Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.091
Filtrar
1.
J Biol Chem ; 300(7): 107463, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38876304

RESUMO

Chemotherapeutic agents for treating colorectal cancer (CRC) primarily induce apoptosis in tumor cells. The ubiquitin-proteasome system is critical for apoptosis regulation. Deubiquitinating enzymes (DUBs) remove ubiquitin from substrates to reverse ubiquitination. Although over 100 DUB members have been discovered, the biological functions of only a small proportion of DUBs have been characterized. Here, we aimed to systematically identify the DUBs that contribute to the development of CRC. Among the DUBs, ubiquitin-specific protease 36 (USP36) is upregulated in CRC. We showed that the knockdown of USP36 induces intrinsic and extrinsic apoptosis. Through gene silencing and coimmunoprecipitation techniques, we identified survivin and cIAP1 as USP36 targets. Mechanistically, USP36 binds and removes lysine-11-linked ubiquitin chains from cIAP1 and lysine-48-linked ubiquitin chains from survivin to abolish protein degradation. Overexpression of USP36 disrupts the formation of the XIAP-second mitochondria-derived activator of caspase complex and promotes receptor-interacting protein kinase 1 ubiquitination, validating USP36 as an inhibitor to intrinsic and extrinsic apoptosis through deubiquitinating survivin and cIAP1. Therefore, our results suggest that USP36 is involved in CRC progression and is a potential therapeutic target.

3.
Fish Shellfish Immunol ; 151: 109705, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38885801

RESUMO

DNA methylation, an essential epigenetic alteration, is tightly linked to a variety of biological processes, such as immune response. To identify the epigenetic regulatory mechanism in Pacific oyster (Crassostrea gigas), whole-genome bisulfite sequencing (WGBS) was conducted on C. gigas at 0 h, 6 h, and 48 h after infection with Vibrio alginolyticus. At 6 h and 48 h, a total of 11,502 and 14,196 differentially methylated regions (DMRs) were identified (p<0.05, FDR<0.001) compared to 0 h, respectively. Gene ontology (GO) analysis showed that differentially methylated genes (DMGs) were significantly enriched in various biological pathways including immunity, cytoskeleton, epigenetic modification, and metabolic processes. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that transcription machinery (ko03021) is one of the most important pathways. Integrated transcriptome and methylome analyses allowed the identification of 167 and 379 DMG-related DEGs at 6 h and 48 h, respectively. These genes were significantly enriched in immune-related pathways, including nuclear factor kappa B (NF-κB) signaling pathway (ko04064) and tumor necrosis factor (TNF) signaling pathway (ko04668). Interestingly, it's observed that the NF-κB pathway could be activated jointly by TNF Receptor Associated Factor 2 (TRAF2) and Baculoviral IAP Repeat Containing 3 (BIRC3, the homolog of human BIRC2) which were regulated by DNA methylation in response to the challenge posed by V. alginolyticus infection. Through this study, we provided insightful information about the epigenetic regulation of immunity-related genes in the C. gigas, which will be valuable for the understanding of the innate immune system modulation and defense mechanism against bacterial infection in invertebrates.

4.
J Periodontal Res ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38742802

RESUMO

AIMS: This study aimed to investigate the effects of Umbelliferone (UMB) on the inflammation underlying alveolar bone resorption in mouse periodontitis. METHODS: Male Swiss mice subjected to a ligature of molars were grouped as non-treated (NT), received UMB (15, 45, or 135 mg/kg) or saline daily for 7 days, respectively, and were compared with naïve mice as control. Gingival tissues were evaluated by myeloperoxidase (MPO) activity and interleukin-1ß level by ELISA. The bone resorption was directly assessed on the region between the cement-enamel junction and the alveolar bone crest. Microscopically, histomorphometry of the furcation region, immunofluorescence for nuclear factor-kappa B (NF-ĸB), and immunohistochemistry for tartrate-resistant acid phosphatase (TRAP), and cathepsin K (CTSK) were performed. Systemically, body mass variation and leukogram were analyzed. RESULTS: Periodontitis significantly increased MPO activity, interleukin-1ß level, and NF-ĸB+ immunofluorescence, and induced severe alveolar bone and furcation resorptions, besides increased TRAP+ and CTSK+ cells compared with naïve. UMB significantly prevented the inflammation by reducing MPO activity, interleukin-1ß level, and NF-ĸB+ intensity, besides reduction of resorption of alveolar bone and furcation area, and TRAP+ and CTSK+ cells compared with the NT group. Periodontitis or UMB treatment did not affect the animals systemically. CONCLUSION: UMB improved periodontitis by reducing inflammation and bone markers.

5.
Int J Mol Sci ; 25(10)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38791489

RESUMO

The SARS-CoV-2 Omicron variants have replaced all earlier variants, due to increased infectivity and effective evasion from infection- and vaccination-induced neutralizing antibodies. Compared to earlier variants of concern (VoCs), the Omicron variants show high TMPRSS2-independent replication in the upper airway organs, but lower replication in the lungs and lower mortality rates. The shift in cellular tropism and towards lower pathogenicity of Omicron was hypothesized to correlate with a lower toll-like receptor (TLR) activation, although the underlying molecular mechanisms remained undefined. In silico analyses presented here indicate that the Omicron spike protein has a lower potency to induce dimerization of TLR4/MD-2 compared to wild type virus despite a comparable binding activity to TLR4. A model illustrating the molecular consequences of the different potencies of the Omicron spike protein vs. wild-type spike protein for TLR4 activation is presented. Further analyses indicate a clear tendency for decreasing TLR4 dimerization potential during SARS-CoV-2 evolution via Alpha to Gamma to Delta to Omicron variants.


Assuntos
COVID-19 , Antígeno 96 de Linfócito , Multimerização Proteica , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Receptor 4 Toll-Like , Receptor 4 Toll-Like/metabolismo , SARS-CoV-2/patogenicidade , SARS-CoV-2/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Humanos , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , COVID-19/virologia , Antígeno 96 de Linfócito/metabolismo , Antígeno 96 de Linfócito/genética , Antígeno 96 de Linfócito/química , Simulação por Computador , Ligação Proteica
6.
Cells ; 13(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38727309

RESUMO

The activation of endothelial cells is crucial for immune defense mechanisms but also plays a role in the development of atherosclerosis. We have previously shown that inflammatory stimulation of endothelial cells on top of elevated lipoprotein/cholesterol levels accelerates atherogenesis. The aim of the current study was to investigate how chronic endothelial inflammation changes the aortic transcriptome of mice at normal lipoprotein levels and to compare this to the inflammatory response of isolated endothelial cells in vitro. We applied a mouse model expressing constitutive active IκB kinase 2 (caIKK2)-the key activator of the inflammatory NF-κB pathway-specifically in arterial endothelial cells and analyzed transcriptomic changes in whole aortas, followed by pathway and network analyses. We found an upregulation of cell death and mitochondrial beta-oxidation pathways with a predicted increase in endothelial apoptosis and necrosis and a simultaneous reduction in protein synthesis genes. The highest upregulated gene was ACE2, the SARS-CoV-2 receptor, which is also an important regulator of blood pressure. Analysis of isolated human arterial and venous endothelial cells supported these findings and also revealed a reduction in DNA replication, as well as repair mechanisms, in line with the notion that chronic inflammation contributes to endothelial dysfunction.


Assuntos
Colesterol , Células Endoteliais , Inflamação , Animais , Humanos , Células Endoteliais/metabolismo , Camundongos , Inflamação/patologia , Inflamação/metabolismo , Colesterol/metabolismo , Lipoproteínas/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/genética , Artérias/metabolismo , Artérias/patologia , Transcriptoma/genética , Aorta/metabolismo , Aorta/patologia , Camundongos Endogâmicos C57BL , Aterosclerose/metabolismo , Aterosclerose/patologia , Quinase I-kappa B/metabolismo , Masculino , NF-kappa B/metabolismo
7.
J Tradit Chin Med ; 44(2): 324-333, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38504538

RESUMO

OBJECTIVE: To examine the nephroprotective mechanism of modified Huangqi Chifeng decoction (, MHCD) in immunoglobulin A nephropathy (IgAN) rats. METHODS: To establish the IgAN rat model, the bovine serum albumin, lipopolysaccharide, and carbon tetrachloride 4 method was employed. The rats were then randomly assigned to the control, model, telmisartan, and high-, medium-, and low-dose MHCD groups, and were administered the respective treatments via intragastric administration for 8 weeks. The levels of 24-h urinary protein, serum creatinine (CRE), and blood urea nitrogen (BUN) were measured in each group. Pathological alterations were detected. IgA deposition was visualized through the use of immunofluorescence staining. The ultrastructure of the kidney was observed using a transmission electron microscope. The expression levels of interleukin-6 (IL-6), monocyte chemoattractant protein-1 (MCP-1), and transforming growth factor-ß1 (TGF-ß1) were examined by immunohistochemistry and quantitative polymerase chain reaction. Levels of toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), and nuclear factor-kappa B (NF-κB) P65, were examined by immunohistochemistry, Western blotting, and quantitative polymerase chain reaction. RESULTS: The 24-h urine protein level in each group increased significantly at week 6, and worsen from then on. But this process can be reversed by treatments of telmisartan, and high-, medium-, and low-dose of MHCD, and these treatments did not affect renal function. Telmisartan, and high-, and medium-dose of MHCD reduced IgA deposition. Renal histopathology demonstrated the protective effect of high-, medium-, and low-dose of MHCD against kidney injury. The expression levels of MCP-1, IL-6, and TGF-ß1 in kidney tissues were downregulated by low, medium and high doses of MHCD treatment. Additionally, treatment of low, medium and high doses of MHCD decreased the protein and mRNA levels of TLR4, MyD88, and NF-κB. CONCLUSIONS: MHCD exerted nephroprotective effects on IgAN rats, and MHCD regulated the expressions of key targets in TLR4/MyD88/NF-κB signaling pathway, thereby alleviating renal inflammation by inhibiting MCP-1, IL-6 expressions, and ameliorating renal fibrosis by inhibiting TGF-ß1 expression.


Assuntos
Astragalus propinquus , Medicamentos de Ervas Chinesas , Glomerulonefrite por IGA , Ratos , Animais , Glomerulonefrite por IGA/tratamento farmacológico , Glomerulonefrite por IGA/genética , Glomerulonefrite por IGA/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Telmisartan/farmacologia , Transdução de Sinais , Imunoglobulina A
8.
J Physiol ; 602(7): 1341-1369, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38544414

RESUMO

Intervertebral disc degeneration (IDD) poses a significant health burden, necessitating a deeper understanding of its molecular underpinnings. Transcriptomic analysis reveals 485 differentially expressed genes (DEGs) associated with IDD, underscoring the importance of immune regulation. Weighted gene co-expression network analysis (WGCNA) identifies a yellow module strongly correlated with IDD, intersecting with 197 DEGs. Protein-protein interaction (PPI) analysis identifies ITGAX, MMP9 and FCGR2A as hub genes, predominantly expressed in macrophages. Functional validation through in vitro and in vivo experiments demonstrates the pivotal role of FCGR2A in macrophage polarization and IDD progression. Mechanistically, FCGR2A knockdown suppresses M1 macrophage polarization and NF-κB phosphorylation while enhancing M2 polarization and STAT3 activation, leading to ameliorated IDD in animal models. This study sheds light on the regulatory function of FCGR2A in macrophage polarization, offering novel insights for IDD intervention strategies. KEY POINTS: This study unveils the role of FCGR2A in intervertebral disc (IVD) degeneration (IDD). FCGR2A knockdown mitigates IDD in cellular and animal models. Single-cell RNA-sequencing uncovers diverse macrophage subpopulations in degenerated IVDs. This study reveals the molecular mechanism of FCGR2A in regulating macrophage polarization. This study confirms the role of the NF-κB/STAT3 pathway in regulating macrophage polarization in IDD.


Assuntos
Degeneração do Disco Intervertebral , Receptores de IgG , Animais , Perfilação da Expressão Gênica , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/metabolismo , Macrófagos , NF-kappa B/genética , NF-kappa B/metabolismo , Núcleo Pulposo/metabolismo , Humanos , Ratos , Receptores de IgG/metabolismo
9.
Heliyon ; 10(6): e27383, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38515681

RESUMO

The mechanisms underlying chronic inflammatory diseases remain unclear. Therefore, researchers have explored the mechanisms underlying colitis using diverse materials. Recently, there has been an increasing interest in fermented products and bioconversion materials, their potential efficacy is being actively studied. Gochujang, a traditional Korean fermented product, is crafted by blending fermented Meju powder, gochu (Korean chili) powder, glutinous rice, and salt. In our study, we explored the effectiveness of Gochujang (500 mg/kg; Cheongju and Hongcheon, Korea) in dextran sulfate sodium (DSS)-induced colitis mice model. Gochujang was orally administered for 2 weeks, followed by the induction of colitis using 3% DSS in the previous week. During our investigation, Gochujang variants (TCG22-25, Cheongju and TCG22-48, Hongcheon) did not exhibit significant inhibition of weight reduction (p = 0.061) but notably (p = 0.001) suppressed the reduction in large intestine length in DSS-induced colitis mice. In the serum from colitis mice, TCG22-48 demonstrated reduced levels of the inflammatory cytokines interleukin (IL)-6 (p = 0.001) and tumor necrosis factor (TNF)-α (p = 0.001). Additionally, it inhibited the phosphorylation of Erk (p = 0.028), p38, and NF-κB (p = 0.001) the inflammatory mechanism. In our study, TCG22-25 demonstrated a reduction in the IL-6 level (p = 0.001) in serum and inhibited the phosphorylation of p38 and NF-κB (p = 0.001). Histological analysis revealed a significant (p = 0.001) reduction in the pathological score of the large intestine from TCG22-25 and TCG22-48. In conclusion, the intake of Gochujang demonstrates potent anti-inflammatory effects, mitigating colitis by preventing the large intestine length reduction of animals with colitis, lowering serum levels of TNF-α and IL-6 cytokines, and inhibiting histological disruption and inflammatory mechanism phosphorylation.

10.
Int Endod J ; 57(6): 759-768, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38436525

RESUMO

AIM: Among numerous constituents of Panax ginseng, a constituent named Ginsenoside Rb1 (G-Rb1) has been studied to diminish inflammation associated with diseases. This study investigated the anti-inflammatory properties of G-Rb1 on human dental pulp cells (hDPCs) exposed to lipopolysaccharide (LPS) and aimed to determine the underlying molecular mechanisms. METHODOLOGY: The KEGG pathway analysis was performed after RNA sequencing in G-Rb1- and LPS-treated hDPCs. Reverse-transcription polymerase chain reaction (RT-PCR) and western blot analysis were used for the assessment of cell adhesion molecules and inflammatory cytokines. Statistical analysis was performed with one-way ANOVA and the Student-Newman-Keuls test. RESULTS: G-Rb1 did not exhibit any cytotoxicity within the range of concentrations tested. However, it affected the levels of TNF-α, IL-6 and IL-8, as these showed reduced levels with exposure to LPS. Additionally, less mRNA and protein expressions of vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) were shown. With the presence of G-Rb1, decreased levels of PI3K/Akt, phosphorylated IκBα and p65 were also observed. Furthermore, phosphorylated ERK and JNK by LPS were diminished within 15, 30 and 60 min of G-Rb1 exposure; however, the expression of non-phosphorylated ERK and JNK remained unchanged. CONCLUSIONS: G-Rb1 suppressed the LPS-induced increase of cell adhesion molecules and inflammatory cytokines, while also inhibiting PI3K/Akt, phosphorylation of NF-κB transcription factors, ERK and JNK of MAPK signalling in hDPCs.


Assuntos
Polpa Dentária , Ginsenosídeos , Lipopolissacarídeos , NF-kappa B , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Ginsenosídeos/farmacologia , Humanos , Polpa Dentária/efeitos dos fármacos , Polpa Dentária/citologia , Polpa Dentária/metabolismo , Lipopolissacarídeos/farmacologia , NF-kappa B/metabolismo , NF-kappa B/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Inflamação/metabolismo , Células Cultivadas , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Citocinas/metabolismo , Western Blotting
11.
Iran J Med Sci ; 49(2): 88-100, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38356485

RESUMO

Background: Epstein-Barr virus (EBV) is detected in 40% of patients with Hodgkin lymphoma (HL). During latency, EBV induces epigenetic alterations to the host genome and decreases the expression of pro-apoptotic proteins. The present study aimed to evaluate the expression levels of mRNA molecules and the end product of proteins for the JAK/STAT and NF-κB pathways, and their association with clinicopathological and prognostic parameters in patients with EBV-positive and -negative classical Hodgkin lymphoma (CHL). Methods: A prospective cohort study was conducted from 2017 to 2022 at the Faculty of Medicine, Zagazig University Hospital (Zagazig, Egypt). Biopsy samples of 64 patients with CHL were divided into EBV-positive and EBV-negative groups. The expression levels of mRNA molecules (JAK2, STAT1, IRF-1, PD-L1, IFN-γ, NF-κB, Bcl-xL, COX-2) and the end product of proteins (PD-L1, Bcl-xL, COX-2) were determined and compared with clinicopathological and prognostic parameters. Data were analyzed using the Chi square test and Kaplan-Meier estimate. Results: EBV-positive CHL patients were significantly associated with positive expression of mRNAs molecules (P<0.001) and the end product of proteins (P<0.001) for the JAK/STAT and NF-κB pathways, B-symptoms (P=0.022), extra-nodal involvement (P=0.017), and advanced stage of CHL (P=0.018). These patients were more susceptible to cancer progression, higher incidence of relapse (P=0.008), poor disease-free survival rate (P=0.013), poor overall survival rate (P=0.028), and higher mortality rate (P=0.015). Conclusion: Through the activation of JAK/STAT and NF-κB signaling pathways, EBV-positive CHL is associated with poor clinicopathological parameters, higher incidence of disease progression, relapse, and poor overall survival. A preprint of this manuscript is available on research square (doi: 10.21203/rs.3.rs-1857436/v1).


Assuntos
Infecções por Vírus Epstein-Barr , Doença de Hodgkin , Humanos , Doença de Hodgkin/complicações , Doença de Hodgkin/genética , Doença de Hodgkin/metabolismo , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/metabolismo , NF-kappa B/metabolismo , Antígeno B7-H1 , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/genética , Infecções por Vírus Epstein-Barr/patologia , Ciclo-Oxigenase 2/metabolismo , Estudos Prospectivos , Transdução de Sinais , Prognóstico , RNA Mensageiro , Recidiva
12.
Front Microbiol ; 15: 1342705, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38374921

RESUMO

Microbial-based therapies are one of the hotspots in the field of ulcerative colitis research. The lactic acid bacteria and their postbiotics occupy a key position in microbial therapies, however, the mechanism by which they alleviate ulcerative colitis in mice is unknown. We investigated the effects of Lacticaseibacillus rhamnosus 2016SWU.05.0601 (Lr-0601) and its postbiotics on male Kunming mice with dextran sulfate sodium salt (DSS)-induced ulcerative colitis (UC). The results showed that Lr-0601 significantly alleviated the deterioration of UC and restored the expression of intestinal mechanical barrier proteins. In addition, Lr-0601 significantly reduced the expression of inflammatory cytokines in the body and regulated the expression of key regulatory genes of the NF-κB-iNOS/COX-2 signaling pathway in colon tissues to a large extent. Our results suggest that supplementation with Lr-0601 and its postbiotics can effectively prevent DSS-induced UC and have a beneficial effect on intestinal health, which also provides new insights and research bases for the prevention as well as the treatment of ulcerative colitis and other diseases related to intestinal barrier dysfunction and other diseases.

13.
Inflammopharmacology ; 32(2): 1225-1238, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38411787

RESUMO

The current work was designed to evaluate the anti-inflammatory and anti-arthritic potential of Coagulansin-A (Coag-A) using mouse macrophages and arthritic mice. In the LPS-induced RAW 264.7 cells, the effects of Coag-A on the release of nitric oxide (NO), reactive oxygen species (ROS), and pro-inflammatory cytokines were analyzed. In addition, the mediators involved in the nuclear factor-kappa B (NF-κB) and nuclear factor erythroid 2-related factor 2 (Nrf2) pathways were evaluated by the RT-qPCR and western blotting. Coag-A did not show significant cytotoxicity in the RAW 264.7 cells in the tested concentration range (1-100 µM). Coag-A significantly inhibited the production of NO, ROS, and key pro-inflammatory cytokines. The anti-inflammatory effects of Coag-A might be through inhibiting the NF-κB pathway and activating the Nrf2 pathway. In the arthritic mouse models, behavioral studies and radiological and histological analyses were performed. We found that the i.p. injection of Coag-A dose-dependently (1-10 mg/kg) reduced the Carrageenan-induced acute inflammation in the mice. In Complete Freund's Reagent-induced arthritic mouse model, Coag-A (10 mg/kg) showed significant anti-inflammatory and anti-arthritic effects in terms of the arthritic index, hematological parameters, and synovium inflammation. After the Coag-A treatment, the bone and tissue damage was ameliorated significantly in the arthritic mice. Moreover, immunohistochemistry of mouse paw tissues revealed a significant reduction in the expression of pro-inflammatory cytokines in the NF-κB pathway, confirming Coag-A's therapeutic potential and mechanism.


Assuntos
Fator 2 Relacionado a NF-E2 , NF-kappa B , Camundongos , Animais , NF-kappa B/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Anti-Inflamatórios/uso terapêutico , Inflamação/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Lipopolissacarídeos/farmacologia
14.
J Tradit Chin Med ; 44(1): 88-94, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38213243

RESUMO

OBJECTIVE: To study the effect of Jiangzhi Xiaoban tablet (, JZXB) on toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB)/Nod-like receptor protein 3 (NLRP3) signaling pathway expression in atherosclerosis (AS) mice by establishing a mouse model of AS, and to explore its mechanism of prevention and treatment of AS. METHODS: Sixty-four male C57BL/6J mice were randomly divided into two groups, 12 in the normal control group and 52 in the model group (MOD). Seven weeks later, two mice in each of the above two groups were randomly sacrificed, and the whole aortic tissue of the mice was taken out for hematoxylin-eosin staining. After successful modeling, 50 mice in the modeling group were randomly divided into 5 groups: MOD, atorvastatin group (ATO), low-dose group of JZXB (JZXB-L), middle-dose group of JZXB (JZXB-M), and high-dose group of JZXB (JZXB-H), 10 mice in each group. The mice in each group were killed after 6 weeks of preventive administration. HE staining was used to observe the pathological changes of aorta in AS mice. The levels of serum triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C) were detected by automatic biochemical analyzer. The levels of inflammatory factor interleukin-1ß (IL-1ß) were detected by enzyme linked immunosorbent assay. The expression of TLR4, NF-κB and NLRP3 proteins in aortic tissue was detected by immunohistochemistry. RESULTS: Compared with the MOD, the levels of serum TC, TG and LDL-C in the JZXB-H and ATO were significantly decreased, while the level of HDL-C was significantly increased. The levels of serum TG, LDL-C in the JZXB-M were significantly decreased, and the level of HDL-C was significantly increased. Compared with the MOD, the levels of IL-1ß were significantly decreased, aortic lesions were significantly improved, and the expression of TLR4, NF-κB, and NLRP3 proteins in the aortic tissue was significantly decreased in the JZXB-H, JZXB-M, and ATO. CONCLUSION: JZXB has inhibitory effect on atherosclerosis in mice, and its mechanism may be through regulating the TLR4/NF-κB/NLRP3 signaling pathway and reducing the inflammatory response, so as to play a role in inhibiting atherosclerosis.


Assuntos
Aterosclerose , Medicamentos de Ervas Chinesas , NF-kappa B , Camundongos , Masculino , Animais , NF-kappa B/genética , NF-kappa B/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Dieta Hiperlipídica/efeitos adversos , LDL-Colesterol , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Camundongos Endogâmicos C57BL , Transdução de Sinais , Aterosclerose/tratamento farmacológico , Aterosclerose/genética
15.
J Tradit Chin Med ; 44(1): 103-112, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38213245

RESUMO

OBJECTIVE: To investigate the effect of Taohong Siwu decoction (, TSD) on atherosclerosis in rats as well as investigate the underlying mechanism based on molecular docking. METHODS: Sixty healthy male Sprague-Dawley rats were randomly divided into 6 groups with 10 rats in each group: control group, model group, atorvastatin group (AT, 2.0 mg/kg), and TSD groups (20, 10, 5 g/kg) after 7 d of acclimation. The model of atherosclerosis was successfully established except the control group by high fat diet (HFD) and vitamin D2. Biochemical analyzers were used to detect the levels of triglyceride (TG), total cholestero (TC), low density lipoprotein-cholesterol (LDL-C) and high density lipid-cholesterol (HDL-C) in blood lipid. The levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1ß (IL-1ß) were determined by enzyme-linked immunosorbent assay. Sudan IV staining and Hematoxylin and eosin staining (HE staining) were performed to observe the pathological changes in aortic tissue. Molecular docking technology was used to predict the best matching between the main components of TSD and the target proteins. The expression of target proteins was further detected by quantitative real time polymerase chain reaction (qRT-PCR) and Western blot analysis. RESULTS: The results showed that TSD restricted atherosclerosis development and decreased the inflammatory cytokines in plasma. Molecular docking results predicted that the main components of TSD showed a strong binding ability with toll-like receptor (TLR4), myeloid differentiation primary response protein 88 (MyD88), and nuclear factor kappa-B (NF-κB). The results of qRT-PCR and Western blot analysis showed that the mRNA and protein expressions of TLR4, MyD88 and NF-κB p65 in the aorta were reduced in atorvastatin group and TSD group. CONCLUSIONS: TSD can ameliorate atherosclerosis in rats, and the underlying mechanism is supposed be related to the suppression of inflammatory response by regulating TLR4/MyD88/NF-κB signal pathway.


Assuntos
Aterosclerose , Medicamentos de Ervas Chinesas , NF-kappa B , Ratos , Masculino , Animais , NF-kappa B/genética , NF-kappa B/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Ratos Sprague-Dawley , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Atorvastatina/uso terapêutico , Simulação de Acoplamento Molecular , Transdução de Sinais , Aterosclerose/tratamento farmacológico , Aterosclerose/genética , Fator de Necrose Tumoral alfa/metabolismo , Lipídeos , Colesterol
16.
Artigo em Inglês | MEDLINE | ID: mdl-38204248

RESUMO

OBJECTIVE: Mesangial proliferative glomerulonephritis (MsPGN) is an important cause of chronic kidney disease. Abnormal proliferation of mesangial cells and immune-inflammatory response are its important pathological manifestations. Currently, there is no ideal treatment for this disease. Fufang Banbianlian Injection (FBI) has anti-inflammatory, antioxidant, and immuneenhancing effects, and is mostly used for the treatment of bronchitis, pneumonia, and respiratory tract infections in children. METHODS: A rat model of MsPGN was established and treated with FBI. The efficacy was tested through pathological experiments and urine protein quantification. Network pharmacology methods were used to predict the signaling pathways and key proteins that exert the efficacy of FBI, and were screened through molecular docking experiments. The active substances that work were verified through cell experiments. RESULTS: The results confirmed that intervention with FBI can inhibit the proliferation of glomerular cells and reduce the infiltration of macrophages, thereby reducing the pathological damage of rats with mesangial proliferative nephritis; it has been found to have an obvious therapeutic effect. Molecular docking results have shown kaempferol (Kae), the main component of FBI, to have a good affinity for key targets. The results of in vitro verification experiments showed that FBI and its active ingredient Kae may play a therapeutic role by regulating the NF-κB signaling pathway in mesangial cells, inhibiting its activation and the secretion of proinflammatory cytokines. CONCLUSION: Through network pharmacology, molecular docking, and experimental verification, it was confirmed that FBI and its active ingredient Kae can reduce the molecular mechanism of pathological damage of MsPGN by regulating the NF-κB signaling pathway and providing potential therapeutic drugs for the treatment of this disease.

17.
Braz. oral res. (Online) ; 38: e037, 2024. graf
Artigo em Inglês | LILACS-Express | LILACS, BBO - Odontologia | ID: biblio-1557359

RESUMO

Abstract Dental pulp stem cells (DPSCs) and periodontal ligament stem cells (PDLSCs) can differentiate into osteoblasts, indicating that both are potential candidates for bone tissue engineering. Osteogenesis is influenced by many environmental factors, one of which is lipopolysaccharide (LPS). LPS-induced NF-κB activity affects the osteogenic potencies of different types of MSCs differently. This study evaluated the effect of LPS-induced NF-κB activity and its inhibition in DPSCs and PDLSCs. DPSCs and PDLSCs were cultured in an osteogenic medium, pretreated with/without NF-κB inhibitor Bay 11-7082, and treated with/without LPS. Alizarin red staining was performed to assess bone nodule formation, which was observed under an inverted light microscope. NF-κB and alkaline phosphatase (ALP) activities were measured to examine the effect of Bay 11-7082 pretreatment and LPS supplementation on osteogenic differentiation of DPSCs and PDLSCs. LPS significantly induced NF-κB activity (p = 0.000) and reduced ALP activity (p = 0.000), which inhibited bone nodule formation in DPSCs and PDLSCs. Bay 11-7082 inhibited LPS-induced NF-κB activity, and partially maintained ALP activity and osteogenic potency of LPS-supplemented DPSCs and PDLSCs. Thus, inhibition of LPS-induced NF-κB activity can maintain the osteogenic potency of DPSCs and PDLSCs.

18.
J. appl. oral sci ; 32: e20230447, 2024. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1558237

RESUMO

Abstract Objective To evaluate whether antimicrobial photodynamic therapy (aPDT) repairs bisphosphonate-related osteonecrosis of the jaw (BRONJ) modulated by the reduction of NF-kB protein in a murine model. Methodology Male Wistar rats (N=30) were divided into the following groups (n=6/group): negative control (NC); experimental osteonecrosis (ONE); ONE + photosensitizer (PS); ONE + photobiomodulation (PBM); and ONE + aPDT. Over 8 weeks, ONE was induced by zoledronic acid 250 µg/kg injections, except in the NC group, which received sterile 0.9% saline, followed by extraction of the lower left first molar. Red light laser irradiation (wavelength ~660 nm, power 50 mW, energy of 2 J, energy dose of 66.67 J/cm2 for 40 s) was performed once a week for 4 weeks. Methylene blue 0.3% was used as PS. The animals were euthanized and examined macroscopically for the presence of exposed bone and epithelial repair and microscopically by histochemical (hematoxylin-eosin and Masson's trichrome staining) and immunohistochemical (anti-NF-kB) methods. Macroscopic and histomorphometric data were analyzed by one-way ANOVA and Tukey's post-test (p<0.05). Results Mucosal repair, viable osteocytes, and NF-kB immunostaining were observed in the NC, ONE+PS, ONE+PBM, and ONE+aPDT groups. The ONE group showed no mucosal repair, showing empty lacunae and multifocal immunostaining for NF-kB. The ONE+PBM and ONE+aPDT groups had greater deposition of extracellular matrix and less necrotic bone tissue (p<0.05). Conclusion PBM and aPDT treatments for BRONJ were effective for bone and epithelial repair, in addition to reducing inflammation mediated by the decrease of NF-kB protein in the irradiated regions.

19.
Int. j. cardiovasc. sci. (Impr.) ; 37: e20230113, 2024. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1550292

RESUMO

Abstract Background: Trimethylamine N-oxide (TMAO), a gut microbiota metabolite, is associated with cardiovascular disease (CVD) development. TMAO can trigger an inflammatory response by inducing the nuclear factor-kappa B (NF-κB) signaling cascade and increasing the expression of pro-inflammatory cytokines, contributing to the worsening of CVD. This study aimed to evaluate the association between TMAO plasma levels and inflammation in patients with coronary artery disease (CAD). Methods: A cross-sectional study was carried out including 29 patients with CAD. Peripheral blood mononuclear cells (PBMC) were isolated from fasting blood samples, and NF-κB and vascular cell adhesion protein 1 (VCAM1) mRNA expression were estimated using real-time quantitative PCR. We determined TMAO plasma levels by LC-MS/MS and TNF-α by ELISA. Routine biochemical parameters were evaluated using an automatic biochemical analyzer. Correlations were estimated by Spearman or Pearson test. Statistical significance was set at the level of p < 0.05. Results: All patients presented TMAO levels within the normal range according to EUTox (normal range: 2.83 ± 1.53 mg/L; CAD patients: 0.2 [0.1 to 0.2] ng/μL). TMAO plasma levels were positively correlated with NF-κB mRNA expression (0.555; p = 0.002). Conclusion: TMAO plasma levels may be associated with NF-κB mRNA expression in patients with CAD and may contribute to the pathogenesis of this disease.

20.
Korean J Physiol Pharmacol ; 28(1): 11-19, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38154960

RESUMO

Acute kidney injury (AKI) is one of the major complications of sepsis. Aurantio-obtusin (AO) is an anthraquinone compound with antioxidant and anti-inflammatory activities. This study was developed to concentrate on the role and mechanism of AO in sepsis-induced AKI. Lipopolysaccharide (LPS)-stimulated human renal proximal tubular epithelial cells (HK-2) and BALB/c mice receiving cecal ligation and puncture (CLP) surgery were used to establish in vitro cell model and in vivo mouse model. HK-2 cell viability was measured using MTT assays. Histological alterations of mouse renal tissues were analyzed via hematoxylin and eosin staining. Renal function of mice was assessed by measuring the levels of serum creatinine (SCr) and blood urea nitrogen (BUN). The concentrations of pro-inflammatory cytokines in HK-2 cells and serum samples of mice were detected using corresponding ELISA kits. Protein levels of factors associated with nuclear factor kappa-B (NF-κB) pathway were measured in HK-2 cells and renal tissues by Western blotting. AO exerted no cytotoxic effect on HK-2 cells and AO dose-dependently rescued LPS-induced decrease in HK-2 cell viability. The concentrations of pro-inflammatory cytokines were increased in response to LPS or CLP treatment, and the alterations were reversed by AO treatment. For in vivo experiments, AO markedly ameliorated renal injury and reduced high levels of SCr and BUN in mice underwent CLP operation. In addition, AO administration inhibited the activation of NF-κB signaling pathway in vitro and in vivo. In conclusion, AO alleviates septic AKI by suppressing inflammatory responses through inhibiting the NF-κB pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...