Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.371
Filtrar
1.
Mech Ageing Dev ; 221: 111961, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38960099

RESUMO

This comprehensive review elucidates the critical role of antioxidants to mitigate oxidative stress, a common denominator in an array of neurodegenerative disorders. Oxidative stress-induced damage has been linked to the development of diseases such as Alzheimer's, Parkinson's, Huntington's disease and amyotrophic lateral sclerosis. This article examines a wide range of scientific literature and methodically delineates the several methods by which antioxidants exercise their neuroprotective benefits. It also explores into the complex relationship between oxidative stress and neuroinflammation, focusing on how antioxidants can alter signaling pathways and transcription factors to slow neurodegenerative processes. Key antioxidants, such as vitamins C and E, glutathione, and polyphenolic compounds, are tested for their ability to combat reactive oxygen and nitrogen species. The dual character of antioxidants, which operate as both direct free radical scavengers and regulators of cellular redox homeostasis, is investigated in terms of therapeutic potential. Furthermore, the study focuses on new antioxidant-based therapy techniques and their mechanisms including Nrf-2, PCG1α, Thioredoxin etc., which range from dietary interventions to targeted antioxidant molecules. Insights into ongoing clinical studies evaluating antioxidant therapies in neurodegenerative illnesses offer an insight into the translational potential of antioxidant research. Finally, this review summarizes our present understanding of antioxidant processes in neurodegenerative illnesses, providing important possibilities for future study and treatment development.

2.
J Neurotrauma ; 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39049733

RESUMO

This letter to the editor is intended to highlight potential inaccuracies in a recent study published by McEvoy and colleagues (2023) describing a blast exposure model for special operations service members. Explosive weights for the breaching charges described appear inaccurate and may negatively impact future research or databases, as indicated by the authors future directions. Likewise, safety implications derived from this study may be misleading unless the calculation errors for net explosive weights and blast overpressure PSI are corrected. This response offers corrected calculations based on DoD explosive safety guidelines and commentary on future directions for blast exposure documentation and risk-mitigation.

3.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39000217

RESUMO

Peroxisome proliferator-activated receptors (PPARs) may play an important role in the pathomechanism/pathogenesis of Alzheimer's disease (AD) and several other neurological/neuropsychiatric disorders. AD leads to progressive alterations in the redox state, ion homeostasis, lipids, and protein metabolism. Significant alterations in molecular processes and the functioning of several signaling pathways result in the degeneration and death of synapses and neuronal cells, leading to the most severe dementia. Peroxisome proliferator-activated receptor alpha (PPAR-α) is among the processes affected by AD; it regulates the transcription of genes related to the metabolism of cholesterol, fatty acids, other lipids and neurotransmission, mitochondria biogenesis, and function. PPAR-α is involved in the cholesterol transport to mitochondria, the substrate for neurosteroid biosynthesis. PPAR-α-coding enzymes, such as sulfotransferases, which are responsible for neurosteroid sulfation. The relation between PPAR-α and cholesterol/neurosteroids may have a significant impact on the course and progression of neurodegeneration/neuroprotection processes. Unfortunately, despite many years of intensive studies, the pathogenesis of AD is unknown and therapy for AD and other neurodegenerative diseases is symptomatic, presenting a significant goal and challenge today. This review presents recent achievements in therapeutic approaches for AD, which are targeting PPAR-α and its relation to cholesterol and neurosteroids in AD and neuropsychiatric disorders.


Assuntos
Doença de Alzheimer , Neuroesteroides , PPAR alfa , Animais , Humanos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/tratamento farmacológico , Colesterol/metabolismo , Transtornos Mentais/metabolismo , Transtornos Mentais/tratamento farmacológico , Mitocôndrias/metabolismo , Terapia de Alvo Molecular , Neuroesteroides/metabolismo , PPAR alfa/metabolismo
4.
Eur J Pharmacol ; 979: 176823, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39032763

RESUMO

Autophagy is an abnormal protein degradation and recycling process that is impaired in various neurological diseases like Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease. Spermidine is a natural polyamine found in various plant- and meat-based diets that can induce autophagy, and is decreased in various neurodegenerative diseases. It acts on epigenetic enzymes like E1A-binding protein p300, HAT enzymes like Iki3p and Sas3p, and α-tubulin acetyltransferase 1 that modulate autophagy. Histone modifications like acetylation, phosphorylation, and methylation could influence autophagy. Autophagy is epigenetically regulated in various neurodegenerative disorders with many epigenetic enzymes and miRNAs. Polyamine regulation plays an essential role in the disease pathogenesis of AD and PD. Therefore, in this review, we discuss various enzymes and miRNAs involved in the epigenetic regulation of autophagy in neurodegenerative disorders and the role of spermidine as an autophagy enhancer. The alterations in spermidine-mediated regulation of Beclin-1, LC3-II, and p62 genes in AD and other PD-associated enzymes could impact the process of autophagy in these neurodegenerative diseases. With the ever-growing data and such promising effects of spermidine in autophagy, we feel it could be a promising target in this area and worth further detailed studies.

5.
Cureus ; 16(6): e62745, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39036178

RESUMO

Background and objective Dementia is a prevalent clinical syndrome characterized by memory impairment and cognitive dysfunction. Its global burden is expected to rise significantly, particularly in low- and middle-income countries. Understanding the spectrum of dementia types and associated risk factors is crucial for effective management. This study aims to elucidate the demographic profiles, clinical types, and risk factors of newly diagnosed dementia cases at a tertiary care hospital in India. Methods and materials A cross-sectional, hospital-based observational study was conducted on 81 patients at the Department of Medicine, Dr. D. Y. Patil Medical College, Hospital, and Research Centre, Pimpri, Pune, from February 2022 to January 2024. Ethical approval was obtained, and written consent was obtained from participants. Clinical diagnosis was based on the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-V) criteria, supported by cognitive assessment tools and laboratory/radiological investigations. Inclusion criteria encompassed individuals aged 18 years or older, presenting with clinical symptoms suggestive of dementia, having a Mini-Mental State Examination (MMSE) score of less than 24 and Montreal Cognitive Assessment (MoCA) score of less than 25, according to DSM-V criteria for dementia. Exclusion criteria included individuals with a history of head trauma or those below 18 years of age. Results Of the 81 participants, the majority (74.1%) were over 60 years old, with females comprising 59.3% of the sample. Alzheimer's disease was the most prevalent dementia subtype (34.5%), followed by vascular dementia (19.7%) and mixed dementia (13.5%). Other causes included Lewy body dementia (2.46%), Parkinson's dementia (4.9%), frontotemporal dementia (4.9%), and Creutzfeldt-Jakob disease (1.2%). Reversible causes accounted for a significant proportion of cases: alcohol-associated dementia (6.1%), hypothyroid-associated dementia (3.7%), HIV-associated dementia (2.46%), herpes simplex dementia (1.2%), neurosyphilis-associated dementia (1.2%), and normal pressure hydrocephalus (NPH)-associated dementia (2.4%). Analysis of risk factors revealed distinct patterns among different dementia types, emphasizing the role of cardiovascular and metabolic health. Conclusion This study provides insights into the demographic profiles, clinical types, and dementia risk factors in India. Addressing causes and managing cardiovascular/metabolic health is crucial for dementia prevention and management. Comprehensive care strategies and ongoing research efforts are essential for improving dementia outcomes and enhancing the quality of life for affected individuals and their families.

6.
Nutr Health ; : 2601060241266389, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39042916

RESUMO

Molecular hydrogen (H2, dihydrogen) is an antioxidant and signaling molecule with potent antioxidative, antiapoptotic, and anti-inflammatory properties. Despite the growing interest in H2 as a potential therapeutic agent, the evidence regarding its potential as a nootropic remains limited. Only a handful of studies on the human population have evaluated its effects, although there are suggestive indications of its efficacy. The present paper overviews H2's potential as a novel agent for improving cognitive functions in health and disease contexts, highlighting its mechanisms of action and areas for further investigation. Current evidence suggests that H2 improves executive function, alertness and memory in several clinical trials, from healthy young and elderly individuals to individuals with altered circadian rhythms, neurodegenerative disorders, and cancer. Further investigations are needed to confirm the potential positive effects of dihydrogen as a nootropic agent in both health and disease.

7.
Cureus ; 16(6): e62310, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39006715

RESUMO

This review offers a comprehensive review of the signals and the paramount role neuroinflammation plays in neurodegenerative diseases such as Alzheimer's, Parkinson's, Huntington's, and amyotrophic lateral sclerosis. The study explores the sophisticated interactions between microglial, astrocytic, and dendritic cells and how neuroinflammation affects long-term neuronal damage and dysfunction. There are specific pathways related to the mentioned inflammatory processes, including Janus kinases/signal transducer and activator of transcriptions, nuclear factor-κB, and mitogen-activated protein kinases pathways. Neuroinflammation is argued to be a double-edged sword, being not only a protective agent that prevents further neuron damage but also the causative factor in more cell injury development. This concept of contrasting inflammation with neuroprotection advocates for the use of therapeutic techniques that seek to modulate neuroinflammatory responses as part of the neurodegeneration treatment. The recent research findings are integrated with the established knowledge to help present a comprehensive image of neuroinflammation's impact on neurodegenerative diseases and its implications for future therapy.

8.
Alzheimers Dement ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39009473

RESUMO

Extracellular vesicles (EVs) hold promise as a source of disease biomarkers. The diverse molecular cargo of EVs can potentially indicate the status of their tissue of origin, even against the complex background of whole plasma. The main tools currently available for assessing biomarkers of brain health include brain imaging and analysis of the cerebrospinal fluid of patients. Given the costs and difficulties associated with these methods, isolation of EVs of neuronal origin (NEVs) from the blood is an attractive approach to identify brain-specific biomarkers. This perspective describes current key challenges in EV- and NEV-based biomarker research. These include the relative low abundance of EVs, the lack of validated isolation methods, and the difficult search for an adequate target for immunocapturing NEVs. We discuss that these challenges must be addressed before NEVs can fulfill their potential for biomarker research. HIGHLIGHTS: NEVs are promising sources of biomarkers for brain disorders. Immunocapturing NEVs from complex biofluids presents several challenges. The choice of surface target for capture will determine NEV yield. Contamination by non-EV sources is relevant for biomarkers at low concentrations.

9.
Nanomaterials (Basel) ; 14(13)2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38998683

RESUMO

Neurodegenerative disorders cause most physical and mental disabilities, and therefore require effective treatment. The blood-brain barrier (BBB) prevents drug molecules from crossing from the blood to the brain, making brain drug delivery difficult. Implantable devices could provide sustained and regulated medication to solve this problem. Two electrolytes (0.3 M oxalic acid and 0.3 M sulphuric acid) were used to anodise Al2O3 nanoporous membranes, followed by a third anodisation in concentrated H2SO4 to separate the through-hole membranes from the aluminium substrate. FTIR, AFM, and SEM/EDX were used to characterise the membranes' structure and morphology. The effects of the anodisation time and electrolyte type on the AAO layer pore density, diameter, interpore distance, and thickness were examined. As a model drug for neurodegenerative disorders, donepezil hydrochloride (DHC) was loaded onto thin alumina nanoporous membranes. The DHC release profiles were characterised at two concentrations using a UV-Vis spectrophotometer. Oxalic acid membranes demonstrated an average pore diameter of 39.6-32.5 nm, which was two times larger than sulphuric acid membranes (22.6-19.7 nm). After increasing the anodisation time from 3 to 5 h, all of the membranes showed a reduction in pore diameter that was stable regardless of the electrolyte type or period. Drug release from oxalic acid-fabricated membranes was controlled and sustained for over 2 weeks. Thus, nanoporous membranes as implantable drug delivery systems could improve neurodegenerative disease treatment.

10.
Artigo em Inglês | MEDLINE | ID: mdl-38995810

RESUMO

 There has been a significant increase in the incidence of multiple neurodegenerative and terminal diseases in the human population with life expectancy increasing in the current times. This highlights the urgent need for a more comprehensive understanding of how different aspects of lifestyle, in particular diet, may affect neural functioning and consequently cognitive performance as well as in enhancing overall health. Flavonoids, found in a variety of fruits, vegetables, and derived beverages, provide a new avenue of research that shows a promising influence on different aspects of brain function. However, despite the promising evidence, most bioactive compounds lack strong clinical research efficacy. In the current scoping review, we highlight the effects of Flavonoids on cognition and neural plasticity across vertebrates and invertebrates with special emphasis on the studies conducted in the pond snail, Lymnaea stagnalis, which has emerged to be a functionally dynamic model for studies on learning and memory. In conclusion, we suggest future research directions and discuss the social, cultural, and ethnic dependencies of bioactive compounds that influence how these compounds are used and accepted globally. Bridging the gap between preclinical and clinical studies about the effects of bioactive natural compounds on brain health will surely lead to lifestyle choices such as dietary Flavonoids being used complementarily rather than as replacements to classical drugs bringing about a healthier future.

11.
Brain Behav ; 14(7): e3624, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39010704

RESUMO

INTRODUCTION: This study aims to evaluate the effects of sodium-glucose cotransporter 1 inhibitors (SGLT1i) and sodium-glucose cotransporter 2 inhibitors (SGLT2i) on neurodegenerative disorders and to investigate the role of hemoglobin A1c (HbA1c) levels. METHODS: Utilizing drug target Mendelian randomization, we employed single nucleotide polymorphisms (SNPs) proximal to the SLC5A1 and SLC5A2 genes to analyze the influence of SGLT1i and SGLT2i on Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), frontotemporal dementia (FTD), Lewy body dementia (LBD), and amyotrophic lateral sclerosis (ALS), with type 2 diabetes (T2D) as a positive control. An additional analysis examined the impact of HbA1c levels on the same disorders. RESULTS: SGLT1i exhibited a significant association with decreased risk for ALS and MS. Conversely, SGLT2i were linked to an increased risk of AD, PD, and MS. Elevated HbA1c levels, independent of SGLT1 and SGLT2 effects, were associated with an increased risk of PD. Sensitivity analyses supported the robustness of these findings. CONCLUSION: Our study suggests that SGLT1i may confer protection against ALS and MS, whereas SGLT2i could elevate the risk of AD, PD, and MS. Additionally, elevated HbA1c levels emerged as a risk factor for PD. These findings underscore the importance of personalized approaches in the utilization of SGLT inhibitors, considering their varying impacts on the risks of neurodegenerative diseases.


Assuntos
Hemoglobinas Glicadas , Análise da Randomização Mendeliana , Doenças Neurodegenerativas , Polimorfismo de Nucleotídeo Único , Transportador 1 de Glucose-Sódio , Inibidores do Transportador 2 de Sódio-Glicose , Humanos , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Doenças Neurodegenerativas/genética , Hemoglobinas Glicadas/metabolismo , Transportador 1 de Glucose-Sódio/genética , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/genética , Transportador 2 de Glucose-Sódio/genética , Transportador 2 de Glucose-Sódio/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/tratamento farmacológico , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/tratamento farmacológico , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/genética
12.
Neurosci Biobehav Rev ; 164: 105797, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38971515

RESUMO

Cognitive decline is commonly seen both in normal aging and in neurodegenerative and neuropsychiatric diseases. Various experimental animal models represent a valuable tool to study brain cognitive processes and their deficits. Equally important is the search for novel drugs to treat cognitive deficits and improve cognitions. Complementing rodent and clinical findings, studies utilizing zebrafish (Danio rerio) are rapidly gaining popularity in translational cognitive research and neuroactive drug screening. Here, we discuss the value of zebrafish models and assays for screening nootropic (cognitive enhancer) drugs and the discovery of novel nootropics. We also discuss the existing challenges, and outline future directions of research in this field.

13.
In Silico Pharmacol ; 12(2): 66, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39050776

RESUMO

Abnormal deposition or aggregation of protein alpha-synuclein and tau in the brain leads to neurodegenerative disorders. Excessive hyperphosphorylation of tau protein and aggregations destroys the microtubule structure resulting in neurofibrillary tangles in neurons and affecting cytoskeleton structure, mitochondrial axonal transport, and loss of synapses in neuronal cells. Tau tubulin kinase 1 (TTBK1), a specific neuronal kinase is a potential therapeutic target for neurodegenerative disorders as it is involved in hyperphosphorylation and aggregation of tau protein. TTBK inhibitors are now the subject of intense study, but limited numbers are found. Hence, this study involves structure-based virtual screening of TTBK1 inhibitor analogs to obtain efficient compounds targeting the TTBK1 using docking, molecular dynamics simulation and protein-ligand interaction profile. The initial analogs set containing 3884 compounds was subjected to Lipinski rule and the non-violated compounds were selected. Docking analysis was done on 2772 compounds through Autodock vina and Autodock 4.2. Data Warrior and SwissADME was utilized to filter the toxic compounds. The stability and protein-ligand interaction of the docked complex was analyzed through Gromacs and VMD. Molecular simulation results such as RMSD, Rg, and hydrogen bond interaction along with pharmacokinetic properties showed CID70794974 as the potential hit targeting TTBKl prompting the need for further experimental investigation to evaluate their potential therapeutic efficacy in Alzheimer's disease. Supplementary Information: The online version contains supplementary material available at 10.1007/s40203-024-00242-z.

14.
Cureus ; 16(6): e61776, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38975512

RESUMO

Friedreich's ataxia (FRDA), a rare inherited neurodegenerative disease, presents distinctive complexities in obstetrical anesthesia. Available research about FRDA in obstetrics is extremely limited. In this report, the anesthetic management of a 40-year-old primigravida with FRDA undergoing cesarean delivery is presented. An uneventful cesarean delivery with effective epidural anesthesia with ropivacaine at the L2-L3 intervertebral space was performed in our case. Neither hypotension nor bradycardia was observed, and vital signs remained stable, with no need for administration of vasoactive drugs. After discharge, the parturient reported no change in her neurologic symptoms. Conclusive recommendations are contingent upon more extensive studies. Overall management and the choice to proceed with neuraxial anesthesia in a woman with FRDA should be based on comprehensive consultations in both cardio-obstetrics and pre-anesthetic evaluations.

15.
Zhongguo Ying Yong Sheng Li Xue Za Zhi ; 40: e20240008, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38952174

RESUMO

The numerous and varied forms of neurodegenerative illnesses provide a considerable challenge to contemporary healthcare. The emergence of artificial intelligence has fundamentally changed the diagnostic picture by providing effective and early means of identifying these crippling illnesses. As a subset of computational intelligence, machine-learning algorithms have become very effective tools for the analysis of large datasets that include genetic, imaging, and clinical data. Moreover, multi-modal data integration, which includes information from brain imaging (MRI, PET scans), genetic profiles, and clinical evaluations, is made easier by computational intelligence. A thorough knowledge of the course of the illness is made possible by this consolidative method, which also facilitates the creation of predictive models for early medical evaluation and outcome prediction. Furthermore, there has been a great deal of promise shown by the use of artificial intelligence to neuroimaging analysis. Sophisticated image processing methods combined with machine learning algorithms make it possible to identify functional and structural anomalies in the brain, which often act as early indicators of neurodegenerative diseases. This chapter examines how computational intelligence plays a critical role in improving the diagnosis of neurodegenerative diseases such as Parkinson's, Alzheimer's, etc. To sum up, computational intelligence provides a revolutionary approach for improving the identification of neurodegenerative illnesses. In the battle against these difficult disorders, embracing and improving these computational techniques will surely pave the path for more individualized therapy and more therapies that are successful.


Assuntos
Biologia Computacional , Aprendizado de Máquina , Doenças Neurodegenerativas , Neuroimagem , Humanos , Doenças Neurodegenerativas/diagnóstico , Doenças Neurodegenerativas/diagnóstico por imagem , Biologia Computacional/métodos , Neuroimagem/métodos , Algoritmos , Inteligência Artificial , Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos
16.
Curr Top Med Chem ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38963108

RESUMO

In the realm of oncology, the transformative impact of PROTAC (PROteolysis TAget-ing Chimeras) technology has been particularly pronounced since its introduction in the 21st cen-tury. Initially conceived for cancer treatment, PROTACs have evolved beyond their primary scope, attracting increasing interest in addressing a diverse array of medical conditions. This ex-panded focus includes not only oncological disorders but also viral infections, bacterial ailments, immune dysregulation, neurodegenerative conditions, and metabolic disorders. This comprehensive review explores the broadening landscape of PROTAC application, high-lighting ongoing developments and innovations aimed at deploying these molecules across a spectrum of diseases. Careful consideration of the design challenges associated with PROTACs reveals that, when appropriately addressed, these compounds present significant advantages over traditional therapeutic approaches, positioning them as promising alternatives. To evaluate the efficacy of PROTAC molecules, a diverse array of assays is employed, ranging from High-Throughput Imaging (HTI) assays to Cell Painting assays, CRBN engagement assays, Fluorescence Polarization assays, amplified luminescent proximity homogeneous assays, Time-resolved fluorescence energy transfer assays, and Isothermal Titration Calorimetry assays. These assessments collectively contribute to a nuanced understanding of PROTAC performance. Looking ahead, the trajectory of PROTAC technology suggests its potential recognition as a ver-satile therapeutic strategy for an expansive range of medical conditions. Ongoing progress in this field sets the stage for PROTACs to emerge as valuable tools in the multifaceted landscape of medical treatments.

17.
Int J Biol Macromol ; 275(Pt 1): 133571, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38960243

RESUMO

Prolyl oligopeptidase (POP) is a compelling therapeutic target associated with aging and neurodegenerative disorders due to its pivotal role in neuropeptide processing. Despite initial promise demonstrated by early-stage POP inhibitors, their progress in clinical trials has been halted at Phase I or II. This impediment has prompted the pursuit of novel inhibitors. The current study seeks to contribute to the identification of efficacious POP inhibitors through the design, synthesis, and comprehensive evaluation (both in vitro and in silico) of thiazolyl thiourea derivatives (5a-r). In vitro experimentation exhibited that the compounds displayed significant higher potency as POP inhibitors. Compound 5e demonstrated an IC50 value of 16.47 ± 0.54 µM, representing a remarkable potency. A meticulous examination of the structure-activity relationship indicated that halogen and methoxy substituents were the most efficacious. In silico investigations delved into induced fit docking, pharmacokinetics, and molecular dynamics simulations to elucidate the intricate interactions, orientation, and conformational changes of these compounds within the active site of the enzyme. Moreover, our pharmacokinetic assessments confirmed that the majority of the synthesized compounds possess attributes conducive to potential drug development.

18.
Ageing Res Rev ; 99: 102357, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38830548

RESUMO

Neurodegenerative disorders (NDs) are expected to pose a significant challenge for both medicine and public health in the upcoming years due to global demographic changes. NDs are mainly represented by degeneration/loss of neurons, which is primarily accountable for severe mental illness. This neuronal degeneration leads to many neuropsychiatric problems and permanent disability in an individual. Moreover, the tight junction of the brain, blood-brain barrier (BBB)has a protective feature, functioning as a biological barrier that can prevent medicines, toxins, and foreign substances from entering the brain. However, delivering any medicinal agent to the brain in NDs (i.e., Multiple sclerosis, Alzheimer's, Parkinson's, etc.) is enormously challenging. There are many approved therapies to address NDs, but most of them only help treat the associated manifestations. The available therapies have failed to control the progression of NDs due to certain factors, i.e., BBB and drug-associated undesirable effects. NDs have extremely complex pathology, with many pathogenic mechanisms involved in the initiation and progression; thereby, a limited survival rate has been observed in ND patients. Hence, understanding the exact mechanism behind NDs is crucial to developing alternative approaches for improving ND patients' survival rates. Thus, the present review sheds light on different cellular mechanisms involved in NDs and novel therapeutic approaches with their clinical relevance, which will assist researchers in developing alternate strategies to address the limitations of conventional ND therapies. The current work offers the scope into the near future to improve the therapeutic approach of NDs.


Assuntos
Doenças Neurodegenerativas , Humanos , Doenças Neurodegenerativas/terapia , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/patologia , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Relevância Clínica
19.
Magn Reson Med Sci ; 23(3): 367-376, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38880615

RESUMO

The most commonly used neuroimaging biomarkers of brain structure, particularly in neurodegenerative diseases, have traditionally been summary measurements from ROIs derived from structural MRI, such as volume and thickness. Advances in MR acquisition techniques, including high-field imaging, and emergence of learning-based methods have opened up opportunities to interrogate brain structure in finer detail, allowing investigators to move beyond macrostructural measurements. On the one hand, superior signal contrast has the potential to make appearance-based metrics that directly analyze intensity patterns, such as texture analysis and radiomics features, more reliable. Quantitative MRI, particularly at high-field, can also provide a richer set of measures with greater interpretability. On the other hand, use of neural networks-based techniques has the potential to exploit subtle patterns in images that can now be mined with advanced imaging. Finally, there are opportunities for integration of multimodal data at different spatial scales that is enabled by developments in many of the above techniques-for example, by combining digital histopathology with high-resolution ex-vivo and in-vivo MRI. Some of these approaches are at early stages of development and present their own set of challenges. Nonetheless, they hold promise to drive the next generation of validation and biomarker studies. This article will survey recent developments in this area, with a particular focus on Alzheimer's disease and related disorders. However, most of the discussion is equally relevant to imaging of other neurological disorders, and even to other organ systems of interest. It is not meant to be an exhaustive review of the available literature, but rather presented as a summary of recent trends through the discussion of a collection of representative studies with an eye towards what the future may hold.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Neuroimagem , Humanos , Neuroimagem/métodos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Doenças Neurodegenerativas/diagnóstico por imagem , Doenças Neurodegenerativas/patologia , Biomarcadores/análise , Redes Neurais de Computação , Interpretação de Imagem Assistida por Computador/métodos , Radiômica
20.
Mol Neurobiol ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38856793

RESUMO

Neurodegenerative illnesses (NDDs) like Alzheimer's, Parkinson's, amyotrophic lateral sclerosis, spinal muscular atrophy, and Huntington's disease have demonstrated considerable potential for gene therapy as a viable therapeutic intervention. NDDs are marked by the decline of neurons, resulting in changes in both behavior and pathology within the body. Strikingly, only symptomatic management is available without a cure for the NDDs. There is an unmet need for a permanent therapeutic approach. Many studies have been going on to target the newer therapeutic molecular targets for NDDs including gene-based therapy. Gene therapy has the potential to provide therapeutic benefits to a large number of patients with NDDs by offering mechanisms including neuroprotection, neuro-restoration, and rectification of pathogenic pathways. Gene therapy is a medical approach that aims to modify the biological characteristics of living cells by controlling the expression of specific genes in certain neurological disorders. Despite being the most complex and well-protected organ in the human body, there is clinical evidence to show that it is possible to specifically target the central nervous system (CNS). This provides hope for the prospective application of gene therapy in treating NDDs in the future. There are several advanced techniques available for using viral or non-viral vectors to deliver the therapeutic gene to the afflicted region. Neurotrophic factors (NTF) in the brain are crucial for the development, differentiation, and survival of neurons in the CNS, making them important in the context of various neurological illnesses. Gene delivery of NTF has the potential to be used as a therapeutic approach for the treatment of neurological problems in the brain. This review primarily focuses on the methodologies employed for delivering the genes of different NTFs to treat neurological disorders. These techniques are currently being explored as a viable therapeutic approach for neurodegenerative diseases. The article exclusively addresses gene delivery approaches and does not cover additional therapy strategies for NDDs. Gene therapy offers a promising alternative treatment for NDDs by stimulating neuronal growth instead of solely relying on symptom relief from drugs and their associated adverse effects. It can serve as a long-lasting and advantageous treatment choice for the management of NDDs. The likelihood of developing NDDs increases with age as a result of neuronal degradation in the brain. Gene therapy is an optimal approach for promoting neuronal growth through the introduction of nerve growth factor genes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...