Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 657: 463-471, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38070332

RESUMO

Air pollution has garnered significant worldwide attention; however, the existing air filtration materials still suffer from issues related to monotonous structure and the inherent trade-off between PM rejection and air permeability. Herein, a spider web-inspired composite membrane with continuous monolayer structured 2D nano-networks tightly welded on nanofibers in the electrospun membrane scaffold is designed via a hierarchical phase separation strategy. The resultant biomimetic hierarchical-structured membranes possess the integrated features of hierarchical multiscale structures of 2D ultrafine networks composed of nanowires with a diameter of 31 nm self-assembled by nanoparticles, exceptional characteristics involving small average aperture, extremely low network thickness, high porosity and promising pore channel connectivity, combined with rich surface polar functional groups (3.02D dipole moment). Consequently, the composite membrane exhibits a high PM0.3 capture efficiency of 99.6 % and low pressure drop of 58.8 Pa, less than 0.06 % of atmosphere pressure, with outstanding long-term PM2.5 recycling filtration performance. The hierarchical phase separation-driven 2D nano-networks construction strategy, by virtue of their feasibility and tunability, holds great promise for widespread application across diverse membrane-related domains for air filtration.

2.
Adv Sci (Weinh) ; 10(35): e2302858, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37890452

RESUMO

Soft transparent electrodes (TEs) have received tremendous interest from academia and industry due to the rapid development of lightweight, transparent soft electronics. Metallic micro-nano networks (MMNNs) are a class of promising soft TEs that exhibit excellent optical and electrical properties, including low sheet resistance and high optical transmittance, as well as superior mechanical properties such as softness, robustness, and desirable stability. They are genuinely interesting alternatives to conventional conductive metal oxides, which are expensive to fabricate and have limited flexibility on soft surfaces. This review summarizes state-of-the-art research developments in MMNN-based soft TEs in terms of performance specifications, fabrication methods, and application areas. The review describes the implementation of MMNN-based soft TEs in optoelectronics, bioelectronics, tactile sensors, energy storage devices, and other applications. Finally, it presents a perspective on the technical difficulties and potential future possibilities for MMNN-based TE development.

3.
Nanomedicine ; 43: 102553, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35337985

RESUMO

The structural DNA nanotechnology holds great potential application in bioimaging, drug delivery and cancer therapy. Herein, an intelligent aptamer-incorporated DNA nanonetwork (Apt-Nnes) is demonstrated for cancer cell imaging and targeted drug delivery, which essentially is a micron-scale pattern with the thickness of double-stranded monolayer. Cancer cell-surface receptors can make it perform magical transformation into small size of nanosheet intermediates and specifically enter target cells. The binding affinity of Apt-Nnes is increased by 3-fold due to multivalent binding effect of aptamers and it can maintain the structural integrity in fetal bovine serum (FBS) for 8 h. More interestingly, target cancer cells can cause the structural disassembly, and each resulting unit transports 4963 doxorubicin (Dox) into target cells, causing the specific cellular cytotoxicity. The cell surface receptor-mediated disassembly of large size of DNA nanostructures into small size of fractions provides a valuable insight into developing intelligent DNA nanostructure suitable for biomedical applications.


Assuntos
Aptâmeros de Nucleotídeos , Neoplasias , Aptâmeros de Nucleotídeos/química , Linhagem Celular Tumoral , DNA/química , Doxorrubicina , Sistemas de Liberação de Medicamentos/métodos , Neoplasias/tratamento farmacológico
4.
Adv Healthc Mater ; 11(7): e2101426, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34936732

RESUMO

Antimicrobial resistance (AMR) develops when bacteria no longer respond to conventional antimicrobial treatment. The limited treatment options for resistant infections result in a significantly increased medical burden. Antimicrobial peptides offer advantages for treatment of resistant infections, including broad-spectrum activity and lower risk of resistance development. However, sensitivity to proteolytic cleavage often limits their clinical application. Here, a moldable and biodegradable colloidal nano-network is presented that protects bioactive peptides from enzymatic degradation and delivers them locally. An antimicrobial peptide, PA-13, is encapsulated electrostatically into positively and negatively charged nanoparticles made of chitosan and dextran sulfate without requiring chemical modification. Mixing and concentration of oppositely charged particles form a nano-network with the rheological properties of a cream or injectable hydrogel. After exposure to proteolytic enzymes, the formed nano-network loaded with PA-13 eliminates Pseudomonas aeruginosa during in vitro culture and in an ex vivo porcine skin model while the unencapsulated PA-13 shows no antibacterial effect. This demonstrates the ability of the nano-network to protect the antimicrobial peptide in an enzyme-challenged environment, such as a wound bed. Overall, the nano-network presents a useful platform for antimicrobial peptide protection and delivery without impacting peptide bioactivity.


Assuntos
Anti-Infecciosos , Quitosana , Animais , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Peptídeos Antimicrobianos , Quitosana/farmacologia , Testes de Sensibilidade Microbiana , Peptídeos/farmacologia , Pseudomonas aeruginosa , Suínos
5.
Nanotechnology ; 32(47)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34371489

RESUMO

Self-supporting ZnO nano-networks have been demonstrated by a substrate-free chemical vapor deposition process for the application as flexible ultraviolet (UV) photodetector. The device shows a responsivity of ∼300 mA W-1over a wide wavelength range from 254 to 365 nm and a high UV/visible rejection ratio of more than 104. More interestingly, a short 90%-10% decay time of <0.12 s can be observed in the air atmosphere, and the current can fully recover to its original dark value within 1 s after switching off the light. The quick response speed should be associated with the wire-wire junction barriers and the adsorption/desorption process of oxygen molecules on the oxygen vacancies near the surface of the ZnO. In addition, the photocurrent, the dark current and the response speed of the ZnO nano-networks flexible UV photodetector nearly stay the same under different bending conditions, suggesting the excellent photoelectric stability and repeatability. Such a simple and cheap way for fabricating self-supporting ZnO-based devices has broad application prospects in the fields of flexible and wearable electronic devices.

6.
Adv Sci (Weinh) ; 8(14): 2100332, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34306977

RESUMO

The advent of special types of polymeric semiconductors, known as "polymer blends," presents new opportunities for the development of next-generation electronics based on these semiconductors' versatile functionalities in device applications. Although these polymer blends contain semiconducting polymers (SPs) mixed with a considerably high content of insulating polymers, few of these blends unexpectedly yield much higher charge carrier mobilities than those of pure SPs. However, the origin of such an enhancement has remained unclear owing to a lack of cases exhibiting definite improvements in charge carrier mobility, and the limited knowledge concerning the underlying mechanism thereof. In this study, the morphological changes and internal nanostructures of polymer blends based on various SP types with different intermolecular interactions in an insulating polystyrene matrix are investigated. Through this investigation, the physical confinement of donor-acceptor type SP chains in a continuous nanoscale network structure surrounded by polystyrenes is shown to induce structural ordering with more straight edge-on stacked SP chains. Hereby, high-performance and transparent organic field-effect transistors with a hole mobility of ≈5.4 cm2 V-1 s-1 and an average transmittance exceeding 72% in the visible range are achieved.

7.
Sensors (Basel) ; 20(5)2020 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-32121407

RESUMO

Continuous progress of nanocommunications and nano-networking is opening the door to the development of innovative yet unimaginable services, with a special focus on medical applications. Among several nano-network topologies, flow-guided nanocommunication networks have recently emerged as a promising solution to monitoring, gathering information, and data communication inside the human body. In particular, flow-guided nano-networks display a number of specific characteristics, such as the type of nodes comprising the network or the ability of a nano-node to transmit successfully, which significantly differentiates them from other types of networks, both at the nano and larger scales. This paper presents the first analytical study on the behavior of these networks, with the objective of evaluating their metrics mathematically. To this end, a theoretical framework of the flow-guided nano-networks is developed and an analytical model derived. The main results reveal that, due to frame collisions, there is an optimal number of nano-nodes for any flow-guided network, which, as a consequence, limits the maximum achievable throughput. Finally, the analytical results obtained are validated through simulations and are further discussed.

8.
ChemistryOpen ; 8(12): 1369-1374, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31844603

RESUMO

Non-spherical Au/Ag nanoparticles can be generated by chemical reduction of silver ions in the presence of preformed gold nanoparticles. The process of particle formation can be controlled by concentrations of ligands and reducing agent. The formation of ellipsoidal, nanorod- and peanut-shaped nanoparticles as well as of more complex fractal nanoassemblies can be explained by changes in particle surface state, electrochemical potential formation and particle-internal self-polarization effects. It is possible to create highly fractal nanoassemblies with sizes between the mid-nanometer and the lower micrometer range. The assemblies are marked by high optical absorption and complex nano-networks of very high surface-to-volume ratios and a granular base structure.

9.
Sensors (Basel) ; 19(21)2019 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-31731541

RESUMO

Nano-networks are composed of interconnected nano-nodes and can enable unprecedented applications in various fields. Due to the peculiarities of nano-networks, such as high density, extremely limited energy and computational resources, traditional carrier-sensing based Media Access Control (MAC) protocols are not suitable for nano-networks. In this paper, a Slot Self-Allocation based MAC protocol (SSA-MAC) is proposed for energy harvesting nano-networks. Two transmission schemes for centralized and distributed nano-networks are designed, respectively. In centralized nano-networks, nano-nodes can only send packets to the nano-controller in their Self-Allocation Slots (SASs), while, in distributed nano-networks, nano-nodes can only receive packets from surrounding nano-nodes in their SASs. Extensive simulations were conducted to compare the proposed SSA-MAC with PHysical LAyer aware MAC (PHLAME), Receiver-Initiated Harvesting-aware MAC (RIH-MAC) and Energy Efficient Wireless NanoSensor Network MAC (EEWNSN). From the results, it can be concluded that the proposed SSA-MAC achieves better performance and can reduce the collision probability, while improving the energy efficiency of nano-networks.

10.
E-Cienc. inf ; 9(1): 152-182, ene.-jun. 2019. tab, graf
Artigo em Inglês | LILACS, SaludCR | ID: biblio-1089861

RESUMO

ABSTRACT Over the years, technological advancements have led to rapid growth of smart environments (offices, homes, cities, etc.). The increase of intelligent environments suggests the interconnectivity of applications and the use of the Internet. For this reason, arise what is known as the Internet of Things (IoT). The expansion of the IoT concept gives access to the Internet of Nano Things (IoNT). A new communication networks paradigm based on nanotechnology and IoT, in other words, a paradigm with the capacity to interconnect nano-scale devices through existing networks. This new paradigm so-called IoNT is presented to the world as an option for various fields of application. Therefore, new challenges and research opportunities have arisen. Consequently, this work aims to investigate state of the art and analyze trends for the use of IoNT, its application and future challenges in different fields of social interest, because IoNT is presented as an option for research with the capacities needed to get involved in many fields of social welfare. It is concluded that technologies prevail current IoNT literature, applications are focused on health care, and there is no international standardization regarding privacy, security or architecture of nano-networks.


RESUMEN A través de los años, los avances tecnológicos han llevado a un rápido crecimiento de entornos inteligentes (oficinas, hogares, ciudades, etc.). El aumento de entornos inteligentes sugiere la interconectividad de las aplicaciones y el uso de la Internet. Por esta razón, surge lo que se conoce como Internet de las cosas (IoT, por sus siglas en inglés). La ampliación del concepto IoT brinda acceso a la Internet de las nano cosas (IoNT, por sus siglas en inglés), un nuevo paradigma de redes de comunicación basado en nanotecnología y IoT, en otras palabras, un paradigma con la capacidad de interconectar dispositivos a nano escala a través de redes existentes. Este nuevo paradigma denominado IoNT se presenta al mundo como una opción para diversos campos de aplicación. Por lo tanto, surgen nuevos desafíos y oportunidades de investigación. En consecuencia, este trabajo tiene como objetivo investigar el estado del arte y analizar las tendencias para el uso de IoNT, su aplicación y los desafíos futuros en diferentes campos de interés social, debido a que IoNT se presenta como una opción para la investigación con las capacidades necesarias para involucrarse en muchos campos del bienestar social. Se concluye que la literatura actual de IoNT está prevalecida por las tecnologías, las aplicaciones se enfocan en el cuidado de la salud y no se dispone de una estandarización internacional en cuanto a la privacidad, seguridad o la arquitectura de las nano redes.


Assuntos
Redes de Comunicação de Computadores , Normas Jurídicas , Nanotecnologia , Internet das Coisas/tendências , Saúde , Nanoestruturas , Acesso à Internet , Uso da Internet
11.
Healthc Technol Lett ; 5(4): 113-117, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30155262

RESUMO

A wireless body-centric nano-network consists of various nano-sized sensors with the purpose of healthcare application. One of the main challenges in the network is caused by the very limited power that can be stored in nano-batteries in comparison with the power required to drive the device for communications. Recently, novel rectifying antennas (rectennas) based on carbon nanotubes (CNTs), metal and graphene have been proposed. At the same time, research on simultaneous wireless information and power transfer (SWIPT) schemes has progressed apace. Body-centric nano-networks can overcome their energy bottleneck using these mechanisms. In this Letter, a nano-rectenna energy harvesting model is developed. The energy harvesting is realised by a nano-antenna and an ultra-high-speed rectifying diode combined as a nano-rectenna. This device can be used to power nanosensors using part of the terahertz (THz) information signal without any other system external energy source. The broadband properties of nano-rectennas enable them to generate direct current (DC) electricity from inputs with THz to optical frequencies. The authors calculate the output power generated by the nano-rectenna and compare this with the power required for nanosensors to communicate in the THz band. The calculation and analysis suggest that the nano-rectenna can be a viable approach to provide power for nanosensors in body-centric nano-networks.

12.
Carbohydr Polym ; 195: 387-392, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29804990

RESUMO

In this study, chitin nanofiber (ChNF) was deacetylated on the crystalline surface by NaOH treatment, leading to the fibrillation of mostly individualized nanofibers with high aspect ratio. The small diameter and high strength of chitin nanofibers make them promising reinforcing fillers for composites. Herein by introducing into the gelatin, surface-deacetylated chitin nanofiber (S-ChNF)/gelatin nanocomposites were fabricated in different component ratios using immersion method followed with drying. Due to the reinforcing effect attributed to S-ChNF, mechanical properties of the S-ChNF/gelatin were significantly improved in both stress and Young's modulus while still maintaining high transparency regardless of nanofiber content. Morphology and Fourier-transform infrared characterization revealed that S-ChNF preserved nanonetwork structures in the gelatin matrix and exhibited good compatibility through hydrogen bonding, which further confirmed the improvement in mechanical properties. Therefore, these S-ChNF/gelatin nanocomposites based on biocompatible and biodegradable raw materials have potential applications in biomedical and food packaging industries.

13.
Nanomaterials (Basel) ; 8(3)2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-29495573

RESUMO

The three-dimensional (3D) SnS decorated carbon nano-networks (SnS@C) were synthesized via a facile two-step method of freeze-drying combined with post-heat treatment. The lithium and sodium storage performances of above composites acting as anode materials were investigated. As anode materials for lithium ion batteries, a high reversible capacity of 780 mAh·g-1 for SnS@C composites can be obtained at 100 mA·g-1 after 100 cycles. Even cycled at a high current density of 2 A·g-1, the reversible capacity of this composite can be maintained at 610 mAh·g-1 after 1000 cycles. The initial charge capacity for sodium ion batteries can reach 333 mAh·g-1, and it retains a reversible capacity of 186 mAh·g-1 at 100 mA·g-1 after 100 cycles. The good lithium or sodium storage performances are likely attributed to the synergistic effects of the conductive carbon nano-networks and small SnS nanoparticles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...