Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 13: 803126, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35557975

RESUMO

Compelling evidence has demonstrated the effect of melatonin on exhaustive exercise tolerance and its modulatory role in muscle energy substrates at the end of exercise. In line with this, PGC-1α and NRF-1 also seem to act on physical exercise tolerance and metabolic recovery after exercise. However, the literature still lacks reports on these proteins after exercise until exhaustion for animals treated with melatonin. Thus, the aim of the current study was to determine the effects of acute melatonin administration on muscle PGC-1α and NRF-1, and its modulatory role in glycogen and triglyceride contents in rats subjected to exhaustive swimming exercise at an intensity corresponding to the anaerobic lactacidemic threshold (iLAn). In a randomized controlled trial design, thirty-nine Wistar rats were allocated into four groups: control (CG = 10), rats treated with melatonin (MG = 9), rats submitted to exercise (EXG = 10), and rats treated with melatonin and submitted to exercise (MEXG = 10). Forty-eight hours after the graded exercise test, the animals received melatonin (10 mg/kg) or vehicles 30 min prior to time to exhaustion test in the iLAn (tlim). Three hours after tlim the animals were euthanized, followed by muscle collection for specific analyses: soleus muscles for immunofluorescence, gluteus maximus, red and white gastrocnemius for the assessment of glycogen and triglyceride contents, and liver for the measurement of glycogen content. Student t-test for independent samples, two-way ANOVA, and Newman keuls post hoc test were used. MEXG swam 120.3% more than animals treated with vehicle (EXG; p < 0.01). PGC-1α and NRF-1 were higher in MEXG with respect to the CG (p < 0.05); however, only PGC-1α was higher for MEXG when compared to EXG. Melatonin reduced the triglyceride content in gluteus maximus, red and white gastrocnemius (F = 6.66, F = 4.51, and F = 6.02, p < 0.05). The glycogen content in red gastrocnemius was higher in MEXG than in CG (p = 0.01), but not in EXG (p > 0.05). In conclusion, melatonin was found to enhance exercise tolerance, potentiate exercise-mediated increases in PGC-1α, decrease muscle triglyceride content and increase muscle glycogen 3 h after exhaustive exercise, rapidly providing a better cellular metabolic environment for future efforts.

2.
Cell Biochem Funct ; 33(4): 249-56, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25959716

RESUMO

Obesity is considered a public health problem worldwide. Fenofibrate, a selective peroxisome proliferator-activated receptor α (PPAR-α) agonist, elicits weight loss in animal models. This study aimed to examine the effects of fenofibrate on energy expenditure, body mass (BM) and gene expression of thermogenic factors in brown adipose tissue of diet-induced obese mice. Male C57BL/6 mice were fed a standard chow (SC; 10% lipids) diet or a high-fat (HF; 50% lipids) diet for 10 weeks. Afterwards, groups were subdivided as SC, SC-F, HF and HF-F (n = 10, each). Treatment with fenofibrate (100 mg kg(-1) BM mixed into the diet) lasted 5 weeks. Treated groups had reduced final BM compared with their counterparts (p < 0·05), explained by the increase in energy expenditure, CO2 production and O2 consumption after treatment with fenofibrate (p < 0·05). Similarly, genes involved in thermogenesis as PPAR-α, PPAR-γ coactivator 1α, nuclear respiratory factor 1, mitochondrial transcription factor A (Tfam), PR domain containing 16 (PRDM16), ß-3 adrenergic receptor (ß3-AR), bone morphogenetic protein 8B and uncoupling protein 1 were significantly expressed in brown adipocytes after the treatment (p < 0·05). All observations ensure that selective PPAR-α agonist can induce thermogenesis by increasing energy expenditure and enhancing the expression of genes involved in the thermogenic pathway. These results suggest fenofibrate as a coadjutant drug for the treatment of obesity.


Assuntos
Adipócitos Marrons/metabolismo , Tecido Adiposo/metabolismo , Dieta/efeitos adversos , Fenofibrato/farmacologia , Obesidade/tratamento farmacológico , PPAR alfa/agonistas , Redução de Peso/efeitos dos fármacos , Adipócitos Marrons/efeitos dos fármacos , Tecido Adiposo/citologia , Tecido Adiposo/efeitos dos fármacos , Animais , Biomarcadores/metabolismo , Metabolismo Energético/efeitos dos fármacos , Hipolipemiantes/farmacologia , Técnicas Imunoenzimáticas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/etiologia , Obesidade/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
3.
Free Radic Biol Med ; 65: 1078-1089, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23999506

RESUMO

The chemotherapeutic isothiocyanate sulforaphane (SFN) was early linked to anticarcinogenic and antiproliferative activities. Soon after, this compound, derived from cruciferous vegetables, became an excellent and useful trial for anti-cancer research in experimental models including growth tumor, metastasis, and angiogenesis. Many subsequent reports showed modifications in mitochondrial signaling, functionality, and integrity induced by SFN. When cytoprotective effects were found in toxic and ischemic insult models, seemingly contradictory behaviors of SFN were discovered: SFN was inducing deleterious changes in cancer cell mitochondria that eventually would carry the cell to death via apoptosis and also was protecting noncancer cell mitochondria against oxidative challenge, which prevented cell death. In both cases, SFN exhibited effects on mitochondrial redox balance and phase II enzyme expression, mitochondrial membrane potential, expression of the family of B cell lymphoma 2 homologs, regulation of proapoptotic proteins released from mitochondria, activation/inactivation of caspases, mitochondrial respiratory complex activities, oxygen consumption and bioenergetics, mitochondrial permeability transition pore opening, and modulation of some kinase pathways. With the ultimate findings related to the induction of mitochondrial biogenesis by SFN, it could be considered that SFN has effects on mitochondrial dynamics that explain some divergent points. In this review, we list the reports involving effects on mitochondrial modulation by SFN in anti-cancer models as well as in cytoprotective models against oxidative damage. We also attempt to integrate the data into a mechanism explaining the various effects of SFN on mitochondrial function in only one concept, taking into account mitochondrial biogenesis and dynamics and making a comparison with the theory of reactive oxygen species threshold of cell death. Our interest is to achieve a complete view of cancer and protective therapies based on SFN that can be extended to other chemotherapeutic compounds with similar characteristics. The work needed to test this hypothesis is quite extensive.


Assuntos
Antioxidantes/farmacologia , Isotiocianatos/farmacologia , Mitocôndrias/fisiologia , Animais , Apoptose , Humanos , Mitocôndrias/efeitos dos fármacos , Renovação Mitocondrial/efeitos dos fármacos , Neoplasias/metabolismo , Estresse Oxidativo , Sulfóxidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA