Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 17(9)2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39338299

RESUMO

The increasing threat from antibiotic-resistant bacteria has necessitated the development of novel methods to counter bacterial infections. In this context, the application of metallic nanoparticles (NPs), especially gold (Au) and silver (Ag), has emerged as a promising strategy due to their remarkable antibacterial properties. This review examines research published between 2006 and 2023, focusing on leading journals in nanotechnology, materials science, and biomedical research. The primary applications explored are the efficacy of Ag and Au NPs as antibacterial agents, their synthesis methods, morphological properties, and mechanisms of action. An extensive review of the literature on NPs synthesis, morphology, minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and effectiveness against various Gram(+/-) bacteria confirms the antibacterial efficacy of Au and Ag NPs. The synthesis methods and characteristics of NPs, such as size, shape, and surface charge, are crucial in determining their antibacterial activity, as these factors influence their interactions with bacterial cells. Furthermore, this review underscores the urgent necessity of standardizing synthesis techniques, MICs, and reporting protocols to enhance the comparability and reproducibility of future studies. Standardization is essential for ensuring the reliability of research findings and accelerating the clinical application of NP-based antimicrobial approaches. This review aims to propel NP-based antimicrobial strategies by elucidating the properties that enhance the antibacterial activity of Ag and Au NPs. By highlighting their inhibitory effects against various bacterial strains and relatively low cytotoxicity, this work positions Ag and Au NPs as promising materials for developing antibacterial agents, making a significant contribution to global efforts to combat antibiotic-resistant pathogens.

2.
Micromachines (Basel) ; 14(2)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36838151

RESUMO

The use of gold nanoparticles as drug delivery systems has received increasing attention due to their unique properties, such as their high stability and biocompatibility. However, gold nanoparticles have a high affinity for proteins, which can result in their rapid clearance from the body and limited drug loading capabilities. To address these limitations, we coated the gold nanoparticles with silica and PEG, which are known to improve the stability of nanoparticles. The synthesis of the nanoparticles was carried out using a reduction method. The nanoparticles' size, morphology, and drug loading capacity were also studied. The SEM images showed a spherical and homogeneous morphology; they also showed that the coatings increased the average size of the nanoparticles. The results of this study provide insight into the potential of gold nanoparticles coated with silica and PEG as drug delivery systems. We used ibuprofen as a model drug and found that the highest drug load occurred in PEG-coated nanoparticles and then in silica-coated nanoparticles, while the uncoated nanoparticles had a lower drug loading capacity. The coatings were found to significantly improve the stability and drug load properties of the nanoparticles, making them promising candidates for further development as targeted and controlled release drug delivery systems.

3.
Int J Mol Sci ; 24(3)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36768640

RESUMO

Nanoparticles, especially silver nanoparticles (Ag NPs), have gained significant attention in recent years as potential alternatives to traditional antibiotics for treating infectious diseases due to their ability to inhibit the growth of microorganisms effectively. Ag NPs can be synthesized using fungi extract, but the method is not practical for large-scale production due to time and biomass limitations. In this study, we explore the use of chitosan to encapsulate the mycelia of the white-rot fungus Stereum hirsutum and form chitosan fungal beads for use in multiple extractions and nanoparticle synthesis. The resulting nanoparticles were characterized using various techniques, including UV-vis spectrophotometry, transmission electron microscopy, dynamic light scattering, and X-ray diffraction analysis. The analysis revealed that the synthesized nanoparticles were composed of chitosan-silver nanoparticles (CS-Ag NPs) with a size of 25 nm. The chitosan fungal beads were reused in three extractions and nanoparticle synthesis before they lost their ability to produce CS-Ag NPs. The CS-Ag NPs showed potent antimicrobial activity against phytopathogenic and human pathogenic microorganisms, including Pseudomonas syringae, Escherichia coli, Staphylococcus aureus, and Candida albicans, with minimum inhibitory concentrations of 1.5, 1.6, 3.1, and 4 µg/mL, respectively. The antimicrobial activity of CS-Ag NPs was from 2- to 40-fold higher than Ag NPs synthesized using an aqueous extract of unencapsulated fungal biomass. The CS-Ag NPs were most effective at a pH of five regarding the antimicrobial activity. These results suggest that the chitosan fungal beads may be a promising alternative for the sustainable and cost-effective synthesis of CS-Ag NPs with improved antimicrobial activity.


Assuntos
Anti-Infecciosos , Quitosana , Nanopartículas Metálicas , Humanos , Quitosana/farmacologia , Quitosana/química , Prata/farmacologia , Prata/química , Nanopartículas Metálicas/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Antibacterianos/farmacologia , Antibacterianos/química , Testes de Sensibilidade Microbiana , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
4.
Molecules ; 27(4)2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35209154

RESUMO

The green synthesis of metal oxide nanoparticles is presented as an excellent sustainable alternative for achieving nanostructures, with potential applications. This research provides important information regarding the influence of the type of solvent used in extracting organic reducing agents from E. globulus on the FeO NPs green synthesis protocol. A broad approach to characterization is presented, where UV-vis spectrophotometry suggests the presence of this type of nanoparticulate material. Likewise, the reduction mechanism was evaluated by FT-IR and the magnetic properties were evaluated by PPSM. In addition, characterizations were linked via elemental analysis (EDX), crystallographic characterization (XRD), electron microscopy (SEM/STEM), and Z potential to evaluate colloidal stability. The results show the influence of the type of solvent used for the extraction of organic reducing agents from E. globulus, and the effect on the synthesis of FeO NPs. In addition, the nanostructure material obtained showed excellent efficiency in the remediation of agricultural soil, eliminating metals such as Cr-VI, Cd, and, to a lesser extent, Pb.


Assuntos
Eucalyptus/química , Nanopartículas Magnéticas de Óxido de Ferro/química , Metais Pesados/química , Extratos Vegetais/química , Poluentes do Solo/química , Solo/química , Adsorção , Agricultura , Poluição Ambiental , Química Verde , Metais Pesados/análise , Solventes , Análise Espectral
5.
Molecules ; 26(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34361738

RESUMO

Nanomaterials have supported important technological advances due to their unique properties and their applicability in various fields, such as biomedicine, catalysis, environment, energy, and electronics. This has triggered a tremendous increase in their demand. In turn, materials scientists have sought facile methods to produce nanomaterials of desired features, i.e., morphology, composition, colloidal stability, and surface chemistry, as these determine the targeted application. The advent of photoprocesses has enabled the easy, fast, scalable, and cost- and energy-effective production of metallic nanoparticles of controlled properties without the use of harmful reagents or sophisticated equipment. Herein, we overview the synthesis of gold and silver nanoparticles via photochemical routes. We extensively discuss the effect of varying the experimental parameters, such as the pH, exposure time, and source of irradiation, the use or not of reductants and surfactants, reagents' nature and concentration, on the outcomes of these noble nanoparticles, namely, their size, shape, and colloidal stability. The hypothetical mechanisms that govern these green processes are discussed whenever available. Finally, we mention their applications and insights for future developments.

6.
Nanomedicine (Lond) ; 16(1): 5-17, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33410334

RESUMO

Aim: To established a simple, controlled and reproducible method to synthesize gallium (Ga)-coated polydopamine (PDA) nanoparticles (NPs). Materials & methods: PDA NPs were synthesized in alkali medium with posterior Ga shell formation due to ion chelation on the NP surface. Results: The obtained results with energy-dispersive x-ray spectroscopy confirmed the incorporation of Ga on the PDA NP surface. The cytotoxicity of Ga-coated PDA NPs was evaluated in vitro at different concentrations in contact with human adipose-derived stem cells. Further cell analysis also demonstrated the benefit of Ga-coated PDA NPs, which increased the cell proliferation rate compared with noncoated PDA NPs. Conclusion: This study indicated that Ga could work as an appropriate shell for PDA NPs, inducing cell proliferation at the analyzed concentrations.


Assuntos
Gálio , Indóis , Nanopartículas , Polímeros , Adipócitos , Humanos , Células-Tronco
7.
Beilstein J Nanotechnol ; 11: 1450-1469, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33029474

RESUMO

The investigation of novel nanoparticles with antimicrobial activity has grown in recent years due to the increased incidence of nosocomial infections occurring during hospitalization and food poisoning derived from foodborne pathogens. Antimicrobial agents are necessary in various fields in which biological contamination occurs. For example, in food packaging they are used to control food contamination by microbes, in the medical field the microbial agents are important for reducing the risk of contamination in invasive and routine interventions, and in the textile industry, they can limit the growth of microorganisms due to sweat. The combination of nanotechnology with materials that have an intrinsic antimicrobial activity can result in the development of novel antimicrobial substances. Specifically, metal-based nanoparticles have attracted much interest due to their broad effectiveness against pathogenic microorganisms due to their high surface area and high reactivity. The aim of this review was to explore the state-of-the-art in metal-based nanoparticles, focusing on their synthesis methods, types, and their antimicrobial action. Different techniques used to synthesize metal-based nanoparticles were discussed, including chemical and physical methods and "green synthesis" methods that are free of chemical agents. Although the most studied nanoparticles with antimicrobial properties are metallic or metal-oxide nanoparticles, other types of nanoparticles, such as superparamagnetic iron-oxide nanoparticles and silica-releasing systems also exhibit antimicrobial properties. Finally, since the quantification and understanding of the antimicrobial action of metal-based nanoparticles are key topics, several methods for evaluating in vitro antimicrobial activity and the most common antimicrobial mechanisms (e.g., cell damage and changes in the expression of metabolic genes) were discussed in this review.

8.
Dent Mater ; 34(5): 746-755, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29422326

RESUMO

OBJECTIVES: This study describes the synthesis of brushite nanoparticles (CaHPO4·2H2O) functionalized with triethylene glycol dimethacrylate (TEGDMA) and their application in dental restorative composites with remineralizing capabilities. METHODS: Nanoparticles were synthesized, with TEGDMA being added to one of the precursor solutions at three different molar ratios (0:1, 0.5:1 and 1:1, in relation to the ammonium phosphate precursor). Then, they were added (10 vol%) to a photocurable dimethacrylate matrix containing 50 vol% of reinforcing glass particles. The resulting composites were tested for degree of conversion, biaxial flexural strength and elastic modulus (after 24h and 28days in water), and ion release (over a 28-day period). Commercial composites (one microhybrid and one microfilled) were tested as controls. RESULTS: The final TEGDMA content in the functionalizing layer was modulated by the molar ratio added to the precursor solution. Functionalization reduced nanoparticle size, but did not reduce agglomeration. Improved mechanical properties were found for the composite containing nanoparticles with higher TEGDMA level in comparison to the composite containing non-functionalized nanoparticles or those with a low TEGDMA level. All brushite composites presented statistically significant reductions in strength after 28 days in water, but only the material with high-TEGDMA nanoparticles retained strength similar to the microhybrid commercial control. Overall, ion release was not affected by functionalization and presented steady levels for 28 days. SIGNIFICANCE: Though agglomeration was not reduced by functionalization, the improvement in the matrix-nanoparticle interface allowed for a stronger material, without compromising its remineralizing potential.


Assuntos
Fosfatos de Cálcio/química , Resinas Compostas/síntese química , Materiais Dentários/síntese química , Nanopartículas/química , Polietilenoglicóis/química , Ácidos Polimetacrílicos/química , Módulo de Elasticidade , Resistência à Flexão , Íons , Teste de Materiais , Microscopia Eletrônica de Varredura , Propriedades de Superfície
9.
ACS Appl Mater Interfaces ; 7(45): 25061-8, 2015 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-26506008

