RESUMO
The coffee industry faces coffee leaf rust caused by Hemileia vastratix, which is considered the most devastating disease of the crop, as it reduces the photosynthetic rate and limits productivity. The use of plant resistance inducers, such as chitosan, is an alternative for the control of the disease by inducing the synthesis of phytoalexins, as well as the activation of resistance genes. Previously, the effect of chitosan from different sources and physicochemical properties was studied; however, its mechanisms of action have not been fully elucidated. In this work, the ability of food-grade high-density chitosan (0.01% and 0.05%) to control the infection caused by the pathogen was evaluated. Subsequently, the effect of high-density chitosan (0.05%) on the induction of pathogenesis-related gene expression (GLUC, POX, PAL, NPR1, and CAT), the enzymatic activity of pathogenesis-related proteins (GLUC, POX, SOD, PPO, and APX), and phytoalexin production were evaluated. The results showed that 0.05% chitosan increased the activity and gene expression of ß-1,3 glucanases and induced a differentiated response in enzymes related to the antioxidant system of plants. In addition, a correlation was observed between the activities of polyphenol oxidase and the production of phytoalexin, which allowed an effective defense response in coffee plants.
Assuntos
Basidiomycota , Quitosana , Coffea , Coffea/genética , Quitosana/farmacologia , Fitoalexinas , Basidiomycota/genética , Doenças das Plantas/genéticaRESUMO
Induced systemic resistance (ISR) is a mechanism involved in the plant defense response against pathogens. Certain members of the Bacillus genus are able to promote the ISR by maintaining a healthy photosynthetic apparatus, which prepares the plant for future stress situations. The goal of the present study was to analyze the effect of the inoculation of Bacillus on the expression of genes involved in plant responses to pathogens, as a part of the ISR, during the interaction of Capsicum chinense infected with PepGMV. The effects of the inoculation of the Bacillus strains in pepper plants infected with PepGMV were evaluated by observing the accumulation of viral DNA and the visible symptoms of pepper plants during a time-course experiment in greenhouse and in in vitro experiments. The relative expression of the defense genes CcNPR1, CcPR10, and CcCOI1 were also evaluated. The results showed that the plants inoculated with Bacillus subtilis K47, Bacillus cereus K46, and Bacillus sp. M9 had a reduction in the PepGMV viral titer, and the symptoms in these plants were less severe compared to the plants infected with PepGMV and non-inoculated with Bacillus. Additionally, an increase in the transcript levels of CcNPR1, CcPR10, and CcCOI1 was observed in plants inoculated with Bacillus strains. Our results suggest that the inoculation of Bacillus strains interferes with the viral replication, through the increase in the transcription of pathogenesis-related genes, which is reflected in a lowered plant symptomatology and an improved yield in the greenhouse, regardless of PepGMV infection status.
RESUMO
Bovine oocytes and blastocysts produced in vitro are frequently of lower quality and less cryotolerant than those produced in vivo, and greater accumulation of lipids in the cytoplasm has been pointed out as one of the reasons. In human adipocytes cGMP signaling through the activation of PKG appears to be involved in lipid metabolism, and components of this pathway have been detected in bovine cumulus-oocyte complexes (COCs). The aim of this study was to investigate the influence of this pathway on the lipid content in oocytes and expression of PLIN2 (a lipid metabolism-related gene) in cumulus cells. COCs were matured in vitro for 24 h with different stimulators of cGMP synthesis. The activation of soluble guanylyl cyclase (sGC) by Protoporphyrin IX reduced lipid content (22.7 FI) compared to control oocytes (36.45 FI; P <0.05). Stimulation of membrane guanylyl cyclase (mGC) with natriuretic peptides precursors A and C (NPPA and NPPC) had no effect (36.5 FI; P>0.05). When the PKG inhibitor KT5823 was associated with Protoporphyrin IX, its effect was reversed and lipid contents increased (52.71 FI; P<0.05). None of the stimulators of cGMP synthesis affected the expression of PLIN2 in cumulus cells. In conclusion, stimulation of sGC for cGMP synthesis promotes lipolytic activities in bovine oocytes matured in vitro and such effect is mediated by PKG. However, such effect may vary depending on the stimulus received and/or which synthesis enzyme was activated, as stimulation of mGC had no effects.
RESUMO
Mineral nutrients are essential for plant growth and reproduction, yet only a few studies connect the nutritional status to plant innate immunity. The backbone of plant defense response is mainly controlled by two major hormones: salicylic acid (SA) and jasmonic acid (JA). This study investigated changes in the macronutrient concentration (deficiency/excess of nitrogen, phosphorus, potassium, magnesium, and sulfur) on the expression of PR1, a well-characterized marker in the SA-pathway, and PDF1.2 and LOX2 for the JA-pathway, analyzing plants carrying the promoter of each gene fused to GUS as a reporter. After histochemical GUS assays, we determined that PR1 gene was strongly activated in response to sulfur (S) deficiency. Using RT-PCR, we observed that the induction of PR1 depended on the function of Non-expressor of Pathogenesis-Related gene 1 (NPR1) and SA accumulation, as PR1 was not expressed in npr1-1 mutant and NahG plants under S-deprived conditions. Plants treated with different S-concentrations showed that total S-deprivation was required to induce SA-mediated defense responses. Additionally, bioassays revealed that S-deprived plants, induced resistance to the hemibiotrophic pathogen Pseudomonas syringae pv. DC3000 and increase susceptibility to the necrotrophic Botrytis cinerea. In conclusion, we observed a relationship between S and SA/JA-dependent defense mechanisms in Arabidopsis.
RESUMO
Plants, as sessile organisms, are continuously threatened by multiple factors and therefore their profitable production depends on how they can defend themselves. We have previously reported on the characterization of fitness mutants which are more tolerant to environmental stresses due to the activation of defense mechanisms. Here, we demonstrate that in fitness mutants, which accumulate moderate levels of salicylic acid (SA) and have SA signaling activated, pathogen infection is restricted. Also, we demonstrate that NPR1 is essential in fitness mutants for SA storage and defense activation but not for SA synthesis after Pseudomonas syringae (Pst) infection. Additionally, these mutants do not appear to be metabolically impared, resulting in a higher seed set even after pathogen attack. The FITNESS transcriptional network includes defense-related transcription factors (TFs) such as ANAC072, ORA59, and ERF1 as well as jasmonic acid (JA) related genes including LIPOXYGENASE2 (LOX2), CORONATINE INSENSITIVE1 (COI1), JASMONATE ZIM-domain3 (JAZ3) and JAZ10. Induction of FITNESS expression leads to COI1 downregulation, and to JAZ3 and JAZ10 upregulation. As COI1 is an essential component of the bioactive JA perception apparatus and is required for most JA-signaling processes, elevated FITNESS expression leads to modulated JA-related responses. Taken together, FITNESS plays a crucial role during pathogen attack and allows a cost-efficient way to prevent undesirable developmental effects.
RESUMO
Abstract Bovine oocytes and blastocysts produced in vitro are frequently of lower quality and less cryotolerant than those produced in vivo, and greater accumulation of lipids in the cytoplasm has been pointed out as one of the reasons. In human adipocytes cGMP signaling through the activation of PKG appears to be involved in lipid metabolism, and components of this pathway have been detected in bovine cumulus-oocyte complexes (COCs). The aim of this study was to investigate the influence of this pathway on the lipid content in oocytes and expression of PLIN2 (a lipid metabolism-related gene) in cumulus cells. COCs were matured in vitro for 24 h with different stimulators of cGMP synthesis. The activation of soluble guanylyl cyclase (sGC) by Protoporphyrin IX reduced lipid content (22.7 FI) compared to control oocytes (36.45 FI; P <0.05). Stimulation of membrane guanylyl cyclase (mGC) with natriuretic peptides precursors A and C (NPPA and NPPC) had no effect (36.5 FI; P>0.05). When the PKG inhibitor KT5823 was associated with Protoporphyrin IX, its effect was reversed and lipid contents increased (52.71 FI; P<0.05). None of the stimulators of cGMP synthesis affected the expression of PLIN2 in cumulus cells. In conclusion, stimulation of sGC for cGMP synthesis promotes lipolytic activities in bovine oocytes matured in vitro and such effect is mediated by PKG. However, such effect may vary depending on the stimulus received and/or which synthesis enzyme was activated, as stimulation of mGC had no effects.
RESUMO
Bovine oocytes and blastocysts produced in vitro are frequently of lower quality and less cryotolerant than those produced in vivo, and greater accumulation of lipids in the cytoplasm has been pointed out as one of the reasons. In human adipocytes cGMP signaling through the activation of PKG appears to be involved in lipid metabolism, and components of this pathway have been detected in bovine cumulus-oocyte complexes (COCs). The aim of this study was to investigate the influence of this pathway on the lipid content in oocytes and expression of PLIN2 (a lipid metabolism-related gene) in cumulus cells. COCs were matured in vitro for 24 h with different stimulators of cGMP synthesis. The activation of soluble guanylyl cyclase (sGC) by Protoporphyrin IX reduced lipid content (22.7 FI) compared to control oocytes (36.45 FI; P <0.05). Stimulation of membrane guanylyl cyclase (mGC) with natriuretic peptides precursors A and C (NPPA and NPPC) had no effect (36.5 FI; P>0.05). When the PKG inhibitor KT5823 was associated with Protoporphyrin IX, its effect was reversed and lipid contents increased (52.71 FI; P<0.05). None of the stimulators of cGMP synthesis affected the expression of PLIN2 in cumulus cells. In conclusion, stimulation of sGC for cGMP synthesis promotes lipolytic activities in bovine oocytes matured in vitro and such effect is mediated by PKG. However, such effect may vary depending on the stimulus received and/or which synthesis enzyme was activated, as stimulation of mGC had no effects.(AU)
Assuntos
Animais , Feminino , Bovinos , Bovinos/embriologia , Técnicas de Maturação in Vitro de Oócitos/veterinária , Lipídeos , Proteínas Quinases Dependentes de GMP Cíclico , Peptídeos NatriuréticosRESUMO
[This corrects the article on p. 171 in vol. 6, PMID: 25852720.].
RESUMO
Salicylic acid (SA) is a key hormone that mediates gene transcriptional reprogramming in the context of the defense response to stress. GRXC9, coding for a CC-type glutaredoxin from Arabidopsis, is an SA-responsive gene induced early and transiently by an NPR1-independent pathway. Here, we address the mechanism involved in this SA-dependent pathway, using GRXC9 as a model gene. We first established that GRXC9 expression is induced by UVB exposure through this pathway, validating its activation in a physiological stress condition. GRXC9 promoter analyses indicate that SA controls gene transcription through two activating sequence-1 (as-1)-like elements located in its proximal region. TGA2 and TGA3, but not TGA1, are constitutively bound to this promoter region. Accordingly, the transient recruitment of RNA polymerase II to the GRXC9 promoter, as well as the transient accumulation of gene transcripts detected in SA-treated WT plants, was abolished in a knockout mutant for the TGA class II factors. We conclude that constitutive binding of TGA2 is essential for controlling GRXC9 expression, while binding of TGA3 in a lesser extent contributes to this regulation. Finally, overexpression of GRXC9 indicates that the GRXC9 protein negatively controls its own gene expression, forming part of the complex bound to the as-1-containing promoter region. These findings are integrated in a model that explains how SA controls transcription of GRXC9 in the context of the defense response to stress.
RESUMO
It is well established that salicylic acid (SA) plays a critical role in the transcriptional reprograming that occurs during the plant defense response against biotic and abiotic stress. In the course of the defense response, the transcription of different sets of defense genes is controlled in a spatio-temporal manner via SA-mediated mechanisms. Interestingly, different lines of evidence indicate that SA interplays with reactive oxygen species (ROS) and glutathione (GSH) in stressed plants. In this review we focus on the evidence that links SA, ROS, and GSH signals to the transcriptional control of defense genes. We discuss how redox modifications of regulators and co-regulators involved in SA-mediated transcriptional responses control the temporal patterns of gene expression in response to stress. Finally, we examine how these redox sensors are coordinated with the dynamics of cellular redox changes occurring in the defense response to biotic and abiotic stress.