Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.894
Filtrar
1.
Cell Rep Phys Sci ; 5(6): 102021, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38947181

RESUMO

In colloids, the shape influences the function. In silica, straight nanorods have already been synthesized from water-in-oil emulsions. By contrast, curly silica nanofibers have been less reported because the underlying growth mechanism remains unexplored, hindering further morphology control for applications. Herein, we describe the synthetic protocol for silica nanofibers with a tunable curliness based on the control of the water-in-oil emulsion droplets. Systematically decreasing the droplet size and increasing their contact angle, the Brownian motion of the droplets intensifies during the silica growth, thus increasing the random curliness of the nanofibers. This finding is supported by simplistic theoretical arguments and experimentally verified by varying the temperature to finely tune the curliness. Assembling these nanofibers toward porous disordered films enhances multiple scattering in the visible range, resulting in increased whiteness in contrast to films constructed by spherical and rod-like building units, which can be useful for, e.g., coatings and pigments.

2.
J Colloid Interface Sci ; 675: 336-346, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38972121

RESUMO

The development of soft hydrogel actuators with outstanding mechanical properties, fast actuation speed, and available quantification of self-sensing actuation remains a challenging endeavor. In this work, dopamine-decorated polypyrrole nanofibers (DAPPy) were introduced into the polyethylene glycol diacrylate (PEGDA)-crosslinked poly(N-isopropyl acrylamide) network to generate a stretchable, NIR-responsive, and strain sensitive DAPPy/PNIPAM hydrogel layer. Besides, this active layer was combined with the passive ligninsulfonate sodium/polyacrylamide (LS/PAAM) to give DAPPy/PNIPAM//LS/PAAM bilayer hydrogel actuator, which exhibits ultrafast thermo-responsive actuation (19°/s) and underwater grasping and lifting performance. Moreover, the DAPPy/PNIPAM layer has excellent electrical conductivity (0.29 S/m) and thermal conversion ability (10.8 °C/min), which enable such a conductive hydrogel to act as a highly sensitive strain and temperature sensor with real-time resistance change in response to tensile strain (gauge factor up to 3.4), applied pressure, temperature, and remote NIR light irradiation. More importantly, the bilayer hydrogel actuator can integrate both actuation and self-sensing functions through the bending angle-surface temperature-relative resistance change relationship of the photothermal process. With excellent mechanical actuation and self-sensing ability, the resulting bilayer hydrogel showed a promising application potential as soft biomimetic actuating materials and soft intelligent actuators.

3.
Hand Clin ; 40(3): 399-408, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38972684

RESUMO

Following nerve injury, growth factors (GFs) are transiently upregulated in injured neurons, proliferating Schwann cells, and denervated muscle and skin. They act on these same cells and tissues to promote nerve regeneration and end-organ reinnervation. Consequently, much attention has been focused on developing GF-based therapeutics. A major barrier to clinical translation of GFs is their short half-life. To provide sustained GF treatment to the affected nerve, muscle, and skin in a safe and practical manner, engineered drug delivery systems are needed. This review highlights recent advancements in GF-based therapeutics and discusses the remaining hurdles for clinical translation.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular , Regeneração Nervosa , Regeneração Nervosa/fisiologia , Regeneração Nervosa/efeitos dos fármacos , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/uso terapêutico , Traumatismos dos Nervos Periféricos/cirurgia , Traumatismos dos Nervos Periféricos/tratamento farmacológico , Traumatismos dos Nervos Periféricos/fisiopatologia , Animais , Sistemas de Liberação de Medicamentos
4.
ACS Nano ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38968387

RESUMO

Polymer fibers that combine high toughness and heat resistance are hard to achieve, which, however, hold tremendous promise in demanding applications such as aerospace and military. This prohibitive design task exists due to the opposing property dependencies on chain dynamics because traditional heat-resistant materials with rigid molecular structures typically lack the mechanism of energy dissipation. Aramid nanofibers have received great attention as high-performance nanoscale building units due to their intriguing mechanical and thermal properties, but their distinct structural features are yet to be fully captured. We show that aramid nanofibers form nanoscale crimps during the removal of water, which primarily resides at the defect planes of pleated sheets, where the folding can occur. The precise control of such a structural relaxation can be realized by exerting axial loadings on hydrogel fibers, which allows the emergence of aramid fibers with varying angles of crimps. These crimped fibers integrate high toughness with heat resistance, thanks to the extensible nature of nanoscale crimps with rigid molecular structures of poly(p-phenylene terephthalamide), promising as a template for stable stretchable electronics. The tensile strength/modulus (392-944 MPa/11-29 GPa), stretchability (25-163%), and toughness (154-445 MJ/cm3) are achieved according to the degree of crimping. Intriguingly, a toughness of around 430 MJ/m3 can be maintained after calcination below the relaxation temperature (259 °C) for 50 h. Even after calcination at 300 °C for 10 h, a toughness of 310 MJ/m3 is kept, outperforming existing polymer materials. Our multiscale design strategy based on water-bearing aramid nanofibers provides a potent pathway for tackling the challenge for achieving conflicting property combinations.

5.
J Environ Sci (China) ; 146: 39-54, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38969461

RESUMO

To improve the selective separation performance of silica nanofibers (SiO2 NFs) for cesium ions (Cs+) and overcome the defects of Prussian blue nanoparticles (PB NPs), PB/SiO2-NH2 NFs were prepared to remove Cs+ from water. Among them, 3-aminopropyltriethoxysilane (APTES) underwent an alkylation reaction with SiO2, resulting in the formation of a dense Si-O-Si network structure that decorated the surface of SiO2 NFs. Meanwhile, the amino functional groups in APTES combined with Fe3+ and then reacted with Fe2+ to form PB NPs, which anchored firmly on the aminoated SiO2 NFs surface. In our experiment, the maximum adsorption capacity of PB/SiO2-NH2 NFs was 111.38 mg/g, which was 31.5 mg/g higher than that of SiO2 NFs. At the same time, after the fifth cycle, the removal rate of Cs+ by PB/SiO2-NH2 NFs adsorbent was 75.36% ± 3.69%. In addition, the adsorption isotherms and adsorption kinetics of PB/SiO2-NH2 NFs were combined with the Freundlich model and the quasi-two-stage fitting model, respectively. Further mechanism analysis showed that the bond between PB/SiO2-NH2 NFs and Cs+ was mainly a synergistic action of ion exchange, electrostatic adsorption and membrane separation.


Assuntos
Césio , Ferrocianetos , Nanofibras , Nanopartículas , Poluentes Químicos da Água , Purificação da Água , Ferrocianetos/química , Nanofibras/química , Poluentes Químicos da Água/química , Césio/química , Adsorção , Purificação da Água/métodos , Nanopartículas/química , Dióxido de Silício/química , Cinética , Propilaminas/química , Silanos
6.
Adv Sci (Weinh) ; : e2405327, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38952072

RESUMO

Stimuli-responsive materials exhibiting exceptional room temperature phosphorescence (RTP) hold promise for emerging technologies. However, constructing such systems in a sustainable, scalable, and processable manner remains challenging. This work reports a bio-inspired strategy to develop RTP nanofiber materials using bacterial cellulose (BC) via bio-fermentation. The green fabrication process, high biocompatibility, non-toxicity, and abundant hydroxyl groups make BC an ideal biopolymer for constructing durable and stimuli-responsive RTP materials. Remarkable RTP performance is observed with long lifetimes of up to 1636.79 ms at room temperature. Moreover, moisture can repeatedly quench and activate phosphorescence in a dynamic and tunable fashion by disrupting cellulose rigidity and permeability. With capabilities for repeatable moisture-sensitive phosphorescence, these materials are highly suitable for applications such as anti-counterfeiting and information encryption. This pioneering bio-derived approach provides a reliable and sustainable blueprint for constructing dynamic, scalable, and processable RTP materials beyond synthetic polymers.

7.
Int J Biol Macromol ; : 133666, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38971295

RESUMO

The skin, which covers an area of 2 square meters of an adult human, accounts for about 15 % of the total body weight and is the body's largest organ. It protects internal organs from external physical, chemical, and biological attacks, prevents excess water loss from the body, and plays a role in thermoregulation. The skin is constantly exposed to various damages so that wounds can be acute or chronic. Although wound healing includes hemostasis, inflammatory, proliferation, and remodeling, chronic wounds face different treatment problems due to the prolonged inflammatory phase. Herbal extracts such as Nigella Sativa, curcumin, chamomile, neem, nettle, etc., with varying properties, including antibacterial, antioxidant, anti-inflammatory, antifungal, and anticancer, are used for wound healing. Due to their instability, herbal extracts are loaded in wound dressings to facilitate skin wounds. To promote skin wounds, skin tissue engineering was developed using polymers, bioactive molecules, and biomaterials in wound dressing. Conventional wound dressings, such as bandages, gauzes, and films, can't efficiently respond to wound healing. Adhesion to the wounds can worsen the wound conditions, increase inflammation, and cause pain while removing the scars. Ideal wound dressings have good biocompatibility, moisture retention, appropriate mechanical properties, and non-adherent and proper exudate management. Therefore, by electrospinning for wound healing applications, natural and synthesis polymers are utilized to fabricate nanofibers with high porosity, high surface area, and suitable mechanical and physical properties. This review explains the application of different herbal extracts with different chemical structures in nanofibrous webs used for wound care.

8.
Artigo em Inglês | MEDLINE | ID: mdl-38982840

RESUMO

Polymers are often used as adhesives to improve the mechanical properties of flexible electromagnetic interference (EMI) shielding layered films, but the introduction of these insulating adhesives inevitably reduces the EMI performance. Herein, ultrafine aramid nanofibers (UANF) with a diameter of only 2.44 nm were used as the binder to effectively infiltrate and minimize the insulating gaps in MXene films, for balancing the EMI shielding and mechanical properties. Combining the evaporation-induced scalable assembly assisted by blade coating, flexible large-scale MXene/UANF films with highly aligned and compact MXene stacking are successfully fabricated. Compared with the conventional ANF with a larger diameter of 7.05 nm, the UANF-reinforced MXene film exhibits a "brick-mortar" structure with higher orientation and compacter stacking MXene nanosheets, thus showing the higher mechanical properties, electrical conductivity, and EMI shielding performance. By optimizing MXene content, the MXene/UANF film can achieve the optimal tensile strength of 156.9 MPa, a toughness of 2.9 MJ m-3, satisfactory EMI shielding effectiveness (EMI SE) of 40.7 dB, and specific EMI SE (SSE/t) of 22782.4 dB cm2/g). Moreover, the composite film exhibits multisource thermal conversion functions including Joule heating and photothermal conversion. Therefore, the multifunctional MXene/UANF EMI shielding film with flexibility, foldability, and robust mechanical properties shows the practical potential in complex application environments.

9.
Cureus ; 16(6): e61741, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38975499

RESUMO

Aim The aim of this study was to assess the physicochemical characterization and mineralization of nanofibrous scaffold incorporated with nanohydroxyapatite (nHA) and aspartic acid (Asp) for dental mineralization.  Methodology Three nanofibrous scaffolds were prepared, namely polycaprolactone (PCL), PCL with nHA, and PCL with nHA and Asp. Each scaffold was prepared separately by electrospinning. The physicochemical characterization of the surface of the nanofibrous scaffold was imaged using a scanning electron microscope (SEM), energy dispersive X-ray Analysis (EDX), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR). In vitro mineralization studies were performed by immersing the sample in simulated body fluid (SBF) for 7, 14, and 21 days. The surface of the samples was observed under SEM with EDX. Results SEM analysis of PCL/nHA/Asp revealed that the nanofibers were bead-free, smooth, randomly oriented, and loaded with Asp. The EDX spectra of PCL/nHA/Asp composite nanofibrous scaffold revealed broad peaks and corresponded to the amorphous form, while the sharp peaks corresponded to the specific crystalline structure of nHA. FTIR analysis showed specific functional groups corresponding to PCL, nHA, and Asp. The scaffolds incorporated with Asp exhibited higher mineralization potential with an apatite-like crystal formation, which increased with an increase in the duration of immersion in SBF. Conclusion Physiochemical characterization demonstrated the incorporation of PCL/nHA/Asp in the electrospun nanofibrous scaffold. The mineralization analysis revealed that the presence of Asp enhanced the mineralization when compared with the PCL and PCL/nHA. PCL/nHA/Asp incorporated in scaffold can be a promising material for dental mineralization.

10.
Int J Biol Macromol ; : 133709, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38977047

RESUMO

Fabrication of Core-shell nanofibrous mat which is a promising tool for a wide range of applications in tissue engineering can be developed using water in oil (W/O) or oil in water (O/W) emulsion electrospinning. In this study, for the first time, we fabricated an O/W emulsion-based electrospun core-shell mat using polycaprolactone (PCL) as a core and the blend solution of alginate (Alg) and polyethylene oxide (PEO) as shell material. To achieve a stable core-shell mat, firstly, Alg was modified with heat treatment to decrease the molecular weight of Alg. Then, to improve the chain flexibility of Alg, PEO as a second polymer was added to facilitate its electrospinnability. The different volume ratios of O/W were then fabricated by adding PCL to the Alg-PEO solution to find an optimized emulsion solution. The morphology, swelling, and porosity of the construct were evaluated. At the same time, the mechanical characteristic of fibers was evaluated in both dry and wet conditions. This study also examined cell-scaffold interactions to address the need for a scaffolding material to be suitable for tissue engineering and biomedical applications. Finally, the result exhibited a distinct core-shell structure with better mechanical properties compared to the Alg-PEO.

11.
J Sci Food Agric ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38979953

RESUMO

BACKGROUND: Folic acid (FA), a synthetically produced compound analogous to vitamin B9, also referred to as vitamin folate, is an essential compound in human health and faces challenges in stability during food processing. This study explores the incorporation of FA into carboxymethylcellulose (CMC) nanofibers using electrospinning to enhance its stability. RESULTS: In this study, optimization of both electrospinning and solution parameters facilitated the fabrication of nanofibers. Furthermore, incorporating FA into CMC/polyethylene oxide (PEO) nanofibers resulted in thinner fibers, with an average diameter of 88 nm, characterized by a flat shape and smooth surface. Fourier transform infrared spectroscopic analysis demonstrated substantial hydrogen bonding interactions between FA and the polar groups present in CMC. This interaction contributed to an encapsulation efficiency of 94.5%, with a yield exceeding 87%. Thermal analysis highlighted mutual interference between CMC and PEO, with FA enhancing the thermal stability and reducing the melting temperatures and enthalpies of PEO, while also increasing the reaction heats of CMC. The encapsulated FA remained stable in acidic conditions, with only 6% degradation over 30 days, demonstrating the efficacy of CMC/PEO nanofibers in safeguarding FA against acidic environments. Moreover, the nanofibers provided a protective barrier against UV radiation, thereby preserving the stability of FA. CONCLUSION: This study emphasizes the efficacy of CMC/PEO nanofibers as a protective matrix against FA degradation. The findings indicate that this innovative approach could significantly diversify the applications of FA in food fortification, addressing concerns regarding its vulnerability to temperature and hydrolysis reactions during food processing. © 2024 Society of Chemical Industry.

12.
Int J Biol Macromol ; 275(Pt 2): 133712, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38977044

RESUMO

In the performed study, a novel fabrication of agar-based nanofibers was electrospun in an asymmetric bilayer dressing for biomedical transdermal patches. The optimal parameters for the fabrication of agar-based nanofibers after optimization were a feed rate of 10 µL/min, a 7 cm collector-to-nozzle distance, a 15 kV applied voltage, and a 700-rpm rotating collector speed. Coaxial nanofibers, as a second asymmetric layer, were produced using polyvinyl alcohol (PVA) with cephalexin hydrate, an antibacterial drug, as the core and agar-PCL as the sheath. The morphology of the developed uniaxial and coaxial nanofibrous layers was analysed using a scanning electron microscope and transmission electron microscopy, respectively. For the formation of bilayer asymmetric structures, the agar-PCL uniaxial layer was fabricated over the layer of coaxial PVA and agar-PCL layers for sustained drug release. The agar-based nanofibrous mats exhibited tensile strength of 7 MPa with 40 % elongation failure, 8-fold increased swelling, enhanced wettability (60° contact angle), and a moisture transmission rate of 2174 g/m2/day. The developed coaxial bilayer mats exhibited antimicrobial activity, hemocompatibility, and cytocompatibility. Overall, this novel agar nanofibrous dressing offers promising potential for advanced biomedical applications, particularly as transdermal patches for efficient drug delivery systems.

13.
Artigo em Inglês | MEDLINE | ID: mdl-38988275

RESUMO

Antireflective coatings with superhydrophobicity have many outdoor applications, such as solar photovoltaic panels and windshields. In this study, we fabricated an omnidirectional antireflective and superhydrophobic coating with good mechanical robustness and environmental durability via the spin coating technique. The coating consisted of a layer of phytic acid (PA)/polyacrylamide (PAM)/calcium ions (Ca2+) (referred to as Binder), an antireflective layer composed of chitin nanofibers (ChNFs), and a hydrophobic layer composed of methylsilanized silica (referred to as Mosil). The transmittance of a glass slide with the Binder/ChNFs/Mosil coating had a 5.2% gain at a wavelength of 550 nm, and the antireflective coating showed a water contact angle as high as 160° and a water sliding angle of 8°. The mechanical robustness and environmental durability of the coating, including resistance to peeling, dynamic impact, chemical erosion, ultraviolet (UV) irradiation, and high temperature, were evaluated. The coating retained excellent antireflective capacity and self-cleaning performance in the harsh conditions. The increase in voltage per unit area of a solar panel with a Binder/ChNFs/Mosil coating reached 0.4 mV/cm2 compared to the solar panel exposed to sunlight with an intensity of 54.3 × 103 lx. This work not only demonstrates that ChNFs can be used as raw materials to fabricate antireflective superhydrophobic coatings for outdoor applications but also provides a feasible and efficient approach to do so.

14.
Macromol Biosci ; : e2400217, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38989606

RESUMO

Recent advances in the treatment of chronic wounds have focused on the development of effective strategies for cutting-edge wound dressings based on nanostructured materials, particularly biocompatible poly(vinyl alcohol) (PVA)-based electro-spun (e-spun) nanofibers. However, PVA nanofibers need to be chemically crosslinked to ensure their dimensional stability in aqueous environment and their capability to encapsulate bioactive molecules. Herein, a robust approach for the fabrication of pH-degradable e-spun PVA nanofibers crosslinked with dynamic boronic ester (BE) linkages through a coupling reaction of PVA hydroxyl groups with the boronic acid groups of a phenyl diboronic acid crosslinker is reported. This comprehensive analysis reveals the importance of the mole ratio of boronic acid to hydroxyl group for the fabrication of well-defined BE-crosslinked fibrous mats with not only dimensional stability but also the ability to retain uniform fibrous form in aqueous solutions. These nanofibers degrade in both acidic and basic conditions that mimic wound environments, leading to controlled/enhanced release of encapsulated antimicrobial drug molecules. More importantly, drug-loaded BE-crosslinked fibers show excellent antimicrobial activities against both Gram-positive and Gram-negative bacteria, suggesting that this approach of exploring dynamic BE chemistry is amenable to the development of smart wound dressings with controlled/enhanced drug release.

15.
Mikrochim Acta ; 191(7): 435, 2024 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-38949689

RESUMO

A novel scaffold for in situ electrochemical detection of cell biomarkers was developed using electrospun nanofibers and commercial adhesive polymeric membranes. The electrochemical sensing of cell biomarkers requires the cultivation of the cells on/near the (bio)sensor surface in a manner to preserve an appropriate electroactive available surface and to avoid the surface passivation and sensor damage. This can be achieved by employing biocompatible nanofiber meshes that allow the cells to have a normal behavior and do not alter the electrochemical detection. For a better mechanical stability and ease of handling, nylon 6/6 nanofibers were collected on commercial polymeric membranes, at an optimal fiber density, obtaining a double-layered platform. To demonstrate the functionality of the fabricated scaffold, the screening of cellular stress has been achieved integrating melanoma B16-F10 cells and the (bio)sensor components on the transducer whereas the melanin exocytosis was successfully quantified using a commercial electrode. Either directly on the surface of the (bio)sensor or spatially detached from it, the integration of cell cultures in biosensing platforms based on electrospun nanofibers represents a powerful bioanalytical tool able to provide real-time information about the biomarker release, enzyme activity or inhibition, and monitoring of various cellular events.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Nanofibras , Nanofibras/química , Animais , Camundongos , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Técnicas Biossensoriais/métodos , Linhagem Celular Tumoral , Melaninas , Biomarcadores/análise , Alicerces Teciduais/química , Exocitose , Melanoma Experimental/patologia , Melanoma Experimental/diagnóstico
16.
Heliyon ; 10(12): e32850, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38975072

RESUMO

Simulated body fluid (SBF) is widely utilized in preclinical research for estimating the mineralization efficacy of biomaterials. Therefore, it is of great significance to construct an efficient and stable SBF mineralization system. The conventional SBF solutions cannot maintain a stable pH value and are prone to precipitate homogeneous calcium salts at the early stages of the biomimetic process because of the release of gaseous CO2. In this study, a simple but efficient five times SBF buffered by 5 % CO2 was developed and demonstrated to achieve excellent mineralized microstructure on a type of polymer-aligned nanofibrous scaffolds, which is strikingly similar to the natural human bone tissue. Scanning electron microscopy and energy-dispersive X-ray examinations indicated the growth of heterogeneous apatite with a high-calcium-to-phosphate ratio on the aligned nanofibers under 5 times SBF buffered by 5 % CO2. Moreover, X-ray diffraction spectroscopy and Fourier transform infrared analyses yielded peaks associated with carbonated hydroxyapatite with less prominent crystallization. In addition, the biomineralized aligned polycaprolactone nanofibers demonstrated excellent cell attachment, alignment, and proliferation characteristics in vitro. Overall, the results of this study showed that 5 × SBFs buffered by 5 % CO2 partial pressure are attractive alternatives for the efficient biomineralization of scaffolds in bone tissue engineering, and could be used as a model for the prediction of the bone-bonding bioactivity of biomaterials.

17.
ACS Appl Bio Mater ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867473

RESUMO

The polymeric nanofiber mats were produced from polylactic acid, methylcellulose, and polyethylene glycol with 5-fluorouracil (5Fu) drug and iron oxide (Fe3O4) nanoparticles. Spectral and crystallographic studies clearly elucidated the ionic interactions, structure and nature of the mats. Fe3O4 nanoparticles <10 nm in size, along with methyl cellulose and polyethylene glycol, have significantly reduced the size of nanofiber mats. The mechanical properties for the mats was found to be challenging; however, surface wettability, swelling capacity, and drug encapsulation efficiency results were promising. A controlled drug release pattern was observed from in vitro drug release study, zero-order kinetics, and a Higuchi model. Nanofiber mats showed higher anticancer activity (78%) against MDA-MB 231 cancer cells, which reveals that a small amount of 5Fu drug (15.86%) with high levels of O2••, H2O2, and OH• radicals generated from Fe3O4 have catalyzed the Fenton's reaction to eradicate the cancer cells, in a shorter span of 24 h, itself. In addition, the apoptosis assay by dual AO/PI staining method clearly exhibited the apoptotic cancer cells by fluorescence microscopy. Incorporation of Fe3O4 nanoparticles enhanced the anticancer activity of the mats, compared to the commercially available standard 5Fu drug. Nanofiber mats significantly controlled the growth of selected pathogenic microbial strains by the action of the 5Fu drug and Fe3+ ions. The degradation of mats was investigated by an in vitro mass loss study for a period of 360 days. In a nutshell, promising nanofiber mats were produced as targeted drug delivery devices for chemotherapy.

18.
Heliyon ; 10(11): e31318, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38868020

RESUMO

This work aims at the preparation and characterization of dual-layer (DL) nano-fibrous mat (NFM) of hydrophobic and mechanical stable polyacrylonitrile (PAN) nano-fibers (NFs), as a supporter, and polyamide 6 (PA)/chitosan (Ch) NFs as a top hydrophilic coating layer. PAN and PA fibers, as residual wastes from textile processes, were collected and dissolved in their proper solvents. PAN was electro-spuned under certain conditions of electro-spinning (voltage, flow rate, and distance between spinneret and collector) to obtain PAN-NFM. Different ratios of PA/Ch composite were prepared and then electro-spun above the PAN-NFM that was previously prepared to obtain hydrophobic/hydrophilic functional dual-layer nano-fibrous membrane (DLNFM). The efficiency of the prepared DLNFM for capturing dye residues and heavy metals from wastewater was investigated. The viscosities of the prepared composite solutions were measured. The prepared dual-layer nano-fiber membranes (DLNFMs) were chemically and physically characterized by Fourier transform infrared spectroscopy, scanning electron microscope, X-ray diffraction, and thermogravimetric analyzer. The potential of the prepared mats for the adsorption of some heavy metal ions, i.e., Cu+2, Cr+3, and Pb+2 cations in addition to dyes from wastewater was evaluated. The effect of using different concentrations of PA/Ch composite as well as the thickness of the obtained DLNFM on the filtration efficiency was studied. The results of this study show the success of functional DLNFM in dye and heavy metal removal. The maximum removal efficiency of acid dyes was reached to 73.4 % and of reactive dye was approximately 61 % for PAN/PA-1.25%Ch DLNFM after 3 days at room temperature. The removal efficiency percent of heavy metal ions reached to 54 % by DLNFM. Additionally, the results showed that 0.08 mm is the ideal thickness for maximum absorption capacity. This value is correlated with the membrane's highest Ch percentage, which is (PAN/PA-1.25%Ch). Furthermore, the results demonstrate that the presence of the Ch polymer strengthened the produced bi-layered membrane to achieve the highest thermal stability when compared to the other nano-fibrous membranes (NFMs), with the breakdown temperature of the Ch functionalized dual-layer membranes (DLMs) reaching approximately 617 °C and a maximum weight loss of 60 %.

19.
Spectrochim Acta A Mol Biomol Spectrosc ; 319: 124535, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38830327

RESUMO

In this study, we report on the fabrication of hybrid nanofibers for labeling and bioimaging applications. Our approach is involved for developing highly fluorescent nanofibers using a blend of polylactic acid, polyethyleneglycol, and perylenediimide dyes, through the solution blow spinning technique. The nanofibers are exhibited diameters ranging from 330 nm to 420 nm. Nanofibers showed excellent red and near-infrared fluorescence emissive properties in fluorescent spectroscopy. Moreover, the strong two-photon absorption phenomenon was observed for nanofibers under confocal microscopy. To assess the applicability of these fluorescent nanofibers in bioimaging settings, we employ two types of mammalian cells B16F1 melanoma cells and J774.A1 macrophages. Both cell types exhibit negligible cytotoxicity after 24 h incubation with the nanofibers, indicating the suitability of nanofibers for cell-based experiments. We also observe strong interactions between the nanofibers and cells, as evidenced by two major events: a) the acquisition of an elongated cellular morphology with the major cellular axis parallel to the nanofibers and b) the accumulation of actin filaments along the points of contact of the cells with the fibers. Our findings demonstrate the suitability of these newly developed fluorescent nanofibers in cell-based applications for guiding cellular behavior. We expect that these fluorescent nanofibers have the potential to serve as scaffold materials for long-time tracking of cell-fiber interactions in fluorescence microscopy.


Assuntos
Corantes Fluorescentes , Nanofibras , Alicerces Teciduais , Nanofibras/química , Animais , Camundongos , Alicerces Teciduais/química , Corantes Fluorescentes/química , Espectrometria de Fluorescência , Linhagem Celular Tumoral , Poliésteres/química , Microscopia Confocal , Polietilenoglicóis/química , Linhagem Celular , Macrófagos/metabolismo , Macrófagos/citologia , Macrófagos/efeitos dos fármacos
20.
J Colloid Interface Sci ; 673: 453-462, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38878379

RESUMO

Single-atom catalysts (SACs), with precisely controlled metal atom distribution and adjustable coordination architecture, have gained intensive concerns as efficient oxygen reduction reaction (ORR) electrocatalysts in Zn-air batteries (ZAB). The attainment of a monodispersed state for metallic atoms anchored on the carbonaceous substrate remains the foremost research priority; however, the persistent challenges lie in the relatively weak metal-support interactions and the instability of captured single atom active sites. Furthermore, in order to achieve rapid transport of O2 and other reactive substances within the carbon matrix, manufacturing SACs based on multi-stage porous carbon substrates is highly anticipated. Here, we propose a methodology for the fabrication of carbon aerogels (CA)-supported SACs utilizing papermaking nanofibers, which incorporates advanced strategies for N-atom self-doping, defect/vacancy introduction, and single-atom interface engineering. Specifically, taking advantages of using green and energy-efficient feedstocks, combining with a direct pore-forming template volatilization and chemical vapor deposition approach, we successfully developed N-doped carbon aerogels immobilized with separated iron sites (Fe-SAC@N/CA-Cd). The obtained Fe-SAC@N/CA-Cd exhibited substantially large specific surface area (SBET = 1173 m2/g) and a multi-level pore structure, which can effectively mitigate the random aggregation of Fe atoms during pyrolysis. As a result, it demonstrated appreciable activity and stability in catalyzing the ORR progress (E1/2 = 0.88 V, Eonset = 0.96 V). Furthermore, the assembled liquid electrolyte-state Zn-air batteries (LES-ZAB) and all-solid-state Zn-air battery (ASS-ZAB) also provides encouraging performance, with a peak power density of 169 mW cm-2 for LES-ZAB and a maximum power density of 124 mW cm-2 for ASS-ZAB.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...