RESUMO

Controlling the nature and transfer of excited states in organic photovoltaic (OPV) devices is of critical concern due to the fact that exciton transport and separation can dictate the final performance of the system. One effective method to accomplish improved charge separation in organic electronic materials is to control the spin state of the photogenerated charge-carrying species. To this end, nanoparticles with unique iron oxide (Fe3O4) cores and zinc oxide (ZnO) shells were synthesized in a controlled manner. Then, the structural and magnetic properties of these core-shell nanoparticles (Fe3O4@ZnO) were tuned to ensure superior performance when they were incorporated into the active layers of OPV devices. Specifically, small loadings of the core-shell nanoparticles were blended with the previously well-characterized OPV active layer of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). Upon addition of the core-shell nanoparticles, the performance of the OPV devices was increased up to 25% relative to P3HT-PCBM active layer devices that contained no nanoparticles; this increase was a direct result of an increase in the short-circuit current densities of the devices. Furthermore, it was demonstrated that the increase in photocurrent was not due to enhanced absorption of the active layer due to the presence of the Fe3O4@ZnO core-shell nanoparticles. In fact, this increase in device performance occurred because of the presence of the superparamagnetic Fe3O4 in the core of the nanoparticles as incorporation of ZnO only nanoparticles did not alter the device performance. Importantly, however, the ZnO shell of the nanoparticles mitigated the negative optical effect of Fe3O4, which have been observed previously. This allowed the core-shell nanoparticles to outperform bare Fe3O4 nanoparticles when the single-layer nanoparticles were incorporated into the active layer of OPV devices. As such, the new materials described here present a tangible pathway toward the development of enhanced design schemes for inorganic nanoparticles such that magnetic and energy control pathways can be tailored for flexible electronic applications.

10.
J Colloid Interface Sci ; 453: 260-269, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25989057

RESUMO

Anisotropic and branched gold nanoparticles have great potential in optical, chemical and biomedical applications. However their syntheses involve multi-step protocols and the use of cytotoxic agents. Here, we report a novel one-step method for the preparation of gold nanostructures using only Hantzsch 1,4-dihydropyridines as mild reducing agents. The substituent pattern of the dihydropyridine nucleus was closely related to the ease of formation, morphology and stability of the nanoparticles. We observed nanostructures such as spheres, rods, triangles, pentagons, hexagons, flowers, stars and amorphous. We focused mainly on the synthesis and characterization of well-defined gold nanostars, which were produced quickly at room temperature (25°C) in high yield and homogeneity. These nanostars presented an average size of 68 nm with mostly four or six tips. Based on our findings, we propose that the growth of the nanostars occurs in the (111) lattice plane due to a preferential deposition of the gold atoms in the early stages of particle formation. Furthermore, the nanostars were easily modified with peptides remaining stable for more than six months in their colloidal state and showing a better stability than unmodified nanostars in different conditions. We report a new approach using dihydropyridines for the straightforward synthesis of gold nanostructures with controlled shape, feasible for use in future applications.


Assuntos
Di-Hidropiridinas/química , Ouro/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Substâncias Redutoras/química , Nanotecnologia/métodos
11.
Braz. j. microbiol ; Braz. j. microbiol;41(3): 805-809, Oct. 2010. ilus
Artigo em Inglês | LILACS | ID: lil-549420

RESUMO

Silver nitrate imparts different functions on bacteria depending upon its concentration. At lower concentration it induced synthesis of nanoparticles, whereas at higher concentrations it induced cell death. Bacillus licheniformis was used as model system. The MIC was 5 mM, and it induced catalase production, apoptotic body formation and DNA fragmentation.


Assuntos
Apoptose , Bacillus/isolamento & purificação , Catalase , Fragmentação do DNA , Enzimas Reparadoras do DNA , Nanopartículas , Nitrato de Prata/análise , Métodos , Métodos
12.
Braz J Microbiol ; 41(3): 805-9, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24031558

RESUMO

Silver nitrate imparts different functions on bacteria depending upon its concentration. At lower concentration it induced synthesis of nanoparticles, whereas at higher concentrations it induced cell death. Bacillus licheniformis was used as model system. The MIC was 5 mM, and it induced catalase production, apoptotic body formation and DNA fragmentation.

13.
Artigo em Inglês | VETINDEX | ID: vti-444579

RESUMO

Silver nitrate imparts different functions on bacteria depending upon its concentration. At lower concentration it induced synthesis of nanoparticles, whereas at higher concentrations it induced cell death. Bacillus licheniformis was used as model system. The MIC was 5 mM, and it induced catalase production, apoptotic body formation and DNA fragmentation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA