia , Sulfonamidas/farmacologia , Taurina/análogos & derivados , Inativação de Vírus/efeitos dos fármacos , Infecções por Adenoviridae/virologia , Adenovírus Humanos/crescimento & desenvolvimento , Adenovírus Humanos/fisiologia , Humanos , Taurina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA