Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.276
Filtrar
2.
Dent J (Basel) ; 12(6)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38920862

RESUMO

The masticatory function of patients with skeletal anterior open bite (OPEN) is reported to be impaired compared with that of patients with normal occlusion (NORM). In this study, we compared brain blood flow (BBF) in patients with OPEN and NORM and investigated the factors related to BBF during mastication in patients with OPEN. The study included 17 individuals with NORM and 33 patients with OPEN. The following data were collected: number of occlusal contacts, jaw movement variables during mastication, and BBF measured with functional near-infrared spectroscopy during chewing. The number of occlusal contacts, maximum closing and opening speeds, closing angle, and vertical amplitude were smaller in the OPEN than in the NORM group. Interestingly, BBF increased less in the OPEN group. Correlation analysis revealed that several parameters, including number of occlusal contacts and closing angle, were correlated with changes in BBF during mastication. These results suggest that not only occlusion but also jaw movement variables and factors related to masticatory muscles contribute to the chewing-related increase in BBF. In conclusion, BBF increases less during mastication in patients with OPEN than in those with NORM. In addition, the higher increase in BBF is correlated with jaw movement. Together, we discovered that OPEN exhibits significant adverse effects not only on masticatory function but also on brain function.

3.
J Funct Morphol Kinesiol ; 9(2)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38921640

RESUMO

The study assessed vastus lateralis oxygen desaturation kinetics (SmO2) in 32 male cyclists (16 Seniors, 16 Juniors) during a 30 s sprint, examining effects of age and performance. An incremental test was used to determine ventilatory thresholds (VT1, VT2) and maximal oxygen uptake (VO2kg), followed by a sprint test to evaluate anaerobic performance. Cyclists' performance phenotype was determined as the ratio of power at VT2 to 5 s peak sprint power. Juniors exhibited sprinter-like traits, excelling in all functional tests except for lactate levels post-sprint. SmO2 data showed no age-related or bilateral differences across participants. The combined mean response time (MRT) revealed stronger bilateral goodness of fit (R2 = 0.64) than individual time delay (TD) and time constant (τ). Higher VO2kg at VT2, peak power, and maximal uptake were linked to longer TD, while shorter TD correlated with higher lactate production and increased fatigue. Bilaterally averaged SmO2 kinetics distinguished between sprint and endurance athletes, indicating the potential to reflect the alactic anaerobic system's capacity and depletion. Age did not affect desaturation rates, but younger cyclists showed greater response amplitude, attributed to a higher initial baseline rather than maximal desaturation at the end of the exercise.

4.
Sci Total Environ ; 946: 174059, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38906286

RESUMO

Submerged macrophytes have important impacts on the denitrification and anaerobic ammonia-oxidizing (anammox) processes. Leaf damage in these plants probably changes the rhizosphere environment, affecting organic acid release and denitrifying bacteria. However, there is a lack of comprehensive understanding of the specific changes. This study investigated these changes in the rhizosphere of Potamogeton crispus with four degrees of leaf excision. When 0 %, 30 %, 50 % and 70 % of leaves were excised, the concentrations of total organic acid were 31.45, 32.67, 38.26, and 35.16 mg/L, respectively. The abundances of nirS-type denitrifying bacteria were 2.10 × 1010, 1.59 × 1010, 2.54 × 1010, and 4.67 × 1010 copies/g dry sediment, respectively. The abundances of anammox bacteria were 7.58 × 109, 4.59 × 109, 3.81 × 109, and 3.90 × 109 copies/g dry sediment, respectively. The concentration of total organic acids and the abundance of two denitrification microorganisms in the rhizosphere zone were higher than those in the root zone and non-rhizosphere zone. With increasing leaf damage, the number of OTUs in the Pseudomonas genus of nirS-type denitrifying bacteria first increased and then decreased, while that of the Thauera genus was relatively stable. The overall increase in the OTU number of anammox bacteria indicated that leaf damage promotes root exudates release, thereby leading to an increase in their diversity. The co-occurrence network revealed that the two denitrification microorganisms had about 60.52 % positive connections in rhizosphere while 64.73 % negative connections in non-rhizosphere. The abundance and community composition of both denitrification microorganisms were positively correlated with the concentrations of various substances such as oxalic acid, succinic acid, total organic acids and NO2--N. These findings demonstrate that submerged plant damage has significantly impacts on the structure of denitrification microbial community in the rhizosphere, which may alter the nitrogen cycling process in the deposit sediment. SYNOPSIS: This study reveals leaf damage of macrophyte changed the rhizosphere denitrification microbial community, which is helpful to further understand the process of nitrogen cycle in water.

5.
Khirurgiia (Mosk) ; (6): 20-27, 2024.
Artigo em Russo | MEDLINE | ID: mdl-38888015

RESUMO

OBJECTIVE: To evaluate prognostic significance of tissue oximetry in healing of trophic defects in patients with diabetic foot syndrome (DFS) after endovascular revascularization. MATERIAL AND METHODS: In 42 patients with DFS, tissue oximetry was performed in angiosome projection with the FORE-SIGHT MC-2000 (CASMED) device before and the next day after revascularization of lower limb arteries. The 1st group included 30 patients with wound healing throughout 3 months, the 2nd group included 12 patients with amputation or no healing of trophic defects. RESULTS: Direct revascularization was more common in the 1st group (p=0.001). On the day after intervention, oxygen saturation (StO2) increased in all angiosomes in both groups (p<0.05). StO2 increment differed significantly between groups in all angiosomes except for point I (p<0.05). According to ROC analysis, StO2 increment by 4.5% in absolute values and 7.9% in percentage leads to trophic defect healing within 3 months (sensitivity and specificity were 76.7% and 66.7% for absolute values, 80% and 58.3% for percentage, respectively). CONCLUSION: Evaluation of StO2 in target angiosome may be valuable to predict trophic defect healing after endovascular surgery.


Assuntos
Pé Diabético , Oximetria , Cicatrização , Humanos , Pé Diabético/cirurgia , Pé Diabético/diagnóstico , Pé Diabético/fisiopatologia , Masculino , Feminino , Pessoa de Meia-Idade , Oximetria/métodos , Cicatrização/fisiologia , Idoso , Procedimentos Endovasculares/métodos , Prognóstico , Saturação de Oxigênio/fisiologia , Resultado do Tratamento , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Extremidade Inferior/irrigação sanguínea
6.
Sensors (Basel) ; 24(11)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38894153

RESUMO

As a non-destructive, fast, and cost-effective technique, near-infrared (NIR) spectroscopy has been widely used to determine the content of bioactive components in tea. However, due to the similar chemical structures of various catechins in black tea, the NIR spectra of black tea severely overlap in certain bands, causing nonlinear relationships and reducing analytical accuracy. In addition, the number of NIR spectral wavelengths is much larger than that of the modeled samples, and the small-sample learning problem is rather typical. These issues make the use of NIRS to simultaneously determine black tea catechins challenging. To address the above problems, this study innovatively proposed a wavelength selection algorithm based on feature interval combination sensitivity segmentation (FIC-SS). This algorithm extracts wavelengths at both coarse-grained and fine-grained levels, achieving higher accuracy and stability in feature wavelength extraction. On this basis, the study built four simultaneous prediction models for catechins based on extreme learning machines (ELMs), utilizing their powerful nonlinear learning ability and simple model structure to achieve simultaneous and accurate prediction of catechins. The experimental results showed that for the full spectrum, the ELM model has better prediction performance than the partial least squares model for epicatechin (EC), epicatechin gallate (ECG), epigallocatechin (EGC), and epigallocatechin gallate (EGCG). For the feature wavelengths, our proposed FIC-SS-ELM model enjoys higher prediction performance than ELM models based on other wavelength selection algorithms; it can simultaneously and accurately predict the content of EC (Rp2 = 0.91, RMSEP = 0.019), ECG (Rp2 = 0.96, RMSEP = 0.11), EGC (Rp2 = 0.97, RMSEP = 0.15), and EGCG (Rp2 = 0.97, RMSEP = 0.35) in black tea. The results of this study provide a new method for the quantitative determination of the bioactive components of black tea.


Assuntos
Algoritmos , Catequina , Espectroscopia de Luz Próxima ao Infravermelho , Chá , Catequina/análise , Catequina/química , Catequina/análogos & derivados , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Chá/química , Análise dos Mínimos Quadrados , Aprendizado de Máquina
7.
Physiol Rep ; 12(12): e16041, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38888154

RESUMO

Low-load resistance exercise (LLRE) to failure can increase muscle mass, strength, endurance, and mitochondrial oxidative capacity (OXPHOS). However, the impact of adding blood flow restriction to low-load resistance exercise (LLBFR) when matched for volume on these outcomes is incompletely understood. This pilot study examined the impact of 6 weeks of single-legged LLBFR and volume-matched LLRE on thigh bone-free lean mass, strength, endurance, and mitochondrial OXPHOS. Twenty (12 males and 8 females) untrained young adults (mean ± SD; 21 ± 2 years, 168 ± 11 cm, 68 ± 12 kg) completed 6 weeks of either single-legged LLBFR or volume-matched LLRE. Participants performed four sets of 30, 15, 15, and 15 repetitions at 25% 1-RM of leg press and knee extension with or without BFR three times per week. LLBFR increased knee extension 1-RM, knee extension endurance, and thigh bone-free lean mass relative to control (all p < 0.05). LLRE increased leg press and knee extension 1-RM relative to control (p = 0.012 and p = 0.054, respectively). LLRE also increased mitochondrial OXPHOS (p = 0.047 (nonparametric)). Our study showed that LLBFR increased muscle strength, muscle endurance, and thigh bone-free lean mass in the absence of improvements in mitochondrial OXPHOS. LLRE improved muscle strength and mitochondrial OXPHOS in the absence of improvements in thigh bone-free lean mass or muscle endurance.


Assuntos
Força Muscular , Músculo Esquelético , Resistência Física , Treinamento Resistido , Humanos , Masculino , Treinamento Resistido/métodos , Força Muscular/fisiologia , Feminino , Projetos Piloto , Adulto Jovem , Músculo Esquelético/fisiologia , Músculo Esquelético/irrigação sanguínea , Resistência Física/fisiologia , Fluxo Sanguíneo Regional/fisiologia , Adulto , Mitocôndrias Musculares/metabolismo
8.
Foods ; 13(11)2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38890882

RESUMO

Potato is a globally significant crop, crucial for food security and nutrition. Assessing vital nutritional traits is pivotal for enhancing nutritional value. However, traditional wet lab methods for the screening of large germplasms are time- and resource-intensive. To address this challenge, we used near-infrared reflectance spectroscopy (NIRS) for rapid trait estimation in diverse potato germplasms. It employs molecular absorption principles that use near-infrared sections of the electromagnetic spectrum for the precise and rapid determination of biochemical parameters and is non-destructive, enabling trait monitoring without sample compromise. We focused on modified partial least squares (MPLS)-based NIRS prediction models to assess eight key nutritional traits. Various mathematical treatments were executed by permutation and combinations for model calibration. The external validation prediction accuracy was based on the coefficient of determination (RSQexternal), the ratio of performance to deviation (RPD), and the low standard error of performance (SEP). Higher RSQexternal values of 0.937, 0.892, and 0.759 were obtained for protein, dry matter, and total phenols, respectively. Higher RPD values were found for protein (3.982), followed by dry matter (3.041) and total phenolics (2.000), which indicates the excellent predictability of the models. A paired t-test confirmed that the differences between laboratory and predicted values are non-significant. This study presents the first multi-trait NIRS prediction model for Indian potato germplasm. The developed NIRS model effectively predicted the remaining genotypes in this study, demonstrating its broad applicability. This work highlights the rapid screening potential of NIRS for potato germplasm, a valuable tool for identifying trait variations and refining breeding strategies, to ensure sustainable potato production in the face of climate change.

9.
J Thorac Dis ; 16(5): 2713-2722, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38883627

RESUMO

Background: Although aortic aneurysm is associated with vascular aging and atherosclerosis, carotid and intracranial vascular disease prevalence in patients with aortic arch aneurysm remains unclear. Similarly, the effect of carotid and intracranial lesions on postoperative outcomes is unknown. This study aimed to investigate the prevalence of carotid artery stenosis and intracranial lesions in patients with aortic arch aneurysm and its association with intraoperative regional cerebral oxygen saturation (rScO2) and postoperative neurological outcomes, including delirium and cerebral infarction. Methods: This retrospective observational study included 133 patients with true aortic arch aneurysm who underwent preoperative magnetic resonance imaging (MRI). We evaluated the prevalence of carotid and intracranial arterial lesions. Symptomatic cerebral infarction and delirium, defined by the confusion assessment method for the intensive care unit, were evaluated for their association with preoperative cerebrovascular lesions. Additionally, changes in regional saturation of the cerebral tissue at different surgical phases were evaluated for patients with and without cerebrovascular lesions. Results: Fifteen (11.3%) patients experienced symptomatic cerebral infarction, and 64 (48.1%) had postoperative delirium. Preoperative MRI showed old infarction, microbleeds, significant carotid artery stenosis, and intracranial lesions in 21.1%, 14.3%, 10.5%, and 7.5% of the patients, respectively. White matter hyperintensities with Fazekas scale 2 were observed in 40.6% of the patients, while Fazekas scale 3 were observed in 18.8% of the patients. Preoperative MRI findings and postoperative neurological outcomes were not significantly different. Seventy-six patients underwent rScO2 monitoring intraoperatively. Changes in rScO2 in patients with and without carotid/cerebrovascular lesions were not significantly different. However, rScO2 was significantly lower in patients who developed cerebral infarction. Conclusions: Significant carotid artery stenosis and intracranial lesions were observed in 10.5% and 7.5% of the patients, respectively. Although preoperative MRI findings and changes in rScO2 or postoperative outcomes showed no significant association, patients with postoperative cerebral infarction showed significantly lower rScO2 intraoperatively.

10.
Artif Organs ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38884389

RESUMO

BACKGROUND: Functional electrical stimulation (FES) cycling has been reported to enhance muscle strength and improve muscle fatigue resistance after spinal cord injury (SCI). Despite its proposed benefits, the quantification of muscle fatigue during FES cycling remains poorly documented. This study sought to quantify the relationship between the vibrational performance of electrically-evoked muscles measured through mechanomyography (MMG) and its oxidative metabolism through near-infrared spectroscopy (NIRS) characteristics during FES cycling in fatiguing paralyzed muscles in individuals with SCI. METHODS: Six individuals with SCI participated in the study. They performed 30 min of FES cycling with MMG and NIRS sensors on their quadriceps throughout the cycling, and the signals were analyzed. RESULTS: A moderate negative correlation was found between MMG root mean square (RMS) and oxyhaemoglobin (O2Hb) [r = -0.38, p = 0.003], and between MMG RMS and total hemoglobin (tHb) saturation [r = -0.31, p = 0.017]. Statistically significant differences in MMG RMS, O2Hb, and tHb saturation occurred during pre- and post-fatigue of FES cycling (p < 0.05). CONCLUSIONS: MMG RMS was negatively associated with O2Hb and muscle oxygen derived from NIRS. MMG and NIRS sensors showed good inter-correlations, suggesting a promising use of MMG for characterizing metabolic fatigue at the muscle oxygenation level during FES cycling in individuals with SCI.

11.
Sci Rep ; 14(1): 13342, 2024 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858425

RESUMO

Yemeni smallholder coffee farmers face several challenges, including the ongoing civil conflict, limited rainfall levels for irrigation, and a lack of post-harvest processing infrastructure. Decades of political instability have affected the quality, accessibility, and reputation of Yemeni coffee beans. Despite these challenges, Yemeni coffee is highly valued for its unique flavor profile and is considered one of the most valuable coffees in the world. Due to its exclusive nature and perceived value, it is also a prime target for food fraud and adulteration. This is the first study to identify the potential of Near Infrared Spectroscopy and chemometrics-more specifically, the discriminant analysis (PCA-LDA)-as a promising, fast, and cost-effective tool for the traceability of Yemeni coffee and sustainability of the Yemeni coffee sector. The NIR spectral signatures of whole green coffee beans from Yemeni regions (n = 124; Al Mahwit, Dhamar, Ibb, Sa'dah, and Sana'a) and other origins (n = 97) were discriminated with accuracy, sensitivity, and specificity ≥ 98% using PCA-LDA models. These results show that the chemical composition of green coffee and other factors captured on the spectral signatures can influence the discrimination of the geographical origin, a crucial component of coffee valuation in the international markets.


Assuntos
Coffea , Espectroscopia de Luz Próxima ao Infravermelho , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Coffea/química , Análise Discriminante , Café/química , Sementes/química
12.
Sensors (Basel) ; 24(10)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38794026

RESUMO

Participant movement is a major source of artifacts in functional near-infrared spectroscopy (fNIRS) experiments. Mitigating the impact of motion artifacts (MAs) is crucial to estimate brain activity robustly. Here, we suggest and evaluate a novel application of the nonlinear Hammerstein-Wiener model to estimate and mitigate MAs in fNIRS signals from direct-movement recordings through IMU sensors mounted on the participant's head (head-IMU) and the fNIRS probe (probe-IMU). To this end, we analyzed the hemodynamic responses of single-channel oxyhemoglobin (HbO) and deoxyhemoglobin (HbR) signals from 17 participants who performed a hand tapping task with different levels of concurrent head movement. Additionally, the tapping task was performed without head movements to estimate the ground-truth brain activation. We compared the performance of our novel approach with the probe-IMU and head-IMU to eight established methods (PCA, tPCA, spline, spline Savitzky-Golay, wavelet, CBSI, RLOESS, and WCBSI) on four quality metrics: SNR, △AUC, RMSE, and R. Our proposed nonlinear Hammerstein-Wiener method achieved the best SNR increase (p < 0.001) among all methods. Visual inspection revealed that our approach mitigated MA contaminations that other techniques could not remove effectively. MA correction quality was comparable with head- and probe-IMUs.


Assuntos
Artefatos , Espectroscopia de Luz Próxima ao Infravermelho , Humanos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Masculino , Adulto , Feminino , Movimento/fisiologia , Movimento (Física) , Oxiemoglobinas/análise , Encéfalo/fisiologia , Adulto Jovem , Hemoglobinas/análise , Algoritmos , Processamento de Sinais Assistido por Computador , Hemodinâmica/fisiologia
13.
Children (Basel) ; 11(5)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38790586

RESUMO

Brain injury resulting from adverse events during pregnancy and delivery is the leading cause of neonatal morbidity and disability. Surviving neonates often suffer long-term motor, sensory, and cognitive impairments. Birth asphyxia is among the most common causes of neonatal encephalopathy. The integration of ultrasound, including Doppler ultrasound, and near-infrared spectroscopy (NIRS) offers a promising approach to understanding the pathology and diagnosis of encephalopathy in this special patient population. Ultrasound diagnosis can be very helpful for the assessment of structural abnormalities associated with neonatal encephalopathy such as alterations in brain structures (intraventricular hemorrhage, infarcts, hydrocephalus, white matter injury) and evaluation of morphologic changes. Doppler sonography is the most valuable method as it provides information about blood flow patterns and outcome prediction. NIRS provides valuable insight into the functional aspects of brain activity by measuring tissue oxygenation and blood flow. The combination of ultrasonography and NIRS may produce complementary information on structural and functional aspects of the brain. This review summarizes the current state of research, discusses advantages and limitations, and explores future directions to improve applicability and efficacy.

14.
Physiol Behav ; 281: 114574, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38697274

RESUMO

Postural change from supine or sitting to standing up leads to displacement of 300 to 1000 mL of blood from the central parts of the body to the lower limb, which causes a decrease in venous return to the heart, hence decrease in cardiac output, causing a drop in blood pressure. This may lead to falling down, syncope, and in general reducing the quality of daily activities, especially in the elderly and anyone suffering from nervous system disorders such as Parkinson's or orthostatic hypotension (OH). Among different modalities to study brain function, functional near-infrared spectroscopy (fNIRS) is a neuroimaging method that optically measures the hemodynamic response in brain tissue. Concentration changes in oxygenated hemoglobin (HbO2) and deoxygenated hemoglobin (HHb) are associated with brain neural activity. fNIRS is significantly more tolerant to motion artifacts compared to fMRI, PET, and EEG. At the same time, it is portable, has a simple structure and usage, is safer, and much more economical. In this article, we systematically reviewed the literature to examine the history of using fNIRS in monitoring brain oxygenation changes caused by sudden changes in body position and its relationship with the blood pressure changes. First, the theory behind brain hemodynamics monitoring using fNIRS and its advantages and disadvantages are presented. Then, a study of blood pressure variations as a result of postural changes using fNIRS is described. It is observed that only 58 % of the references concluded a positive correlation between brain oxygenation changes and blood pressure changes. At the same time, 3 % showed a negative correlation, and 39 % did not show any correlation between them.


Assuntos
Pressão Sanguínea , Encéfalo , Hemodinâmica , Postura , Espectroscopia de Luz Próxima ao Infravermelho , Humanos , Encéfalo/diagnóstico por imagem , Encéfalo/irrigação sanguínea , Encéfalo/metabolismo , Pressão Sanguínea/fisiologia , Postura/fisiologia , Hemodinâmica/fisiologia
15.
Spectrochim Acta A Mol Biomol Spectrosc ; 317: 124370, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38744225

RESUMO

Sport nutrition supplements (SNS) are vulnerable to adulteration with melamine, artificially augmenting their protein content as determined by conventional assay methodologies. Vibrational spectroscopy techniques are suitable for the detection of adulteration because they allow rapid analysis, require minimal sample preparation, and can perform numerous analyses in a short time. The aim of this study was to develop rapid quantification models for the determination of melamine adulteration in a variety of SNS matrices using NIRS (near-infrared spectroscopy) in combination with multivariate data processing. Moreover, a comparison of benchtop and portable NIR instruments was carried out. Employing a stepwise approach involving OPLS-DA and PLS analysis, matrix discrimination and prediction ability were investigated. The benchtop instrument effectively discriminated among matrices (R2Y = 0.964, Q2 = 0.933), while the portable device, although showing a slightly altered pattern, maintained favorable discrimination capability (R2Y = 0.966, Q2 = 0.931). The quantitative PLS models for each SNS matrix exhibited comparable statistical indicators for both instruments with reasonable errors for melamine content estimation and prediction (RMSEE: 0.3-2.4 %, RMSEP: 0.98-2.99 %). Higher estimation and prediction errors were observed for protein-containing samples in both acquisition modes, probably due to the tendency of protein agglomeration and adhesion to different surfaces, which affects the homogeneity of the powder. Despite data loss due to the narrower spectral range and lower resolution of the portable instrument, all models were found to be suitable for predicting melamine content in sport nutrition supplements.


Assuntos
Suplementos Nutricionais , Espectroscopia de Luz Próxima ao Infravermelho , Triazinas , Triazinas/análise , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Suplementos Nutricionais/análise , Contaminação de Alimentos/análise
16.
J Med Invest ; 71(1.2): 92-101, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38735731

RESUMO

This study aimed to investigate blood flow dynamics in the bilateral prefrontal cortex during silent and oral reading using near-infrared spectroscopy (NIRS). The subjects were 40 right-handed university students (20.5±1.8 years old, 20 men and 20 women). After completing the NIRS measurements, the subjects were asked to rate their level of proficiency in silent and oral reading, using a 5-point Likert scale. During oral reading, the left lateral prefrontal cortex (Broca's area) was significantly more active than the right side. During silent reading, prefrontal cortex activity was lower than that during oral reading, and there was no significant difference between both sides of the brain. A significant negative correlation was found between the change in oxy-hemoglobin (oxy-Hb) concentration in the left and right lateral prefrontal cortex during silent reading and silent reading speed. In addition, students with lower self-reported reading proficiency had significantly greater changes in oxy-Hb concentrations in the left and right lateral prefrontal cortex during silent/oral reading than did students with higher self-reported reading proficiency. Reading task assessment using NIRS may be useful for identifying language lateralization and Broca's area. The results demonstrate that NIRS is useful for assessing effortful reading and may be used to diagnose developmental dyslexia in children. J. Med. Invest. 71 : 92-101, February, 2024.


Assuntos
Córtex Pré-Frontal , Leitura , Espectroscopia de Luz Próxima ao Infravermelho , Humanos , Córtex Pré-Frontal/irrigação sanguínea , Córtex Pré-Frontal/fisiologia , Córtex Pré-Frontal/diagnóstico por imagem , Masculino , Feminino , Adulto Jovem , Oxiemoglobinas/análise , Oxiemoglobinas/metabolismo , Circulação Cerebrovascular/fisiologia , Adulto
17.
Adv Physiol Educ ; 48(3): 566-572, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38779745

RESUMO

Monitoring the metabolic cost or oxygen consumption associated with rest and exercise is crucial to understanding the impact of disease or physical training on the health of individuals. Traditionally, measuring the skeletal muscle oxygen cost associated with exercise/muscle contractions can be rather expensive or invasive (i.e., muscle biopsies). More recently, specific protocols designed around the use of near-infrared spectroscopy (NIRS) have been shown to provide a quick, noninvasive easy-to-use tool to measure skeletal muscle oxygen consumption ([Formula: see text]). However, the data and results from NIRS devices are often misunderstood. Thus the primary purpose of this sourcebook update is to provide several experimental protocols students can utilize to improve their understanding of NIRS technology, learn how to analyze results from NIRS devices, and better understand how muscle contraction intensity and type (isometric, concentric, or eccentric) influence the oxygen cost of muscle contractions.NEW & NOTEWORTHY Compared to traditional methods, near-infrared spectroscopy (NIRS) provides a relatively cheap and easy-to-use noninvasive technique to measure skeletal muscle oxygen uptake following exercise. This laboratory not only enables students to learn about the basics of NIRS and muscle energetics but also addresses more complex questions regarding skeletal muscle physiology.


Assuntos
Músculo Esquelético , Consumo de Oxigênio , Espectroscopia de Luz Próxima ao Infravermelho , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Humanos , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Consumo de Oxigênio/fisiologia , Fisiologia/educação , Fisiologia/métodos , Oxigênio/metabolismo , Contração Muscular/fisiologia , Exercício Físico/fisiologia
19.
Phys Act Nutr ; 28(1): 37-44, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38719465

RESUMO

PURPOSE: This narrative review evaluated the impact of exercise on gait and cognitive functions in patients with Parkinson's disease (PD), focusing on prefrontal cortical (PFC) activation assessed using near-infrared spectroscopy (NIRS). METHODS: A literature search was conducted in the PubMed and Web of Science databases using keywords such as "Parkinson's disease," "gait," "cognitive functions," "exercise," and "NIRS," focusing on publications from the last decade. Studies measuring PFC activity using NIRS during gait tasks in patients with PD were selected. RESULTS: The review indicated that patients with PD demonstrate increased PFC activity during gait tasks compared to healthy controls, suggesting a greater cognitive demand for movement control. Exercise has been shown to enhance neural efficiency, thus improving gait and cognitive functions. CONCLUSION: Exercise is crucial for improving gait and cognitive functions in patients with PD through increased PFC activation. This emphasizes the importance of incorporating exercise into PD management plans and highlights the need for further studies on its long-term effects and the neurobiological mechanisms underlying its benefits, with the aim of optimizing therapeutic strategies and improving patients' quality of life.

20.
Food Chem ; 454: 139786, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38820640

RESUMO

This study aims to investigate the potential of using advanced spectroscopies for cheese quality monitoring. For this purpose, six semi-hard cheeses manufactured using lactic acid bacteria (LAB) and/or propionic acid bacteria (PAB) were explored using near-infrared spectroscopy (NIRS) and Proton Nuclear Magnetic Resonance (1H NMR) spectroscopy. The spectral data were analyzed using principal component analysis for extraction of possible discriminative patterns in quality parameters. The results show that the green analytical, but primarily bulk-sensitive, NIRS method was able to discriminate the cheese varieties primarily due to differences in the first overtone CH stretching region between 1650 and 1720 nm, in particular by the lactate methylene absorption at 1674 nm. A total of 25 metabolites were identified in the 1H NMR spectra of the cheese extracts, several of which were associated with the LAB and PAB metabolic pathways. PAB-associated metabolites include propionate, acetate, and glutamate, while LAB-associated metabolites include lactate and acetoin among others.


Assuntos
Queijo , Espectroscopia de Luz Próxima ao Infravermelho , Queijo/análise , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Propionatos/análise , Propionatos/metabolismo , Espectroscopia de Prótons por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Lactobacillales/metabolismo , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...