Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Cell Mol Med ; 28(2): e18049, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37987145

RESUMO

Derangement of redox condition largely contributes to cardiac ischemia/reperfusion (I/R) injury. FoxO1 is a transcription factor which transcripts a series of antioxidants to antagonize I/R-induced oxidative myocardial damage. N-n-butyl haloperidol iodide (F2 ) is a derivative derived from haloperidol structural modification with potent capacity of inhibiting oxidative stress. This investigation intends to validate whether cardio-protection of F2 is dependent on FoxO1 using an in vivo mouse I/R model and if so, to further elucidate the molecular regulating mechanism. This study initially revealed that F2 preconditioning led to a profound reduction in I/R injury, which was accompanied by attenuated oxidative stress and upregulation of antioxidants (SOD2 and catalase), nuclear FoxO1 and phosphorylation of AMPK. Furthermore, inactivation of FoxO1 with AS1842856 abolished the cardio-protective effect of F2 . Importantly, we identified F2 -mediated nuclear accumulation of FoxO1 is dependent on AMPK, as blockage of AMPK with compound C induced nuclear exit of FoxO1. Collectively, our data uncover that F2 pretreatment exerts significant protection against post ischemic myocardial injury by its regulation of AMPK/FoxO1 pathway, which may provide a new avenue for treating ischemic disease.


Assuntos
Proteínas Quinases Ativadas por AMP , Traumatismo por Reperfusão , Camundongos , Animais , Haloperidol/farmacologia , Miocárdio , Transdução de Sinais , Antioxidantes/farmacologia
2.
Acta Pharmacol Sin ; 43(1): 133-145, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33758354

RESUMO

N-n-Butyl haloperidol iodide (F2) is a novel compound that has antiproliferative and antifibrogenic activities. In this study we investigated the therapeutic potential of F2 against liver fibrosis in mice and the underlying mechanisms. Two widely used mouse models of fibrosis was established in mice by injection of either carbon tetrachloride (CCl4) or thioacetamide (TAA). The mice received F2 (0.75, 1.5 or 3 mg·kg-1·d-1, ip) for 4 weeks of fibrosis induction. We showed that F2 administration dose-dependently ameliorated CCl4- or TAA-induced liver fibrosis, evidenced by significant decreases in collagen deposition and c-Jun, TGF-ß receptor II (TGFBR2), α-smooth muscle actin (α-SMA), and collagen I expression in the liver. In transforming growth factor beta 1 (TGF-ß1)-stimulated LX-2 cells (a human hepatic stellate cell line) and primary mouse hepatic stellate cells, treatment with F2 (0.1, 1, 10 µM) concentration-dependently inhibited the expression of α-SMA, and collagen I. In LX-2 cells, F2 inhibited TGF-ß/Smad signaling through reducing the levels of TGFBR2; pretreatment with LY2109761 (TGF-ß signaling inhibitor) or SP600125 (c-Jun signaling inhibitor) markedly inhibited TGF-ß1-induced induction of α-SMA and collagen I. Knockdown of c-Jun decreased TGF-ß signaling genes, including TGFBR2 levels. We revealed that c-Jun was bound to the TGFBR2 promoter, whereas F2 suppressed the binding of c-Jun to the TGFBR2 promoter to restrain TGF-ß signaling and inhibit α-SMA and collagen I upregulation. In conclusion, the therapeutic benefit of F2 against liver fibrosis results from inhibition of c-Jun expression to reduce TGFBR2 and concomitant reduction of the responsiveness of hepatic stellate cells to TGF-ß1. F2 may thus be a potentially new effective pharmacotherapy for human liver fibrosis.


Assuntos
Haloperidol/análogos & derivados , Células Estreladas do Fígado/efeitos dos fármacos , Cirrose Hepática/tratamento farmacológico , Animais , Tetracloreto de Carbono/administração & dosagem , Relação Dose-Resposta a Droga , Haloperidol/administração & dosagem , Haloperidol/farmacologia , Células Estreladas do Fígado/metabolismo , Injeções Intraperitoneais , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Relação Estrutura-Atividade , Tioacetamida/administração & dosagem , Fator de Crescimento Transformador beta1/antagonistas & inibidores , Fator de Crescimento Transformador beta1/metabolismo
3.
Phytomedicine ; 91: 153706, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34517264

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most common cause of cancer-related death worldwide. Curcumin (C) has been extensively investigated in different types of malignancies, including hepatocellular carcinoma, but its physicochemical properties have significantly influenced its clinical use. Several approaches are being explored to enhance curcumin's therapeutic response, including its combination with various drugs. PURPOSE: This study aimed to evaluate the anti-tumor effect of curcumin (C) in combination with F2 (N-n-butyl haloperidol iodide) on hepatocellular carcinoma and its potential underlying mechanism in vitro and in vivo. METHODS: Cell proliferation was evaluated by CCK-8 and colony formation assays, and apoptosis was measured by flow cytometry. The migratory and invasive abilities of Hep3B and SMMC-7721 cells were measured by wound-healing and matrigel transwell assays. In order to investigate the molecular pathways, various experiments such as western blotting, qPCR, RNA-seq, immunostaining and transfection were performed. To evaluate the anti-HCC effects in vivo, a xenograft tumor model was used. RESULTS: Our findings showed that the combination of curcumin (C) & F2 (F2C) strongly inhibited malignant proliferation and migration in SMMC-7721 and Hep3B cells. The F2C treatment downregulates enhancer of zeste homolog 2 (EZH2) transcription and protein expression, which is key epigenetic regulator responsible for HCC development. Moreover, the inhibition of EZH2 by F2C led to Wnt/ß-catenin signaling inhibition by decreasing tri-methylation of histone H3 at lysine 27 (H3K27me3) and long non-coding RNA H19 expression. The inhibition of F2C was associated with the suppression of tumorigenicity in xenograft HCC models. CONCLUSION: These findings suggested that, F2C inhibited HCC formation, migration and its modulatory mechanism seemed to be associated with downregulation of EZH2, silencing Wnt/ß-catenin signaling by interacting with H19, suggesting that F2C may be a promising drug in the clinical treatment of HCC.


Assuntos
Carcinoma Hepatocelular , Curcumina , Haloperidol/análogos & derivados , Neoplasias Hepáticas , RNA Longo não Codificante , Via de Sinalização Wnt/efeitos dos fármacos , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Proliferação de Células , Curcumina/farmacologia , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Regulação Neoplásica da Expressão Gênica , Haloperidol/farmacologia , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Camundongos Nus , RNA Longo não Codificante/genética , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Chinese Pharmacological Bulletin ; (12): 1119-1125, 2017.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-613724

RESUMO

Aim To investigate the effects of classic calcium antagonists verapamil(Ver),nifedipine(Nif),diltiazem(Dil)and the novel calcium antagonist N-n-butyl haloperidol iodide(F2)which was synthesized by our lab by regulating Ca2+-independent phospholipase A2(iPLA2)on hypoxia/reoxygenation(H/R)injury of cardiac microvascular endothelial cells(CMECs)and the mechanisms.Methods The CMECs were isolated from SD neonatal rats.The H/R model was established,then cells were treated with different concentrations of calcium antagonists and F2.The content of LDH in the cell supernatant was measured by colorimetric method.The levels of IL-6 and AA in cell supernatant were measured by ELISA;and late-stage apoptosis was measured by TUNEL.The mRNA and protein expression levels of iPLA2 in CMECs were examined by real time-PCR and Western blot analysis.Results Calcium antagonists except Dil decreased the generation of LDH,IL-6 and AA in a dose-dependent manner(P<0.05),and reduced the apoptosis(P<0.05).F2 and Ver decreased the mRNA and protein expression of iPLA2 in a dose-dependent manner,while there were no such effects for Nif and Dil.Conclusions Calcium antagonists except Dil have protective effects against H/R injury.F2 and Ver protect CMECs against H/R injury partly through iPLA2.

5.
Chinese Pharmacological Bulletin ; (12): 819-823, 2017.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-618984

RESUMO

Aim To investigate the effect of N-n-butyl haloperidol iodide(F2) on mitochondria-dependent apoptotic pathway of H9c2 cardiac myocytes during hypoxia/reoxygenation(H/R) injury.Methods The H/R models of H9c2 cardiac myocytes were established.The H9c2 cardiac myocytes were randomly divided into five groups: control group(C group), hypoxia/reoxygenation group(H/R group), F2 low concentration group(L), F2 medium concentration group(M), F2 high concentration group(H).Apoptotic rate was evaluated by flow cytometry(FCM).The levels of Cyto C, Bcl-2, Bax were observed by Western blot.Caspase-3 activity was measured with colorimetry.Results Compared with H/R group, F2 low, medium and high concentrations group could significantly decrease apoptosis rate and increase the ratio of Bcl-2 to Bax proteins and inhibit the release of Cyto C into the cytosolic fraction, and decrease caspase-3 activity.Conclusion F2 can protect H9c2 cardiac myocytes against H/R-induced injury through interfering in mitochondria-dependent pathway.

6.
Oncotarget ; 7(23): 34800-10, 2016 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-27166184

RESUMO

Endothelial cells are highly sensitive to hypoxia and contribute to myocardial ischemia/reperfusion injury. We have reported that N-n-butyl haloperidol iodide (F2) can attenuate hypoxia/reoxygenation (H/R) injury in cardiac microvascular endothelial cells (CMECs). However, the molecular mechanisms remain unclear. Neonatal rat CMECs were isolated and subjected to H/R. Pretreatment of F2 leads to a reduction in H/R injury, as evidenced by increased cell viability, decreased lactate dehydrogenase (LDH) leakage and apoptosis, together with enhanced AMP-activated protein kinase (AMPK) and liver kinase B1 (LKB1) phosphorylation in H/R ECs. Blockade of AMPK with compound C reversed F2-induced inhibition of H/R injury, as evidenced by decreased cell viability, increased LDH release and apoptosis. Moreover, compound C also blocked the ability of F2 to reduce H/R-induced reactive oxygen species (ROS) generation. Supplementation with the ROS scavenger N-acetyl-L-cysteine (NAC) reduced ROS levels, increased cell survival rate, and decreased both LDH release and apoptosis after H/R. In conclusion, our data indicate that F2 may mitigate H/R injury by stimulating LKB1/AMPK signaling pathway and subsequent suppression of ROS production in CMECs.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Hipóxia Celular/efeitos dos fármacos , Células Endoteliais/metabolismo , Haloperidol/análogos & derivados , Proteínas Serina-Treonina Quinases/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Acetilcisteína/farmacologia , Animais , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Haloperidol/farmacologia , Isquemia/tratamento farmacológico , L-Lactato Desidrogenase/metabolismo , Fosforilação/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo
7.
Oncotarget ; 6(28): 24709-21, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26359352

RESUMO

N-n-butyl haloperidol iodide (F2), a novel compound derived from haloperidol, protects against the damaging effects of ischemia/reperfusion (I/R) injury in vitro and in vivo. In this study, we hypothesized the myocardial protection of F2 on cardiomyocyte hypoxia/reoxygenation (H/R) injury is mediated by inhibiting autophagy in H9c2 cells. The degree of autophagy by treatment with F2 exposed to H/R in H9c2 cell was characterized by monodansylcadaverine, transmission electron microscopy, and expression of autophagy marker protein LC3. Our results indicated that treatment with F2 inhibited autophagy in H9c2 cells exposed to H/R. 3-methyladenine, an inhibitor of autophagy, suppressed H/R-induced autophagy, and decreased apoptosis, whereas rapamycin, a classical autophagy sensitizer, increased autophagy and apoptosis. Mechanistically, macrophage migration inhibitory factor (MIF) was inhibited by F2 treatment after H/R. Accordingly, small interfering RNA (siRNA)-mediated MIF knockdown decreased H/R-induced autophagy. In summary, F2 protects cardiomyocytes during H/R injury through suppressing autophagy activation. Our results provide a new mechanistic insight into a functional role of F2 against H/R-induced cardiomyocyte injury and death.


Assuntos
Autofagia/efeitos dos fármacos , Haloperidol/análogos & derivados , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Adenina/análogos & derivados , Adenina/farmacologia , Animais , Apoptose/efeitos dos fármacos , Cadaverina/análogos & derivados , Cadaverina/metabolismo , Linhagem Celular , Citoproteção , Relação Dose-Resposta a Droga , Haloperidol/farmacologia , Oxirredutases Intramoleculares/genética , Oxirredutases Intramoleculares/metabolismo , Fatores Inibidores da Migração de Macrófagos/genética , Fatores Inibidores da Migração de Macrófagos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Miócitos Cardíacos/ultraestrutura , Interferência de RNA , Ratos , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Transfecção
8.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-677534

RESUMO

AIM To investigate the effect of N n butyl haloperidol iodide (F 2) on potassium currents in enzymatically isolated vascular smooth muscle cells (VSMC) from thoracic aortas and the effect of F 2 on aortic rings of rat. METHODS The whole cell patch clamp technique and the contraction of rats thoracic aortic rings were used in experiments. RESULTS The outward currents were observed when holding potential was -40 mV and the cell was depolarized from -30 mV to +100 mV (in 10 mV increase) for 400 ms. At the point of the test potential of +70 mV, solutions of F 2 (0 1,1, 5 ?mol?L -1 ) were added into bath (external) solution, which led to the increase of the outward currents from (229?28)pA,(226?57)pA and(228?42) pA to (354?29) pA ( n =6, P

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...