Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
1.
Mol Brain ; 17(1): 66, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39267102

RESUMO

TRPM4 is a non-selective cation channel activated by intracellular Ca2+ but only permeable to monovalent cations, its activation regulates membrane potential and intracellular calcium. This channel participates in the migration and adhesion of non-excitable cells and forms an integral part of the focal adhesion complex. In neurons, TRPM4 expression starts before birth and its function at this stage is not clear, but it may function in processes such as neurite development. Here we investigate the role of TRPM4 in neuritogenesis. We found that neurons at DIV 0 express TRPM4, the inhibition of TRPM4 using 9-Ph reduces neurite number and slows the progression of neurite development, keeping neurons in stage 1. The genetic suppression of TRPM4 using an shRNA at later stages (DIV2) reduces neurite length. Conversely, at DIV 0, TRPM4 inhibition augments the Cch-induced Ca2 + i increase, altering the calcium homeostasis. Together, these results show that TRPM4 participates in progression of neurite development and suggest a critical role of the calcium modulation during this stage of neuronal development.


Assuntos
Cálcio , Córtex Cerebral , Neuritos , Neurogênese , Canais de Cátion TRPM , Canais de Cátion TRPM/metabolismo , Canais de Cátion TRPM/antagonistas & inibidores , Animais , Neuritos/metabolismo , Neuritos/efeitos dos fármacos , Cálcio/metabolismo , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Neurônios/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-38915449

RESUMO

Background: Parkinson's disease (PD) is the second most prevalent neurodegenerative disease. There is no effective treatment for neurodegenerative diseases. Snake venoms are a cocktail of proteins and peptides with great therapeutic potential and might be useful in the treatment of neurodegenerative diseases. Crotapotin is the acid chain of crotoxin, the major component of Crotalus durissus collilineatus venom. PD is characterized by low levels of neurotrophins, and synaptic and axonal degeneration; therefore, neurotrophic compounds might delay the progression of PD. The neurotrophic potential of crotapotin has not been studied yet. Methods: We evaluated the neurotrophic potential of crotapotin in untreated PC12 cells, by assessing the induction of neurite outgrowth. The activation of the NGF signaling pathway was investigated through pharmacological inhibition of its main modulators. Additionally, its neuroprotective and neurorestorative effects were evaluated by assessing neurite outgrowth and cell viability in PC12 cells treated with the dopaminergic neurotoxin MPP+ (1-methyl-4-phenylpyridinium), known to induce Parkinsonism in humans and animal models. Results: Crotapotin induced neuritogenesis in PC12 cells through the NGF-signaling pathway, more specifically, by activating the NGF-selective receptor trkA, and the PI3K/Akt and the MAPK/ERK cascades, which are involved in neuronal survival and differentiation. In addition, crotapotin had no cytotoxic effect and protected PC12 cells against the inhibitory effects of MPP+ on cell viability and differentiation. Conclusion: These findings show, for the first time, that crotapotin has neurotrophic/neuroprotective/neurorestorative potential and might be beneficial in Parkinson's disease. Additional studies are necessary to evaluate the toxicity of crotapotin in other cell models.

3.
Biol Sex Differ ; 15(1): 40, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750585

RESUMO

BACKGROUND: Recent studies have shown that prenatal BPA exposure altered the transcriptome profiles of autism-related genes in the offspring's hippocampus, disrupting hippocampal neuritogenesis and causing male-specific deficits in learning. However, the sex differences in the effects of prenatal BPA exposure on the developing prefrontal cortex, which is another brain region highly implicated in autism spectrum disorder (ASD), have not been investigated. METHODS: We obtained transcriptome data from RNA sequencing analysis of the prefrontal cortex of male and female rat pups prenatally exposed to BPA or control and reanalyzed. BPA-responsive genes associated with cortical development and social behaviors were selected for confirmation by qRT-PCR analysis. Neuritogenesis of primary cells from the prefrontal cortex of pups prenatally exposed to BPA or control was examined. The social behaviors of the pups were assessed using the two-trial and three-chamber tests. The male-specific impact of the downregulation of a selected BPA-responsive gene (i.e., Sema5a) on cortical development in vivo was interrogated using siRNA-mediated knockdown by an in utero electroporation technique. RESULTS: Genes disrupted by prenatal BPA exposure were associated with ASD and showed sex-specific dysregulation. Sema5a and Slc9a9, which were involved in neuritogenesis and social behaviors, were downregulated only in males, while Anxa2 and Junb, which were also linked to neuritogenesis and social behaviors, were suppressed only in females. Neuritogenesis was increased in males and showed a strong inverse correlation with Sema5a and Slc9a9 expression levels, whereas, in the females, neuritogenesis was decreased and correlated with Anxa2 and Junb levels. The siRNA-mediated knockdown of Sema5a in males also impaired cortical development in utero. Consistent with Anxa2 and Junb downregulations, deficits in social novelty were observed only in female offspring but not in males. CONCLUSION: This is the first study to show that prenatal BPA exposure dysregulated the expression of ASD-related genes and functions, including cortical neuritogenesis and development and social behaviors, in a sex-dependent manner. Our findings suggest that, besides the hippocampus, BPA could also exert its adverse effects through sex-specific molecular mechanisms in the offspring's prefrontal cortex, which in turn would lead to sex differences in ASD-related neuropathology and clinical manifestations, which deserves further investigation.


Assuntos
Compostos Benzidrílicos , Fenóis , Córtex Pré-Frontal , Efeitos Tardios da Exposição Pré-Natal , Caracteres Sexuais , Comportamento Social , Animais , Feminino , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Fenóis/toxicidade , Fenóis/efeitos adversos , Masculino , Compostos Benzidrílicos/toxicidade , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Transtorno Autístico/genética , Transtorno Autístico/induzido quimicamente , Ratos Sprague-Dawley , Ratos , Transtorno do Espectro Autista/induzido quimicamente , Transtorno do Espectro Autista/genética
4.
In Vitro Cell Dev Biol Anim ; 60(2): 161-171, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38216855

RESUMO

Neonatal jaundice is one of the most common disorders in the first 2 wk after birth. Unconjugated bilirubin (UCB) is neurotoxic and can cause neurological dysfunction; however, the underlying mechanisms remain unclear. Neurogenesis, neuronal growth, and synaptogenesis are exuberant in the early postnatal stage. In this study, the impact of UCB on neuritogenesis and synaptogenesis in the early postnatal stage was evaluated both in vitro and in vivo. Primary culture neuronal stem and progenitor cells (NSPCs) were treated with UCB during differentiation, and then the neurite length and synapse puncta were measured. In the bilirubin encephalopathy (BE) animal model, DCX+-marked developing neurons were used to detect apical length and dendritic arborization. According to the data, UCB significantly reduced neurite length and synapse density, as well as decreased the apical dendrite length and dendritic arborization. Furthermore, the NMDAR subunit NR2B was downregulated in NSPCs, while pCREB expression in the hippocampus progressively decreased during disease progression in the BE model. Next, we tested the expression of NR2B, pCREB, mBDNF, and p-mTOR in NSPCs in vitro, and found that UCB treatment reduced the expression of these proteins. In summary, this suggests that UCB causes chronic neurological impairment and is related to the inhibition of NMDAR-CREB-BDNF signaling in NSPCs, which is associated with reduced neuritogenesis and synaptogenesis. This finding may inspire the development of novel pharmaceuticals and treatments.


Assuntos
Bilirrubina , Drogas Veterinárias , Animais , Bilirrubina/farmacologia , Bilirrubina/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Células Cultivadas , Drogas Veterinárias/metabolismo , Neurônios/metabolismo , Neurogênese , Células-Tronco/metabolismo
6.
ACS Appl Bio Mater ; 7(2): 711-726, 2024 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-38265040

RESUMO

Graphene is a prospective candidate for various biomedical applications, including drug transporters, bioimaging agents, and scaffolds for tissue engineering, thanks to its superior electrical conductivity and biocompatibility. The clinical issue of nerve regeneration and rehabilitation still has a major influence on people's lives. Nanomaterials based on graphene have been exploited extensively to promote nerve cell differentiation and proliferation. Their high electrical conductivity and mechanical robustness make them appropriate for nerve tissue engineering. Combining graphene with other substances, such as biopolymers, may transmit biochemical signals that support brain cell division, proliferation, and regeneration. The utilization of nanocomposites based on graphene in neurogenesis and neuritogenesis is the primary emphasis of this review. Here are some examples of the many synthetic strategies used. For neuritogenesis and neurogenesis, it has also been explored to combine electrical stimulation with graphene-based materials.


Assuntos
Grafite , Nanocompostos , Humanos , Grafite/química , Engenharia Tecidual/métodos , Neurogênese , Nanocompostos/química
7.
Mol Cell Neurosci ; 127: 103905, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37972804

RESUMO

Neuron navigators are microtubule plus-end tracking proteins containing basic and serine rich regions which are encoded by neuron navigator genes (NAVs). Neuron navigator proteins are essential for neurite outgrowth, neuronal migration, and overall neurodevelopment along with some other functions as well. The navigator proteins are substantially expressed in the developing brain and have been reported to be differentially expressed in various tissues at different ages. Over the years, the research has found neuron navigators to be implicated in a spectrum of pathological conditions such as developmental anomalies, neurodegenerative disorders, neuropathic pain, anxiety, cancers, and certain inflammatory conditions. The existing knowledge about neuron navigators remains sparse owing to their differential functions, undiscovered modulators, and unknown molecular mechanisms. Investigating the possible role of neuron navigators in various physiological processes and pathological conditions pose as a novel field that requires extensive research and might provide novel mechanistic insights and understanding of these aspects.


Assuntos
Microtúbulos , Neurônios , Neurônios/metabolismo , Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Movimento Celular/fisiologia
8.
Chem Biodivers ; 20(12): e202301294, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37953436

RESUMO

Artepillin C is the most studied compound in Brazilian Green Propolis and, along with its acetylated derivative, displays neurotrophic activity on PC12 cells. Specific inhibitors of the trkA receptor (K252a), PI3K/Akt (LY294002), and MAPK/ERK (U0126) signaling pathways were used to investigate the neurotrophic mechanism. The expression of proteins involved in axonal and synaptic plasticity (GAP-43 and Synapsin I) was assessed by western blotting. Additionally, physicochemical properties, pharmacokinetics, and drug-likeness were evaluated by the SwissADME web tool. Both compounds induced neurite outgrowth by activating the NGF-signaling pathways but through different neuronal proteins. Furthermore, in silico analyses showed interesting physicochemical and pharmacokinetic properties of these compounds. Therefore, these compounds could play an important role in axonal and synaptic plasticity and should be further investigated.


Assuntos
Própole , Ratos , Animais , Células PC12 , Própole/farmacologia , Própole/metabolismo , Neuritos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Brasil , Transdução de Sinais , Crescimento Neuronal
9.
Int J Mol Sci ; 24(17)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37686193

RESUMO

Garlic (Allium sativum L.) is an aromatic herb known for its culinary and medicinal uses for centuries. Both unprocessed (white) and processed (black) garlic are known to protect against the pathobiology of neurological disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD), which has been attributed to their anti-inflammatory and antioxidant properties. The information on the effects of processed and unprocessed garlic on neuronal process outgrowth, maturation, and synaptic development is limited. This study aimed at investigating and comparing the effects of the ethanol extracts of unprocessed (white garlic extract, WGE) and processed (black garlic extract, BGE) garlic on the maturation of primary hippocampal neurons. Neurite outgrowth was stimulated in a dose-dependent manner by both WGE and BGE and the most effective doses were 15 µg/mL and 60 µg/mL, respectively, without showing cytotoxicity. At this optimal concentration, both extracts promoted axonal and dendritic growth and maturation. Furthermore, both extracts substantially increased the formation of functional synapses. However, the effect of WGE was more robust at every developmental stage of neurons. In addition, the gas chromatography and mass spectrometry (GC-MS) analysis revealed a chemical profile of various bioactives in both BGE and WGE. Linalool, a compound that was found in both extracts, has shown neurite outgrowth-promoting activity in neuronal cultures, suggesting that the neurotrophic activity of garlic extracts is attributed, at least in part, to this compound. By using network pharmacology, linalool's role in neuronal development can also be observed through its modulatory effect on the signaling molecules of neurotrophic signaling pathways such as glycogen synthase kinase 3 (GSK3ß), extracellular signal-regulated protein kinase (Erk1/2), which was further verified by immunocytochemistry. Overall, these findings provide information on the molecular mechanism of processed and unprocessed garlic for neuronal growth, survival, and memory function which may have the potential for the prevention of several neurological disorders.


Assuntos
Produtos Biológicos , Alho , Animais , Ratos , Antioxidantes , Neurônios , Etanol , MAP Quinases Reguladas por Sinal Extracelular , Extratos Vegetais/farmacologia
10.
Front Neuroendocrinol ; 71: 101102, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37689249

RESUMO

The brain synthesizes a variety of neurosteroids, including neuroestradiol. Inhibition of neuroestradiol synthesis results in alterations in basic neurodevelopmental processes, such as neurogenesis, neuroblast migration, neuritogenesis and synaptogenesis. Although the neurodevelopmental actions of neuroestradiol are exerted in both sexes, some of them are sex-specific, such as the well characterized effects of neuroestradiol derived from the metabolism of testicular testosterone during critical periods of male brain development. In addition, recent findings have shown sex-specific actions of neuroestradiol on neuroblast migration, neuritic growth and synaptogenesis in females. Among other factors, the epigenetic regulation exerted by X linked genes, such as Kdm6a/Utx, may determine sex-specific actions of neuroestradiol in the female brain. This review evidences the impact of neuroestradiol on brain formation in both sexes and highlights the interaction of neural steriodogenesis, hormones and sex chromosomes in sex-specific brain development.


Assuntos
Epigênese Genética , Neuroesteroides , Feminino , Masculino , Humanos , Neurônios/metabolismo , Neuroesteroides/metabolismo , Testosterona/metabolismo
11.
Int J Mol Sci ; 24(18)2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37762617

RESUMO

Leukocyte- and Platelet-Rich Fibrin (L-PRF) is a second-generation platelet concentrate that is prepared directly from the patient's own blood. It is widely used in the field of regenerative medicine, and to better understand its clinical applicability we aimed to further explore the biological properties and effects of L-PRF on cells from the central and peripheral nervous system. To this end, L-PRF was prepared from healthy human donors, and confocal, transmission, and scanning electron microscopy as well as secretome analysis were performed on these clots. In addition, functional assays were completed to determine the effect of L-PRF on neural stem cells (NSCs), primary cortical neurons (pCNs), and peripheral dorsal root ganglion (DRG) neurons. We observed that L-PRF consists of a dense but porous fibrin network, containing leukocytes and aggregates of activated platelets that are distributed throughout the clot. Antibody array and ELISA confirmed that it is a reservoir for a plethora of growth factors. Key molecules that are known to have an effect on neuronal cell functions such as brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), vascular endothelial growth factor (VEGF), and platelet-derived growth factor (PDGF) were slowly released over time from the clots. Next, we found that the L-PRF secretome had no significant effect on the proliferative and metabolic activity of NSCs, but it did act as a chemoattractant and improved the migration of these CNS-derived stem cells. More importantly, L-PRF growth factors had a detrimental effect on the survival of pCNs, and consequently, also interfered with their neurite outgrowth. In contrast, we found a positive effect on peripheral DRG neurons, and L-PRF growth factors improved their survival and significantly stimulated the outgrowth and branching of their neurites. Taken together, our study demonstrates the positive effects of the L-PRF secretome on peripheral neurons and supports its use in regenerative medicine but care should be taken when using it for CNS applications.


Assuntos
Materiais Biocompatíveis , Fibrina Rica em Plaquetas , Humanos , Fator A de Crescimento do Endotélio Vascular , Neurônios , Leucócitos , Sistema Nervoso Periférico
12.
Front Cell Neurosci ; 17: 1204302, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37601281

RESUMO

CLICK-III/CaMKIγ is a lipid-anchored neuronal isoform of multifunctional Ca2+/calmodulin-dependent protein kinases, which mediates BDNF-dependent dendritogenesis in cultured cortical neurons. We found that two distinct lipidation states of CaMKIγ, namely, prenylation and palmitoylation, controlled its association with detergent-resistant microdomains in the dendrites and were essential for its dendritogenic activity. However, the impact of each lipid modification on membrane targeting/trafficking and how it specifies functional coupling leading to polarized changes in neuronal morphology are not clear. Here, we show that prenylation induces membrane anchoring of CaMKIγ, permitting access to the Golgi apparatus, and a subsequent palmitoylation facilitates association with cholesterol-enriched lipid microdomains or lipid rafts, in particular at the Golgi. To specifically test the role of palmitoylated CaMKγ in neurite extension, we identified and took advantage of a cell system, PC12, which, unlike neurons, conveniently lacked CaMKIγ and was deficient in the activity-dependent release of a neuritogenic growth factor while possessing the ability to activate polarized rafts signaling for morphogenesis. This system allowed us to rigorously demonstrate that an activity-dependent, lipid rafts-restricted Rac activation leading to neuritogenesis could be functionally rescued by dually lipidated CaMKIγ expression, revealing that not only prenylation but also palmitoylation is essential for CaMKIγ to activate a compartmentalized STEF-Rac1 pathway. These results shed light on the significance of recruiting prenylated and palmitoylated CaMKIγ into the coalescing signalosomes at lipid rafts together with Rac1 and its specific GEF and STEF and forming a compartmentalized Ca2+ signaling pathway that underlies activity-dependent neuritogenesis and morphogenesis during axodendritic polarization critical for brain development and circuitogenesis.

13.
BMC Neurosci ; 24(1): 43, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37612637

RESUMO

BACKGROUND: Studies of the molecular mechanisms of nerve regeneration have led to the discovery of several proteins that are induced during successful nerve regeneration. RICH proteins were identified as proteins induced during the regeneration of the optic nerve of teleost fish. These proteins are 2',3'-cyclic nucleotide, 3'-phosphodiesterases that can bind to cellular membranes through a carboxy-terminal membrane localization domain. They interact with the tubulin cytoskeleton and are able to enhance neuronal structural plasticity by promoting the formation of neurite branches. RESULTS: PC12 stable transfectant cells expressing a fusion protein combining a red fluorescent protein with a catalytically inactive mutant version of zebrafish RICH protein were generated. These cells were used as a model to analyze effects of the protein on neuritogenesis. Differentiation experiments showed a 2.9 fold increase in formation of secondary neurites and a 2.4 fold increase in branching points. A 2.2 fold increase in formation of secondary neurites was observed in neurite regeneration assays. CONCLUSIONS: The use of a fluorescent fusion protein facilitated detection of expression levels. Two computer-assisted morphometric analysis methods indicated that the catalytically inactive RICH protein induced the formation of branching points and secondary neurites both during differentiation and neurite regeneration. A procedure based on analysis of random field images provided comparable results to classic neurite tracing methods.


Assuntos
Neuritos , Peixe-Zebra , Animais , Diferenciação Celular , Neurônios , Regeneração Nervosa
14.
Biomed Mater ; 18(5)2023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37429292

RESUMO

Artificial nerve grafts that support axon growth hold promises in promoting nerve regeneration and function recovery. However, current artificial nerve grafts are insufficient to regenerate axons across long nerve gaps. Specific biochemical and biophysical cues are required to be incorporated to artificial nerve grafts to promote neural cell adhesion and guide neurite outgrowth. Polyvinyl alcohol (PVA) nerve conduits have been clinically approved, but the applicability of PVA nerve conduits is limited to short injuries due to low cell binding. In this study, we explored the incorporation of biochemical cues and topographical cues for promoting neuritogenesis and axon guidance. PVA was conjugated with extracellular matrix proteins and fucoidan, a bioactive sulfated polysaccharide, to improve cell adhesion. Micro-sized topographies, including 1.8 µm convex lenses, 2 µm gratings, and 10 µm gratings were successfully fabricated on PVA by nanofabrication, and the synergistic effects of topography and biochemical molecules on pheochromocytoma 12 (PC12) neuritogenesis and neurite alignment were studied. Conjugated fucoidan promoted the percentage of PC12 with neurite outgrowth from 0% to 2.8% and further increased to 5% by presenting laminin on the surface. Additionally, fucoidan was able to bind nerve growth factor (NGF) on the surface and allow for PC12 to extend neurites in NGF-free media. The incorporation of 2 µm gratings could double the percentage of PC12 with neurite outgrowth and neurite length, and guided the neurites to extend along the grating axis. The work presents a promising strategy to enhance neurite formation and axon guidance, presenting significant value in promoting nerve regeneration.


Assuntos
Neoplasias das Glândulas Suprarrenais , Feocromocitoma , Humanos , Ratos , Animais , Álcool de Polivinil , Feocromocitoma/metabolismo , Axônios , Neuritos/metabolismo , Polissacarídeos , Neoplasias das Glândulas Suprarrenais/metabolismo , Células PC12
15.
Adv Healthc Mater ; 12(26): e2300828, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37312636

RESUMO

Neural tissue-related illnesses have a high incidence and prevalence in society. Despite intensive research efforts to enhance the regeneration of neural cells into functional tissue, effective treatments are still unavailable. Here, a novel therapeutic approach based on vertically aligned carbon nanotube forests (VA-CNT forests) and periodic VA-CNT micropillars produced by thermal chemical vapor deposition is explored. In addition, honeycomb-like and flower-like morphologies are created. Initial viability testing reveals that NE-4C neural stem cells seeded on all morphologies survive and proliferate. In addition, free-standing VA-CNT forests and capillary-driven VA-CNT forests are created, with the latter demonstrating enhanced capacity to stimulate neuritogenesis and network formation under minimal differentiation medium conditions. This is attributed to the interaction between surface roughness and 3D-like morphology that mimics the native extracellular matrix, thus enhancing cellular attachment and communication. These findings provide a new avenue for the construction of electroresponsive scaffolds based on CNTs for neural tissue engineering.


Assuntos
Nanotubos de Carbono , Células-Tronco Neurais , Nanotubos de Carbono/química , Engenharia Tecidual , Diferenciação Celular
16.
Environ Res ; 232: 116302, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37286125

RESUMO

Neurogenesis is decreased in the absence of nerve growth factor (NGF). It would be beneficial to discover substances that stimulate neurogenesis without NGF, given the high molecular weight and brief half-life of NGF. This work aims to assess the neurogenesis of ginger extract (GE) combined with superparamagnetic iron oxide nanoparticles (SPIONs) without NGF. Based on our research, GE and SPIONs start neurogenesis before NGF. In comparison to the control group, GE and SPIONs dramatically reduced the length and quantity of neurites, according to statistical analysis. Our findings also indicated that SPIONs and ginger extract together had an additive impact on one another. The total number significantly increased with the addition of GE and nanoparticles. In comparison to NGF, the mixture of GE and nanoparticles significantly enhanced the total number of cells with neurites (by about 1.2-fold), the number of branching points (by about 1.8-fold), and the length of neurites. The difference between ginger extract and nanoparticles with NGF was significant (about 3.5-fold), particularly in the case of cells with one neurite. The results of this study point to the possibility of treating neurodegenerative disorders via the combination of GE and SPIONs without NGF.


Assuntos
Dextranos , Fator de Crescimento Neural , Ratos , Animais , Células PC12 , Fator de Crescimento Neural/metabolismo , Crescimento Neuronal , Nanopartículas Magnéticas de Óxido de Ferro
17.
Biomolecules ; 13(4)2023 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-37189342

RESUMO

The peripheral nervous system (PNS) has a unique ability for self-repair. Dorsal root ganglion (DRG) neurons regulate the expression of different molecules, such as neurotrophins and their receptors, to promote axon regeneration after injury. However, the molecular players driving axonal regrowth need to be better defined. The membrane glycoprotein GPM6a has been described to contribute to neuronal development and structural plasticity in central-nervous-system neurons. Recent evidence indicates that GPM6a interacts with molecules from the PNS, although its role in DRG neurons remains unknown. Here, we characterized the expression of GPM6a in embryonic and adult DRGs by combining analysis of public RNA-seq datasets with immunochemical approaches utilizing cultures of rat DRG explants and dissociated neuronal cells. M6a was detected on the cell surfaces of DRG neurons throughout development. Moreover, GPM6a was required for DRG neurite elongation in vitro. In summary, we provide evidence on GPM6a being present in DRG neurons for the first time. Data from our functional experiments support the idea that GPM6a could contribute to axon regeneration in the PNS.


Assuntos
Axônios , Gânglios Espinais , Ratos , Animais , Axônios/metabolismo , Gânglios Espinais/metabolismo , Células Cultivadas , Regeneração Nervosa , Neurônios/metabolismo , Glicoproteínas de Membrana/metabolismo , Crescimento Neuronal
18.
Int J Mol Sci ; 24(10)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37239909

RESUMO

Reviving the neuronal functions in neurodegenerative disorders requires the promotion of neurite outgrowth. Thymol, which is a principal component of Trachyspermum ammi seed extract (TASE), is reported to have neuroprotective effects. However, the effects of thymol and TASE on neuronal differentiation and outgrowth are yet to be studied. This study is the first report investigating the neuronal growth and maturation effects of TASE and thymol. Pregnant mice were orally supplemented with TASE (250 and 500 mg/kg), thymol (50 and 100 mg/kg), vehicle, and positive controls. The supplementation significantly upregulated the expression of brain-derived neurotrophic factor (BDNF) and early neuritogenesis markers in the pups' brains at post-natal day 1 (P1). Similarly, the BDNF level was significantly upregulated in the P12 pups' brains. Furthermore, TASE (75 and 100 µg/mL) and thymol (10 and 20 µM) enhanced the neuronal polarity, early neurite arborization, and maturation of hippocampal neurons in a dose-dependent manner in primary hippocampal cultures. The stimulatory activities of TASE and thymol on neurite extension involved TrkB signaling, as evidenced by attenuation via ANA-12 (5 µM), which is a specific TrkB inhibitor. Moreover, TASE and thymol rescued the nocodazole-induced blunted neurite extension in primary hippocampal cultures, suggesting their role as a potent microtubule stabilizing agent. These findings demonstrate the potent capacities of TASE and thymol in promoting neuronal development and reconstruction of neuronal circuitry, which are often compromised in neurodegenerative diseases and acute brain injuries.


Assuntos
Apiaceae , Extratos Vegetais , Timol , Animais , Feminino , Camundongos , Gravidez , Apiaceae/química , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Suplementos Nutricionais , Hipocampo/metabolismo , Extratos Vegetais/farmacologia , Transdução de Sinais , Timol/farmacologia , Vitaminas/farmacologia , Fenômenos Fisiológicos da Nutrição Materna
19.
ACS Appl Bio Mater ; 6(6): 2237-2247, 2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37167607

RESUMO

Over time, developments in nano-biomedical research have led to the creation of a number of systems to cure serious illnesses. Tandem use of nano-theragnostics such as diagnostic and therapeutic approaches tailored to the individual disease treatment is crucial for further development in the field of biomedical advancements. Graphene has garnered attention in the recent times as a potential nanomaterial for tissue engineering and regenerative medicines owing to its biocompatibility among the several other unique properties it possesses. The zero-dimensional graphene quantum dots (GQDs) and their nitrogen-doped variant, nitrogen-doped GQDs (N-GQDs), have good biocompatibility, and optical and physicochemical properties. GQDs have been extensively researched owing to several factors such as their size, surface charge, and interactions with other molecules found in biological media. This work briefly elucidates the potential of electroactive GQDs as well as N-GQDs as neurotrophic agents. In vitro investigations employing the N2A cell line were used to evaluate the effectiveness of GQDs and N-GQDs as neurotrophic agents, wherein basic investigations such as SRB assay and neurite outgrowth assay were performed. The results inferred from immunohistochemistry followed by confocal imaging studies as well as quantitative real-time PCR (qPCR) studies corroborated those obtained from neurite outgrowth assay. We have also conducted a preliminary investigation of the pattern of gene expression for neurotrophic and gliotrophic growth factors using ex vivo neuronal and mixed glial cultures taken from the brains of postnatal day 2 mice pups. Overall, the studies indicated that GQDs and N-GQDs hold prospect as a framework for further development of neuroactive compounds for relevant central nervous system (CNS) purposes.


Assuntos
Grafite , Nanoestruturas , Pontos Quânticos , Camundongos , Animais , Grafite/farmacologia , Grafite/química , Pontos Quânticos/química , Nitrogênio/química
20.
Biomater Res ; 27(1): 37, 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37106432

RESUMO

BACKGROUND: Regeneration of defective neurons in central nervous system is a highlighted issue for neurodegenerative disease treatment. Various tissue engineering approaches have focused on neuritogenesis to achieve the regeneration of damaged neuronal cells because damaged neurons often fail to achieve spontaneous restoration of neonatal neurites. Meanwhile, owing to the demand for a better diagnosis, studies of super-resolution imaging techniques in fluorescence microscopy have triggered the technological development to surpass the classical resolution dictated by the optical diffraction limit for precise observations of neuronal behaviors. Herein, the multifunctional nanodiamonds (NDs) as neuritogenesis promoters and super-resolution imaging probes were studied. METHODS: To investigate the neuritogenesis-inducing capability of NDs, ND-containing growing medium and differentiation medium were added to the HT-22 hippocampal neuronal cells and incubated for 10 d. In vitro and ex vivo images were visualized through custom-built two-photon microscopy using NDs as imaging probes and the direct stochastic optical reconstruction microscopy (dSTORM) process was performed for the super-resolution reconstruction owing to the photoblinking properties of NDs. Moreover, ex vivo imaging of the mouse brain was performed 24 h after the intravenous injection of NDs. RESULTS: NDs were endocytosed by the cells and promoted spontaneous neuritogenesis without any differentiation factors, where NDs exhibited no significant toxicity with their outstanding biocompatibility. The images of ND-endocytosed cells were reconstructed into super-resolution images through dSTORM, thereby addressing the problem of image distortion due to nano-sized particles, including size expansion and the challenge in distinguishing the nearby located particles. Furthermore, the ex vivo images of NDs in mouse brain confirmed that NDs could penetrate the blood-brain barrier (BBB) and retain their photoblinking property for dSTORM application. CONCLUSIONS: It was demonstrated that the NDs are capable of dSTORM super-resolution imaging, neuritogenic facilitation, and BBB penetration, suggesting their remarkable potential in biological applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA