RESUMO
Oral squamous cell carcinoma (OSCC) constitutes over 90% of oral cancers, known for its aggressiveness and poor prognosis. Photodynamic therapy (PDT) has emerged as a promising adjuvant therapy and is linked to immunogenic cell death, activating innate and adaptive anti-tumor responses. Natural Killer (NK) cells, key players in malignant cell elimination, have not been extensively studied in PDT. This study evaluates whether PDT increases OSCC cell lines' susceptibility to NK cell cytotoxicity. PDT, using 5-aminolevulinic acid (5-ALA) and LED irradiation, was applied to Ca1 and Luc4 cell lines. Results showed a dose-dependent viability decrease post-PDT. Gene expression analysis revealed upregulation of NK cell-activating ligands (ULBP1-4, MICA/B) and decreased MHC class I expression in Ca1, suggesting increased NK cell susceptibility. Enhanced NK cell cytotoxicity was confirmed in Ca1 but not in Luc4 cells. These findings indicate that PDT may enhance NK cell-mediated cytotoxicity in OSCC, offering potential for improved treatment strategies.
Assuntos
Ácido Aminolevulínico , Carcinoma de Células Escamosas , Células Matadoras Naturais , Neoplasias Bucais , Fotoquimioterapia , Humanos , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Neoplasias Bucais/patologia , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/imunologia , Linhagem Celular Tumoral , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/imunologia , Ácido Aminolevulínico/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Citotoxicidade Imunológica/efeitos dos fármacosRESUMO
Natural killer (NK) cells play a crucial role in innate immunity, particularly in combating infections and tumors. However, in hematological cancers, NK cells often exhibit impaired functions. Therefore, it is very important to activate its endosomal Toll-like receptors (TLRs) as a potential strategy to restore its antitumor activity. We stimulated NK cells from the peripheral blood mononuclear cells from children with acute lymphoblastic leukemia and NK cells isolated, and the NK cells were stimulated with specific TLR ligands (Poly I:C, Imiquimod, R848, and ODN2006) and we evaluated changes in IFN-γ, CD107a, NKG2D, NKp44 expression, Granzyme B secretion, cytokine/chemokine release, and cytotoxic activity. Results revealed that Poly I:C and Imiquimod enhanced the activation of both immunoregulatory and cytotoxic NK cells, increasing IFN-γ, CD107a, NKG2D, and NKp44 expression. R848 activated immunoregulatory NK cells, while ODN2006 boosted CD107a, NKp44, NKG2D, and IFN-γ secretion in cytotoxic NK cells. R848 also increased the secretion of seven cytokines/chemokines. Importantly, R848 and ODN 2006 significantly improved cytotoxicity against leukemic cells. Overall, TLR stimulation enhances NK cell activation, suggesting TLR8 (R848) and TLR9 (ODN 2006) ligands as promising candidates for antitumor immunotherapy.
Assuntos
Imiquimode , Células Matadoras Naturais , Ativação Linfocitária , Poli I-C , Leucemia-Linfoma Linfoblástico de Células Precursoras , Receptores Toll-Like , Humanos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/imunologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Poli I-C/farmacologia , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Imiquimode/farmacologia , Receptores Toll-Like/metabolismo , Receptores Toll-Like/agonistas , Criança , Oligodesoxirribonucleotídeos/farmacologia , Citocinas/metabolismo , Feminino , Interferon gama/metabolismo , Masculino , Imidazóis/farmacologia , Citotoxicidade Imunológica/efeitos dos fármacos , Pré-Escolar , Agonistas do Receptor Semelhante a TollRESUMO
BACKGROUND: Acute myocardial infarction (AMI) is one of the principal causes of death in Mexico and worldwide. AMI triggers an acute inflammatory process that induces the activation of different populations of the innate immune system. Innate lymphoid cells (ILCs) are an innate immunity, highly pleiotropic population, which have been observed to participate in tissue repair and polarization of the adaptive immune response. OBJECTIVE: We aimed to analyze the levels of subsets of ILCs in patients with ST-segment elevation myocardial infarction (STEMI), immediately 3 and 6 months post-AMI, and analyze their correlation with clinical parameters. RESULTS: We evaluated 29 STEMI patients and 15 healthy controls and analyzed the different subsets of circulating ILCs, immediately 3 and 6 months post-AMI. We observed higher levels of circulating ILCs in STEMI patients compared to control subjects and a significant correlation between ILC levels and cardiac function. We also found increased production of the cytokines interleukin 5 (IL-5) and interleukin 17A (IL-17A), produced by ILC2 cells and by ILC3 cells, respectively, in the STEMI patients. CONCLUSION: This study shows new evidence of the role of ILCs in the pathophysiology of AMI and their possible involvement in the maintenance of cardiac function.
Assuntos
Imunidade Inata , Linfócitos , Infarto do Miocárdio com Supradesnível do Segmento ST , Humanos , Infarto do Miocárdio com Supradesnível do Segmento ST/imunologia , Masculino , Feminino , Pessoa de Meia-Idade , Linfócitos/imunologia , Idoso , Interleucina-17/metabolismo , Interleucina-5 , Citocinas/metabolismo , Estudos de Casos e ControlesRESUMO
PURPOSE: Although immunotherapy improves outcomes in extensive-stage small-cell lung cancer (ES-SCLC), the search for biomarkers predicting treatment success is crucial. Natural killer (NK) cells are potential indicators in various cancers, however, their precise role in ES-SCLC prognosis remains unclear. METHODS: In this retrospective study, 33 patients with ES-SCLC treated with first-line immuno-chemotherapy were enrolled. The peripheral NK cell percentage and its longitudinal dynamics were analyzed using flow cytometry. Progression-free survival (PFS) and overall survival (OS) were calculated as hazard ratio (HR) and compared statistically. RESULTS: The median PFS was better in the group with normal baseline NK cell levels than the low group (7.0 vs. 4.6 months; HR = 0.17; 95% CI 0.07-0.41; P < 0.0001), but there was no association with OS (14.9 vs. 10.3 months; HR = 0.55; 95% CI 0.23-1.31; P = 0.171). Furthermore, the NK cell% for 95.0% of patients increased after immunochemotherapy in the clinical response group (P = 0.0047), which led to a better median PFS (6.3 vs. 2.1 months; HR = 0.23; 95% CI 0.05-0.98; P < 0.0001) and OS (14.9 vs. 5.9 months; HR = 0.20; 95% CI 0.04-1.02; P < 0.0001). Similar trends were observed with NK cell% changes up to disease progression, improving PFS (6.5 vs. 4.3; HR = 0.41; 95% CI 0.12-0.92; P = 0.0049) and OS (17.4 vs. 9.7; HR = 0.42; 95% CI 0.17-1.02; P < 0.0001). CONCLUSION: In patients with ES-SCLC, the percentage and changes in peripheral NK cells can predict the response to combined immunotherapy and chemotherapy.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Imunoterapia , Células Matadoras Naturais , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Humanos , Masculino , Feminino , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/imunologia , Estudos Retrospectivos , Carcinoma de Pequenas Células do Pulmão/patologia , Carcinoma de Pequenas Células do Pulmão/terapia , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Carcinoma de Pequenas Células do Pulmão/imunologia , Carcinoma de Pequenas Células do Pulmão/mortalidade , Pessoa de Meia-Idade , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Imunoterapia/métodos , Intervalo Livre de Progressão , Prognóstico , Adulto , Estadiamento de Neoplasias , Idoso de 80 Anos ou maisRESUMO
The blastocyst nidation is the most crucial stage to a successful pregnancy, as the white cells work to promote a favorable endometrial microenvironment for this process. Intriguingly, this implantation window lasts, on average, 6 days in most regular women, and its quality is affected by many pathological conditions. Since the grounds of reproductive failure in healthy couples are still uncharted, studies have widely suggested a potential hostile role of the immune system in the equilibrium of the maternal-fetal interface. In recent years, natural killer cells have been the highlight as they represent the greatest lymphocyte in the uterus and have immune surveillance through cytotoxicity during the implantation window. This review explored the main techniques used for natural killer (NK) cell testing in the implantation window over the last 13 years on the PubMed® database. Of 2167 published articles potentially relevant for the review, only thirty-three were about cell evaluation in healthy women, met the inclusion criteria, and had their methodology critically analyzed. Here, we bring a summary from the study group and sample collection to evidence comments about their findings and correlations. Meanwhile, we also summarize the current relationship between NK cells and endometrial receptivity with reproductive failure to help enhance the possibilities for future research. In conclusion, our overview points out that restricted and unstandardized methods support the controversy between the NK population and unsuccessful embryo implantation, which is an obstacle to studying why healthy eggs do not thrive and finding a solution for one of the most controversial topics in human reproduction.
Assuntos
Implantação do Embrião , Útero , Gravidez , Feminino , Humanos , Células Matadoras Naturais , EndométrioRESUMO
ABSTRACT Introduction and hypothesis: Umbilical cord blood (UCB) is an alternative source of hematopoietic stem cells for allogeneic hematopoietic stem cell transplantation in the absence of a compatible donor. The UCB transplantation has a lower incidence of chronic graft versus host disease (GvHD), but is associated with slower engraftment and slower immune reconstitution, compared to other sources. Dendritic cells (DCs) and Natural Killer cells (NKs) play a central role in the development of GvHD and the graft versus leukemia (GvL) effect, as well as in the control of infectious complications. Method: We quantified by multiparametric flow cytometry monocytes, lymphocytes, NK cells, and DCs, including their subsets, in UCB samples from 54 healthy newborns and peripheral blood (PB) from 25 healthy adult volunteers. Results: In the UCB samples, there were higher counts of NK cells 56bright16- (median 0.024 × 109/L), compared to the PB samples (0.012 × 109/L, p < 0.0001), NK 56dim16bright (median 0.446 × 109/L vs. 0.259 × 109/L for PB samples, p = 0.001) and plasmacytoid dendritic cells (pDCs, median 0.008 × 109/L for UCB samples vs. 0.006 × 109/L for PB samples, p = 0.03). Moreover, non-classic monocyte counts were lower in UCB than in PB (median 0.024 × 109/L vs. 0.051 × 109/L, respectively, p < 0.0001). Conclusion: In conclusion, there were higher counts of NK cells and pDCs and lower counts of non-classic monocytes in UCB than in PB from healthy individuals. These findings might explain the lower incidence and severity of chronic GvHD, although maintaining the GvL effect, in UCB transplant recipients, compared to other stem cell sources.
Assuntos
Sangue FetalRESUMO
Physical exercise generates a systemic response in the immune system. It has been observed that cell populations respond to exercise stimuli, especially Natural Killer cells, whose number increase within minutes of starting physical exertion. This study aimed to evaluate the acute effect of moderate- and high-intensity exercise on immunological markers in healthy women. As specific objectives, the percentages of CD3-CD56+ Natural Killer total cells, CD56brightCD16dim effector subpopulation, CD56dimCD16bright cytotoxic subpopulation, NKG2A inhibition receptor, NKG2D activation receptor, and NKT cells were analyzed. In addition, the levels of the cytokines IL-1ß, IL-6, IL-8, IL-10, IL-12p70, and TNF and the chemokines CCL5/RANTES, CXCL9/MIG, CCL2/MCP-1, and CXCL10/IP-10 were also analyzed. Natural Killer total cells showed an increase in their percentage in both exercise protocols (p = 0.001 for the moderate-intensity group and p = 0.023 for the high-intensity group); however, only in the high-intensity exercise session was there an increase in the CD56dimCD16bright cytotoxic subpopulation (p = 0.014), as well as a decrease in CD56brightCD16dim effector subpopulation (p = 0.001) and their NKG2A inhibition receptor (p = 0.043). An increase in IL-6 was observed after the high-intensity exercise session (p = 0.025). Conclusions. Physical exercise influences immunological markers and shows an acute response to moderate- or high-intensity exercise.
RESUMO
The global impact of the SARS-CoV-2 infection has been substantial, affecting millions of people. Long COVID, characterized by persistent or recurrent symptoms after acute infection, has been reported in over 40% of patients. Risk factors include age and female gender, and various mechanisms, including chronic inflammation and viral persistence, have been implicated in long COVID's pathogenesis. However, there are scarce studies in which multiple inflammatory markers and viral load are analyzed simultaneously in acute infection to determine how they predict for long COVID at long-term follow-up. This study explores the association between long COVID and inflammatory markers, viral load, and lymphocyte subpopulation during acute infection in hospitalized patients to better understand the risk factors of this disease. This longitudinal retrospective study was conducted in patients hospitalized with COVID-19 in northern Mexico. Inflammatory parameters, viral load, and lymphocyte subpopulation during the acute infection phase were analyzed, and long COVID symptoms were followed up depending on severity and persistence (weekly or monthly) and assessed 1.5 years after the acute infection. This study analyzed 79 patients, among them, 41.8% presented long COVID symptoms, with fatigue being the most common (45.5%). Patients with long COVID had higher lymphocyte levels during hospitalization, and NK cell subpopulation levels were also associated with long COVID. ICU admission during acute COVID-19 was also linked to the development of long COVID symptoms.
RESUMO
Skin ulcers of cutaneous leishmaniasis (CL) are characterized by a localized inflammatory response mediated by innate and adaptive immune cells, including dendritic cells (DC) and natural killer (NK) cells. Bidirectional interactions between DCs and NK cells contribute to tailor leishmaniasis outcome. Despite advances in the Leishmania biology field in recent decades, the mechanisms involved in DC/NK-mediated control of Leishmania sp. pathogenesis as well as the cellular and molecular players involved in such interaction remain unclear. The present study sought to investigate canonical pathways associated with CL arising from Leishmania braziliensis infection. Initially, two publicly available microarray datasets of skin biopsies from active CL lesions were analyzed, and five pathways were identified using differentially expressed genes. The "Crosstalk between DCs and NK cells" pathway was notable due to a high number of modulated genes. The molecules significantly involved in this pathway were identified, and our findings were validated in newly obtained CL biopsies. We found increased expression of TLR4, TNFRSF1B, IL-15, IL-6, CD40, CCR7, TNF and IFNG, confirming the analysis of publicly available datasets. These findings reveal the "crosstalk between DCs and NK cells" as a potential pathway to be further explored in the pathogenesis of CL, especially the expression of CCR7, which is correlated with lesion development.
RESUMO
Autism Spectrum Disorder (ASD) is a set of neurodevelopmental disorders mainly characterized by repetitive, restrictive and stereotypical behaviors, and impaired communication skills. Several lines of evidence indicate that alterations of the immune system account for ASD development, including the presence of brain-reactive antibodies, abnormal T cell activation, altered cytokine levels in brain, cerebrospinal fluid and peripheral blood circulation, increased levels of circulating monocytes, and dysregulation in Natural Killer (NK) cells activity. Regarding NK cells, a lower cytotoxic activity, a higher level of activation and an increased number of these cells in individuals with ASD have been described. In 2019, a study showed that NK cells derived from patients with ASD show a characteristic pattern of NKG2C overexpression, highlighting the importance of the NK cell pathway in ASD. In fact, the study of genes related to NK cell activity has proven to be an excellent research target, both in terms of susceptibility as well as a marker for the different clinical manifestations observed in ASD individuals. Here, we evaluated the influence of KLRC2 gene deletion as well as KLRK1 rs1049174 and rs2255336 variants in a cohort of 185 children diagnosed with ASD and their respective biological parents in southern Brazil. Of note, this is the first study concerning genetic variants of the KLRC2 and KLRK1 genes in an ASD sample. The KLRC2 gene deletion (p = 0.001; pc = 0.009), KLRK1 rs1049174 (p = 0.005; pc = 0.045) and KLRK1 rs2255336 (p = 0.001; pc = 0.009) were associated with epilepsy in ASD patients. The results indicate that KLRC2 deletion, KLRK1 rs2255336, and KLRK1 rs1049174 could be involved in epilepsy manifestation in ASD patients, possibly impacting the NK dysregulation already described in ASD and epileptic patients.
Assuntos
Transtorno do Espectro Autista , Epilepsia , Criança , Humanos , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Células Matadoras Naturais , Encéfalo/metabolismo , Epilepsia/genética , Brasil , Subfamília C de Receptores Semelhantes a Lectina de Células NK/metabolismoRESUMO
Cellular immunotherapy has revolutionized the oncology field, yielding improved results against hematological and solid malignancies. NK cells have become an attractive alternative due to their capacity to activate upon recognition of "stress" or "danger" signals independently of Major Histocompatibility Complex (MHC) engagement, thus making tumor cells a perfect target for NK cell-mediated cancer immunotherapy even as an allogeneic solution. While this allogeneic use is currently favored, the existence of a characterized memory function for NK cells ("memory-like" NK cells) advocates for an autologous approach, that would benefit from the allogeneic setting discoveries, but with added persistence and specificity. Still, both approaches struggle to exert a sustained and high anticancer effect in-vivo due to the immunosuppressive tumor micro-environment and the logistical challenges of cGMP production or clinical deployment. Novel approaches focused on the quality enhancement and the consistent large-scale production of highly activated therapeutic memory-like NK cells have yielded encouraging but still unconclusive results. This review provides an overview of NK biology as it relates to cancer immunotherapy and the challenge presented by solid tumors for therapeutic NKs. After contrasting the autologous and allogeneic NK approaches for solid cancer immunotherapy, this work will present the current scientific focus for the production of highly persistent and cytotoxic memory-like NK cells as well as the current issues with production methods as they apply to stress-sensitive immune cells. In conclusion, autologous NK cells for cancer immunotherapy appears to be a prime alternative for front line therapeutics but to be successful, it will be critical to establish comprehensives infrastructures allowing the production of extremely potent NK cells while constraining costs of production.
Assuntos
Imunoterapia , Neoplasias , Humanos , Neoplasias/terapia , Células Matadoras Naturais , Microambiente TumoralRESUMO
Cellular metabolism is essential for the correct function of immune system cells, including Natural Killer cells (NK). These cells depend on energy to carry out their effector functions, especially in the early stages of viral infection. NK cells participate in the innate immune response against viruses and tumors. Their main functions are cytotoxicity and cytokine production. Metabolic changes can impact intracellular signals, molecule production, secretion, and cell activation which is essential as the first line of immune defense. Metabolic variations in different immune cells in response to a tumor or pathogen infection have been described; however, little is known about NK cell metabolism in the context of viral infection. This review summarizes the activation-specific metabolic changes in NK cells, the immunometabolism of NK cells during early, late, and chronic antiviral responses, and the metabolic alterations in NK cells in SARS-CoV2 infection. The modulation points of these metabolic routes are also discussed to explore potential new immunotherapies against viral infections.
Assuntos
COVID-19 , Viroses , Humanos , RNA Viral/metabolismo , COVID-19/metabolismo , SARS-CoV-2 , Células Matadoras Naturais , Viroses/metabolismoRESUMO
INTRODUCTION AND HYPOTHESIS: Umbilical cord blood (UCB) is an alternative source of hematopoietic stem cells for allogeneic hematopoietic stem cell transplantation in the absence of a compatible donor. The UCB transplantation has a lower incidence of chronic graft versus host disease (GvHD), but is associated with slower engraftment and slower immune reconstitution, compared to other sources. Dendritic cells (DCs) and Natural Killer cells (NKs) play a central role in the development of GvHD and the graft versus leukemia (GvL) effect, as well as in the control of infectious complications. METHOD: We quantified by multiparametric flow cytometry monocytes, lymphocytes, NK cells, and DCs, including their subsets, in UCB samples from 54 healthy newborns and peripheral blood (PB) from 25 healthy adult volunteers. RESULTS: In the UCB samples, there were higher counts of NK cells 56bright16- (median 0.024 × 109/L), compared to the PB samples (0.012 × 109/L, p < 0.0001), NK 56dim16bright (median 0.446 × 109/L vs. 0.259 × 109/L for PB samples, p = 0.001) and plasmacytoid dendritic cells (pDCs, median 0.008 × 109/L for UCB samples vs. 0.006 × 109/L for PB samples, p = 0.03). Moreover, non-classic monocyte counts were lower in UCB than in PB (median 0.024 × 109/L vs. 0.051 × 109/L, respectively, p < 0.0001). CONCLUSION: In conclusion, there were higher counts of NK cells and pDCs and lower counts of non-classic monocytes in UCB than in PB from healthy individuals. These findings might explain the lower incidence and severity of chronic GvHD, although maintaining the GvL effect, in UCB transplant recipients, compared to other stem cell sources.
RESUMO
In cancer, tumor cells and their neoplastic microenvironment can sculpt the immunogenic phenotype of a developing tumor. In this context, natural killer (NK) cells are subtypes of lymphocytes of the innate immune system recognized for their potential to eliminate neoplastic cells, not only through direct cytolytic activity but also by favoring the development of an adaptive antitumor immune response. Even though the protective effect against leukemia due to NK-cell alloreactivity mediated by the absence of the KIR-ligand has already been shown, and some data on the role of NK cells in myeloproliferative neoplasms (MPN) has been explored, their mechanisms of immune escape have not been fully investigated. It is still unclear whether NK cells can affect the biology of BCR-ABL1-negative MPN and which mechanisms are involved in the control of leukemic stem cell expansion. Aiming to investigate the potential contribution of NK cells to the pathogenesis of MPN, we characterized the frequency, receptor expression, maturation profile, and function of NK cells from a conditional Jak2V617F murine transgenic model, which faithfully resembles the main clinical and laboratory characteristics of human polycythemia vera, and MPN patients. Immunophenotypic analysis was performed to characterize NK frequency, their subtypes, and receptor expression in both mutated and wild-type samples. We observed a higher frequency of total NK cells in JAK2V617F mutated MPN and a maturation arrest that resulted in low-numbered mature CD11b+ NK cells and increased immature secretory CD27+ cells in both human and murine mutated samples. In agreement, inhibitory receptors were more expressed in MPN. NK cells from Jak2V617F mice presented a lower potential for proliferation and activation than wild-type NK cells. Colonies generated by murine hematopoietic stem cells (HSC) after mutated or wild-type NK co-culture exposure demonstrated that NK cells from Jak2V617F mice were deficient in regulating differentiation and clonogenic capacity. In conclusion, our findings suggest that NK cells have an immature profile with deficient cytotoxicity that may lead to impaired tumor surveillance in MPN. These data provide a new perspective on the behavior of NK cells in the context of myeloid malignancies and can contribute to the development of new therapeutic strategies, targeting onco-inflammatory pathways that can potentially control transformed HSCs.
Assuntos
Células Matadoras Naturais , Transtornos Mieloproliferativos , Animais , Humanos , Camundongos , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Células Matadoras Naturais/metabolismo , Leucemia/genética , Leucemia/metabolismo , Ligantes , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/patologia , Microambiente Tumoral/genéticaRESUMO
Natural killer (NK) cells play a crucial role in cervical cancer (CC). As estrogens and prolactin (PRL) have been reported to be involved in CC, the present study attempted to elucidate the effects of both hormones on NK cells in CC. For this purpose, NKL cells, as well as CC-derived cell lines (HeLa, SiHa and C33A) and non-tumorigenic keratinocytes (HaCaT cells) were stimulated with 17ß-estradiol (E2; 10 nM), PRL (200 ng/ml), or both (E2 and PRL) for 48 h. The expression of hormone receptors (estrogen receptor α and ß, G protein-coupled estrogen receptor 1 and PRL receptor) and NK cell activating receptors [natural killer group 2D (NKG2D), natural cytotoxicity triggering receptor 3, natural cytotoxicity triggering receptor 2 and natural cytotoxicity triggering receptor 1] were measured using western blot analysis and flow cytometry, respectively. In the HeLa, SiHa, C33A and HaCaT cells stimulated with the hormones, the expression of NKG2D ligands [MHC class I polypeptide-related sequence A/B (MICA/B)] on the membrane and the soluble form of MICA was evaluated using flow cytometry and ELISA. Cytotoxicity assay was performed using GFP-transfected K562 cells as target cells. E2 reduced NKL cell-mediated cytotoxicity, while PRL exerted the opposite effect. NKL cells expressed different hormone receptor forms, of which PRL only induced a decrease in NKG2D expression compared to the untreated control NKL cells. PRL increased MICA/B expression in HeLa cells and E2 and PRL reversed this effect. However, in SiHa cells, the concurrent incubation with the two hormones decreased MICA/B expression. E2 and PRL, either alone or in combination, decreased soluble MICA secretion in all CC cell lines, while E2 solely increased soluble MICA secretion in SiHa cells. On the whole, the present study provides evidence that E2 and PRL mediate the mechanisms through which NK and CC cells mediate a cytotoxic response and these have an antagonistic effect on NK cell-mediated cytotoxicity.
RESUMO
At the end of 2019, an outbreak of a severe respiratory disease occurred in Wuhan China, and an increase in cases of unknown pneumonia was alerted. In January 2020, a new coronavirus named SARS-CoV-2 was identified as the cause. The virus spreads primarily through the respiratory tract, and lymphopenia and cytokine storms have been observed in severely ill patients. This suggests the existence of an immune dysregulation as an accompanying event during a serious illness caused by this virus. Natural killer (NK) cells are innate immune responders, critical for virus shedding and immunomodulation. Despite its importance in viral infections, the contribution of NK cells in the fight against SARS-CoV-2 has yet to be deciphered. Different studies in patients with COVID-19 suggest a significant reduction in the number and function of NK cells due to their exhaustion. In this review, we summarize the current understanding of how NK cells respond to SARS-CoV-2 infection.
Assuntos
COVID-19 , Humanos , Imunomodulação , Células Matadoras Naturais , SARS-CoV-2RESUMO
The enzyme heme oxygenase-1 (HO-1) has cytoprotective effects by catalyzing the degradation of heme to produce carbon monoxide, iron and biliverdin. Furthermore, HO-1 activity has been associated with successful pregnancy. On the other hand, in the context of certain inflammatory conditions, HO-1 can induce iron overload and cell death. To investigate the role of HO-1 in gestational malaria, pregnant BALB/c mice were infected with Plasmodium berghei ANKA in early, mid and late gestation. We found that malaria affected the pregnancy outcome in the three periods evaluated. However, only poor pregnancy outcomes in early pregnancy were related to HO-1 upregulation, iron overload, lipid peroxidation and necrosis of the decidua, which were prevented by HO-1 inhibition. In conclusion, HO-1 expression must be finely tuned in gestational malaria to avoid the deleterious effect of increased enzyme activity.
Assuntos
Heme Oxigenase-1 , Malária , Resultado da Gravidez , Protoporfirinas , Animais , Feminino , Heme Oxigenase-1/antagonistas & inibidores , Heme Oxigenase-1/metabolismo , Sobrecarga de Ferro , Peroxidação de Lipídeos , Malária/tratamento farmacológico , Camundongos , Plasmodium berghei , Gravidez , Complicações Parasitárias na Gravidez/tratamento farmacológico , Protoporfirinas/farmacologiaRESUMO
Natural killer (NK) cells are innate lymphocytes that play an important role in immunosurveillance, acting alongside other immune cells in the response against various types of malignant tumors and the prevention of metastasis. Since their discovery in the 1970s, they have been thoroughly studied for their capacity to kill neoplastic cells without the need for previous sensitization, executing rapid and robust cytotoxic activity, but also helper functions. In agreement with this, NK cells are being exploited in many ways to treat cancer. The broad arsenal of NK-based therapies includes adoptive transfer of in vitro expanded and activated cells, genetically engineered cells to contain chimeric antigen receptors (CAR-NKs), in vivo stimulation of NK cells (by cytokine therapy, checkpoint blockade therapies, etc.), and tumor-specific antibody-guided NK cells, among others. In this article, we review pivotal aspects of NK cells' biology and their contribution to immune responses against tumors, as well as providing a wide perspective on the many antineoplastic strategies using NK cells. Finally, we also discuss those approaches that have the potential to control glioblastoma-a disease that, currently, causes inevitable death, usually in a short time after diagnosis.
RESUMO
Human herpesvirus-8 infection (HHV-8) is the causative agent of Kaposi sarcoma (KS) and is highly prevalent among people living with HIV (KS/HIV). It has been reported that valganciclovir (VGC) reduces HHV-8 replication in KS/HIV patients. However, currently it is unclear if VGC modifies the frequency and induces changes in markers of immune regulation of immune cells necessary to eliminate HHV8-infected cells, such as Natural Killer (NK) and NK T cells (NKT). This study evaluated the effect of VGC used as antiviral HHV8 therapy in KS patients on the frequency of NK and NKT subpopulations based on the CD27 and CD57 expression, and the immunosenescence markers, PD-1 and KLRG1. Twenty KS/HIV patients were followed-up at baseline (W0), 4 (W4), and 12 weeks (W12) of the study protocol. Among them, 10 patients received a conventional treatment scheme (CT), solely antiretroviral therapy (ART), and 10 patients received a modified treatment regime (MT), including VGC plus ART. In both groups, bleomycin/vincristine was administrated according to the treating physician's decision. The soluble levels of IL-15, PD-L1, PD-L2, and E-cadherin were quantified across the follow-up. Our results showed that the higher IL-15 levels and lower NK frequencies cells in KS/HIV patients reach almost normal values with both treatments regimes at W12. CD27+ NK and NKT cell frequencies increased since W4 on KS/HIV patients with MT. Furthermore, PD-1 expression decreased while KLRG1 increased on NK and NKT subpopulations at W12, and it is accompanied by increased PD-L1 plasma level since W4. Our study highlights the disruption of NK and NKT subpopulations in patients with KS/HIV and explores VGC treatment's contribution to immune reconstitution during the first weeks of treatment.
RESUMO
Evidence from multiple scientific studies suggests that the Bacillus Calmette-Guérin (BCG) vaccine, widely used worldwide as a preventive measure against tuberculosis, also offers crossprotection against other pathogens. This review aimed to gather data from research that studied the mechanisms involved in the immunological protection induced by the BCG vaccine, which may be important in the control of viral infections, such as COVID-19. Through a literature review, we compiled information about the different BCG strains used worldwide, as well as the responses and protection elicited by them. We commented on the mechanisms of immune response to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), and we discussed the possibility of cross-protection of different BCG strains on the control of COVID-19. Due to the immunomodulatory properties of BCG, some BCG strains were able to induce an effective cellular immune response and, through epigenetic modifications, activate cells of the innate immune system, such as monocytes, macrophages and natural killer cells, which are crucial for the control of viral infections. Although several vaccines have already been developed and used in an attempt to control the COVID-19 pandemic, some BCG vaccine strains may help stimulate the basal defences against these pathogens and can be used as additional defences in this and future pandemics.