Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Build Simul ; 15(8): 1507-1525, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35096281

RESUMO

Natural ventilation (NV) is a key passive strategy to design energy-efficient buildings and improve indoor air quality. Therefore, accurate modeling of the NV effects is a basic requirement to include this technique during the building design process. However, there is an important lack of wind pressure coefficients (C p ) data, essential input parameters for NV models. Besides this, there are no simple but still reliable tools to predict C p data on buildings with arbitrary shapes and surrounding conditions, which means a significant limitation to NV modeling in real applications. For this reason, the present contribution proposes a novel cloud-based platform to predict wind pressure coefficients on buildings. The platform comprises a set of tools for performing fully unattended computational fluid dynamics (CFD) simulations of the atmospheric boundary layer and getting reliable C p data for actual scenarios. CFD-expert decisions throughout the entire workflow are implemented to automatize the generation of the computational domain, the meshing procedure, the solution stage, and the post-processing of the results. To evaluate the performance of the platform, an exhaustive validation against wind tunnel experimental data is carried out for a wide range of case studies. These include buildings with openings, balconies, irregular floor-plans, and surrounding urban environments. The C p results are in close agreement with experimental data, reducing 60%-77% the prediction error on the openings regarding the EnergyPlus software. The platform introduced shows being a reliable and practical C p data source for NV modeling in real building design scenarios. Electronic Supplementary Material ESM: The appendix is available in the online version of this article at 10.1007/s12273-021-0881-9.

2.
Eng. sanit. ambient ; Eng. sanit. ambient;24(2): 383-390, mar.-abr. 2019. tab, graf
Artigo em Português | LILACS-Express | LILACS | ID: biblio-1012031

RESUMO

RESUMO Plumas ocorrem quando um fluido é descarregado em outro fluido com densidade diferente, como poluentes na atmosfera. Neste trabalho, desenvolveu-se um estudo experimental em um tanque de água e modelagem matemática usando a abordagem integral com o intuito de investigar o escoamento gerado por plumas salinas em escoamento uniforme e com estratificação de duas camadas. Os resultados indicaram que a altura da camada superior (menos densa) aumentou com a vazão de retirada da camada inferior e diminuiu com o fluxo de empuxo da pluma, corroborando os resultados disponíveis na literatura para sistemas alimentados por fontes pontuais (não uniformes). Após ajuste de parâmetros presentes na teoria clássica para plumas turbulentas, foi possível prever a altura da interface com desvios máximos de ±8% e coeficiente de Nash-Sutcliffe de 0,98. Isso indica que o escoamento uniforme não afetou significativamente a hidrodinâmica das plumas em comparação a estudos anteriores. Por outro lado, diferentemente dos sistemas alimentados por fontes pontuais, as linhas de fluxo obtidas por meio da injeção de corante no escoamento uniforme seguiram padrão de escoamento potencial, com toda a vazão sendo direcionada para a pluma e não havendo, portanto, mistura na interface entre as duas camadas. Dessa forma, partindo do princípio de conservação de massa, foram propostas equações para gerar as linhas de fluxo ao redor das plumas, as quais foram confirmadas com os dados experimentais. Finalmente, foram apresentadas aplicações práticas do modelo proposto em sistemas de ventilação natural em edifícios e descarga de poluentes na atmosfera sob condição de inversão térmica.


ABSTRACT Plumes occur when a fluid is discharged into another fluid with different density, such as pollutants in the atmosphere. In this work, an experimental study was carried out in a water tank and a mathematical modelling using the integral approach was performed to investigate the flow generated by saline plumes in uniform flow with two-layer stratification. The results indicated that the upper layer's height (less dense) increased with the outflow from the lower layer, and decreased with the buoyancy flux of the plume, confirming the results available in the literature for systems supplied by point sources (non-uniform sources). After fitting the parameters of the classical theory for turbulent plumes, it was possible to predict the interface's height with a maximum deviation of ±8%, and a Nash-Sutcliffe coefficient of 0.98. This indicates that the uniform flow did not affect significantly the plumes' hydrodynamics compared to previous studies. On the other hand, unlike the systems supplied by point sources, the streamlines obtained through the injection of dye into the uniform flow followed a potential flow pattern, with all the flow being directed to the plume, therefore not mixing at the interface between the two layers. Thus, based on the principle of mass conservation, equations were proposed to generate the streamlines around the plumes, which were validated with the experimental data. Finally, practical applications of the proposed model in natural ventilation in buildings and pollutant discharges in the atmosphere were presented.

3.
J Environ Manage ; 239: 114-123, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30897477

RESUMO

Buildings constructed according to bioclimatic architectural principles in amenable climates have often experienced posterior interventions that have closed ventilation openings for the installation of air conditioning units. The present work sought to investigate the reasons for installing air conditioning equipment in buildings even under adverse economic conditions and with the awareness of their negative environmental implications. The Faculty of Architecture building at the Federal University of Bahia, located in the city of Salvador, Bahia State, Brazil, was the focus of the present investigation. It was determined that the lack of maintenance of the windows and window frames, and the closing of projected openings compromised natural ventilation. The study confirmed the adequacy of the architectural project in relation to the local climate, and in loco measurements likewise confirmed the efficiency of natural ventilation through the windows and other openings in the faculty room and classrooms examined. The results of the interviews concerning thermal comfort indicated that 53% of the users felt comfortable. Nonetheless, it was found that the building's windows and window frames were poorly maintained, compromising their ability to facilitate efficient natural ventilation and significantly diminishing the capacity for thermal regulation in the building. This study calls attention to the necessity of refining and improving the maintenance of university buildings to reduce the intensive use of artificial air conditioning in detriment to investments in projects that could lend priority to natural ventilation and the maintenance of good window operating conditions.


Assuntos
Poluição do Ar em Ambientes Fechados , Universidades , Brasil , Docentes , Humanos , Ventilação
4.
BMC Infect Dis ; 19(1): 88, 2019 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-30683052

RESUMO

BACKGROUND: TB transmission in healthcare facilities is an important public health problem, especially in the often-overcrowded settings of HIV treatment scale-up. The problem is compounded by the emergence of drug resistant TB. Natural ventilation is a low-cost environmental control measure for TB infection control where climate permits that is suited to many different areas in healthcare facilities. There are no published data on the effect of simple structural modifications to existing hospital infrastructure to improve natural ventilation and reduce the risk of nosocomial TB transmission. The purpose of this study was to measure the effect of simple architectural modifications to existing hospital waiting and consulting rooms in a low resource setting on (a) improving natural ventilation and (b) reducing modelled TB transmission risk. METHODS: Room ventilation was measured pre- and post-modification using a carbon dioxide tracer-gas technique in four waiting rooms and two consulting rooms in two hospitals in Lima, Peru. Modifications included additional windows for cross-ventilation (n = 2 rooms); removing glass from unopenable windows (n = 2); creation of an open skylight (n = 1); re-building a waiting-room in the open air (n = 1). Changes in TB transmission risk for waiting patients, or healthcare workers in consulting rooms, were estimated using mathematical modelling. RESULTS: As a result of the infrastructure modifications, room ventilation in the four waiting rooms increased from mean 5.5 to 15; 11 to 16; 10 to 17; and 9 to 66 air-changes/hour respectively; and in the two consulting rooms from mean 3.6 to 17; and 2.7 to 12 air-changes/hour respectively. There was a median 72% reduction (inter-quartile range 51-82%) in calculated TB transmission risk for healthcare workers or waiting patients. The modifications cost

Assuntos
Infecção Hospitalar/prevenção & controle , Hospitais , Tuberculose Pulmonar/prevenção & controle , Ventilação , Pessoal de Saúde , Humanos , Peru , Ventilação/métodos
5.
Ciênc. rural ; Ciênc. rural (Online);43(10): 1804-1810, Oct. 2013. ilus, tab
Artigo em Inglês | LILACS | ID: lil-686041

RESUMO

The aim of the present research was to verify the in vitro growth of orchids in different systems of micropropagation, being cultivated in a bioreactor, with natural ventilation and conventional systems. Cattleya walkeriana plants were obtained from the germination of seeds in culture medium. After 8 months, seedlings with 1 cm of length were placed in a culture vessel according to the treatments, which counted with two micropropagation systems (conventional and natural ventilation) in three media of culture (liquid, solid with 5 or 6g L-1 of agar). Two additional treatments in bioreactor of temporary and continuous immersion were performed. The design was entirely randomized (ERD), consisting of a 2x3 factorial with two additional treatments, totaling 8 treatments with three repetitions. The temporary immersion bioreactor promoted a bigger growth of the aerial part and of the root system, bigger accumulation of dry mass and better control of water loss by the plants. The temporary immersion bioreactor is the best micropropagation system for the C. walkeriana growth in vitro.


O objetivo do presente trabalho foi verificar o crescimento in vitro de orquídeas em diferentes sistemas de micropropagação, sendo cultivado em biorreator, sistema de ventilação natural e convencional. Plantas de Cattleya walkeriana foram obtidas a partir da germinação de sementes em meio de cultura. Após o a germinação, as plantas foram uniformizadas com aproximadamente 1,0cm de comprimento e inoculadas nos diferentes tratamentos. Os tratamentos contaram dois sistema de micropropagação (convencional e ventilação natural) e três meios de cultura (líquido, sólido com 5 e 6g L-1 de ágar). Foram realizados dois tratamentos adicionais em biorreator de imersão temporária e contínua. O delineamento foi o inteiramente casualizado, consistindo de um fatorial 2x3 com dois tratamentos adicionais, totalizando oito tratamentos com três repetições. O biorreator de imersão temporária promoveu o maior crescimento da parte aérea e do sistema radicular, maior acúmulo de massa seca e melhor controle da perda de água das plantas. O biorreator de imersão temporária é o melhor sistema de micropropagação para o crescimento in vitro de C. walkeriana.

6.
Ci. Rural ; 43(10)2013.
Artigo em Inglês | VETINDEX | ID: vti-708471

RESUMO

The aim of the present research was to verify the in vitro growth of orchids in different systems of micropropagation, being cultivated in a bioreactor, with natural ventilation and conventional systems. Cattleya walkeriana plants were obtained from the germination of seeds in culture medium. After 8 months, seedlings with 1 cm of length were placed in a culture vessel according to the treatments, which counted with two micropropagation systems (conventional and natural ventilation) in three media of culture (liquid, solid with 5 or 6g L-1 of agar). Two additional treatments in bioreactor of temporary and continuous immersion were performed. The design was entirely randomized (ERD), consisting of a 2x3 factorial with two additional treatments, totaling 8 treatments with three repetitions. The temporary immersion bioreactor promoted a bigger growth of the aerial part and of the root system, bigger accumulation of dry mass and better control of water loss by the plants. The temporary immersion bioreactor is the best micropropagation system for the C. walkeriana growth in vitro.


O objetivo do presente trabalho foi verificar o crescimento in vitro de orquídeas em diferentes sistemas de micropropagação, sendo cultivado em biorreator, sistema de ventilação natural e convencional. Plantas de Cattleya walkeriana foram obtidas a partir da germinação de sementes em meio de cultura. Após o a germinação, as plantas foram uniformizadas com aproximadamente 1,0cm de comprimento e inoculadas nos diferentes tratamentos. Os tratamentos contaram dois sistema de micropropagação (convencional e ventilação natural) e três meios de cultura (líquido, sólido com 5 e 6g L-1 de ágar). Foram realizados dois tratamentos adicionais em biorreator de imersão temporária e contínua. O delineamento foi o inteiramente casualizado, consistindo de um fatorial 2x3 com dois tratamentos adicionais, totalizando oito tratamentos com três repetições. O biorreator de imersão temporária promoveu o maior crescimento da parte aérea e do sistema radicular, maior acúmulo de massa seca e melhor controle da perda de água das plantas. O biorreator de imersão temporária é o melhor sistema de micropropagação para o crescimento in vitro de C. walkeriana.

7.
Artigo em Inglês | LILACS-Express | VETINDEX | ID: biblio-1479184

RESUMO

The aim of the present research was to verify the in vitro growth of orchids in different systems of micropropagation, being cultivated in a bioreactor, with natural ventilation and conventional systems. Cattleya walkeriana plants were obtained from the germination of seeds in culture medium. After 8 months, seedlings with 1 cm of length were placed in a culture vessel according to the treatments, which counted with two micropropagation systems (conventional and natural ventilation) in three media of culture (liquid, solid with 5 or 6g L-1 of agar). Two additional treatments in bioreactor of temporary and continuous immersion were performed. The design was entirely randomized (ERD), consisting of a 2x3 factorial with two additional treatments, totaling 8 treatments with three repetitions. The temporary immersion bioreactor promoted a bigger growth of the aerial part and of the root system, bigger accumulation of dry mass and better control of water loss by the plants. The temporary immersion bioreactor is the best micropropagation system for the C. walkeriana growth in vitro.


O objetivo do presente trabalho foi verificar o crescimento in vitro de orquídeas em diferentes sistemas de micropropagação, sendo cultivado em biorreator, sistema de ventilação natural e convencional. Plantas de Cattleya walkeriana foram obtidas a partir da germinação de sementes em meio de cultura. Após o a germinação, as plantas foram uniformizadas com aproximadamente 1,0cm de comprimento e inoculadas nos diferentes tratamentos. Os tratamentos contaram dois sistema de micropropagação (convencional e ventilação natural) e três meios de cultura (líquido, sólido com 5 e 6g L-1 de ágar). Foram realizados dois tratamentos adicionais em biorreator de imersão temporária e contínua. O delineamento foi o inteiramente casualizado, consistindo de um fatorial 2x3 com dois tratamentos adicionais, totalizando oito tratamentos com três repetições. O biorreator de imersão temporária promoveu o maior crescimento da parte aérea e do sistema radicular, maior acúmulo de massa seca e melhor controle da perda de água das plantas. O biorreator de imersão temporária é o melhor sistema de micropropagação para o crescimento in vitro de C. walkeriana.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA