Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 426
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38896221

RESUMO

Heat-killed Lactococcus lactis KC24 (H-KC24) has been examined for its neuroprotective effects in SH-SY5Y cells. We hypothesized that H-KC24 could alleviate memory impairment through the gut-brain axis. Scopolamine (1 mg/kg/day) was administered to ICR mice to induce memory impairment. Low- and high-dose H-KC24 cells (1 × 109 and 2 × 109 CFU/day, respectively) or donepezil (DO, 2 mg/kg) were administered for 14 days. H-KC24 treatment alleviated the deleterious scopolamine-induced memory effects on the recognition index and object recognition ability in the novel object recognition test and the Y-maze test. Changes in neurotransmitters and synaptic plasticity were confirmed by measuring acetylcholine, acetylcholinesterase, choline acetyltransferase, brain-derived neurotrophic factor, cyclic AMP response element-binding protein, and phosphorylated cyclic AMP response element-binding protein expression in brain tissues. In the H-KC24 and DO groups, ß-secretase levels increased, whereas amyloid ß levels decreased, demonstrating that H-KC24 can improve memory impairment caused by oxidative stress. This study demonstrated the positive effects of H-KC24 in a scopolamine-induced memory impairment mouse model.

2.
Front Pharmacol ; 15: 1378358, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38895624

RESUMO

The incidence of ischemic stroke has been increasing annually with an unfavorable prognosis. Cerebral ischemia reperfusion injury can exacerbate nerve damage. Effective mitochondrial quality control including mitochondrial fission, fusion and autophagy, is crucial for maintaining cellular homeostasis. Several studies have revealed the critical role of mitophagy in Cerebral ischemia reperfusion injury. Cerebral ischemia and hypoxia induce mitophagy, and mitophagy exhibits positive and negative effects in cerebral ischemia reperfusion injury. Studies have shown that Chinese herbal medicine can alleviate Cerebral ischemia reperfusion injury and serve as a neuroprotective agent by inhibiting or promoting mitophagy-mediated pathways. This review focuses on the mitochondrial dynamics and mitophagy-related pathways, as well as the role of mitophagy in ischemia reperfusion injury. Additionally, it discusses the therapeutic potential and benefits of Chinese herbal monomers and decoctions in the treatment of ischemic stroke.

3.
Chem Biodivers ; : e202400788, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38934531

RESUMO

This review focus on the terpenoids as potential therapeutic agents for depression and anxiety disorders, which naturally found in a variety of plants and exhibit a wide range of biological activities. Among the terpenoids discussed in this review are α-pinene, ß-caryophyllene, α-phellandrene, limonene, ß-linalool, 1, 8-cineole, ß-pinene, caryophyllene oxide, p-cymene, and eugenol. All of these compounds have been studied extensively regarding their pharmacological properties, such as neuroprotective effect, anti-inflammation, antibacterial, regulation of neurotransmitters and antioxidant effect. Preclinical evidence are reviewed to highlight their diverse mechanisms of action and therapeutic potential to support antidepressant and anxiolytic properties. Additionally, challenges and future directions are also discussed to emphasize therapeutic utility of terpenoids for mental health disorders. Overall, this review provides a promising role of terpenoids as novel therapeutic agents for depression and anxiety, with potential implications for the development of more effective and well-tolerated treatments in the field of psychopharmacology.

4.
Low Urin Tract Symptoms ; 16(3): e12518, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38777796

RESUMO

OBJECTIVES: This study evaluates the impact of equol, a metabolite of soy isoflavone, on bladder dysfunction in rats with bladder outlet obstruction (BOO). In addition, we investigate its potential as a neuroprotective agent for the obstructed bladder and discuss its applicability in managing overactive bladder (OAB). METHODS: Eighteen male Sprague-Dawley rats were divided into three groups (six rats per group) during the rearing period. The Sham and C-BOO groups received an equol-free diet, while the E-BOO group received equol supplementation (0.25 g/kg). At 8 weeks old, rats underwent BOO surgery, followed by continuous cystometry after 4 weeks of rearing. The urinary oxidative stress markers (8-hydroxy-2'-deoxyguanosine and malondialdehyde) were measured, and the bladder histology was analyzed using hematoxylin-eosin, Masson's trichrome, and immunohistochemical staining (neurofilament heavy chain for myelinated nerves, peripherin for unmyelinated nerves, and malondialdehyde). RESULTS: Equol reduced BOO-induced smooth muscle layer fibrosis, significantly prolonged the micturition interval (C-BOO: 193 s, E-BOO: 438 s) and increased the micturition volume (C-BOO: 0.54 mL, E-BOO: 1.02 mL) compared to the C-BOO group. Equol inhibited the increase in urinary and bladder tissue malondialdehyde levels. While the C-BOO group exhibited reduced peripherin alone positive nerve fibers within the smooth muscle layer, equol effectively attenuated this decline. CONCLUSIONS: Equol reduces lipid peroxidation and smooth muscle layer fibrosis in the bladder and exhibited neuroprotective effects on bladder nerves (peripheral nerves) and prevented the development of bladder dysfunction associated with BOO in rats. Consumption of equol is promising for the prevention of OAB associated with BOO.


Assuntos
Modelos Animais de Doenças , Equol , Estresse Oxidativo , Ratos Sprague-Dawley , Obstrução do Colo da Bexiga Urinária , Bexiga Urinária , Animais , Masculino , Equol/farmacologia , Obstrução do Colo da Bexiga Urinária/tratamento farmacológico , Obstrução do Colo da Bexiga Urinária/patologia , Ratos , Bexiga Urinária/efeitos dos fármacos , Bexiga Urinária/patologia , Estresse Oxidativo/efeitos dos fármacos , Bexiga Urinária Hiperativa/etiologia , Bexiga Urinária Hiperativa/prevenção & controle , Bexiga Urinária Hiperativa/tratamento farmacológico , Malondialdeído/metabolismo , Fármacos Neuroprotetores/farmacologia , Micção/efeitos dos fármacos , Fibrose
5.
Mol Neurobiol ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38780722

RESUMO

Plants and their derived phytochemicals have a long history of treating a wide range of illnesses for several decades. They are believed to be the origin of a diverse array of medicinal compounds. One of the compounds found in kudzu root is puerarin, a isoflavone glycoside commonly used as an alternative medicine to treat various diseases. From a biological perspective, puerarin can be described as a white needle crystal with the chemical name of 7-hydroxy-3-(4-hydroxyphenyl)-1-benzopyran-4-one-8-D-glucopyranoside. Besides, puerarin is sparingly soluble in water and produces no color or light yellow solution. Multiple experimental and clinical studies have confirmed the significant therapeutic effects of puerarin. These effects span a wide range of pharmacological effects, including neuroprotection, hepatoprotection, cardioprotection, immunomodulation, anticancer properties, anti-diabetic properties, anti-osteoporosis properties, and more. Puerarin achieves these effects by interacting with various cellular and molecular pathways, such as MAPK, AMPK, NF-κB, mTOR, ß-catenin, and PKB/Akt, as well as different receptors, enzymes, and growth factors. The current review highlights the molecular mechanism of puerarin as a neuroprotective agent in the treatment of various neurodegenerative and neurological diseases. Extensive cellular, animal, and clinical research has provided valuable insights into its effectiveness in conditions such as Alzheimer's disease, Parkinson's disease, epilepsy, cerebral stroke, depression, and more.

6.
Pharmaceuticals (Basel) ; 17(5)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38794135

RESUMO

Species of the genus Psychotria are used in popular medicine for pain, inflammatory symptoms, and mental disorders. Psychotria capillacea (Müll. Arg.) Standl. (Rubiaceae) is commonly known as coffee and some scientific studies have demonstrated its therapeutic potential. The goal of this study was to investigate the anti-inflammatory and neuroprotective effects, and acetylcholinesterase (AChE) inhibitory activity of a methanolic extract obtained from leaves of P. capillacea (MEPC), as well as the micromorphology and histochemistry of the leaves and stems of this plant. In addition, the MEPC was analyzed by UHPLC-MS/MS and the alkaloidal fraction (AF) obtained from the MEPC was tested in a mouse model of inflammation. MEPC contained three indole alkaloids, one sesquiterpene (megastigmane-type) and two terpene lactones. MEPC (3, 30 and 100 mg/kg) and AF (3 and 30 mg/kg) were evaluated in inflammation models and significantly inhibited edema at 2 h and 4 h, mechanical hyperalgesia after 4 h and the response to cold 3 h and 4 h after carrageenan injection. Scopolamine significantly increased the escape latency, and reduced the swimming time and number of crossings in the target quadrant and distance, while MEPC (3, 30 and 100 mg/kg), due to its neuroprotective actions, reversed these effects. AChE activity was significantly decreased in the cerebral cortex (52 ± 3%) and hippocampus (60 ± 3%), after MEPC administration. Moreover, micromorphological and histochemical information was presented, to aid in species identification and quality control of P. capillacea. The results of this study demonstrated that P. capillacea is an anti-inflammatory and antihyperalgesic agent that can treat acute disease and enhance memory functions in mouse models.

7.
Front Neurol ; 15: 1330102, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38715687

RESUMO

Objective: Temporal lobe epilepsy (TLE) is a prevalent refractory partial epilepsy seen in clinical practice, with most cases originating from the hippocampus and being characterized by impaired learning and memory. Oxidative stress plays a direct role in the development of epilepsy and neurodegeneration while promoting cognitive dysfunction. Previous research indicates that benzyl isothiocyanate (BITC) has antioxidative stress properties and contributes to neuroprotection. In this study, we aimed to investigate the neuroprotective effect of BITC on a lithium-pilocarpine-induced temporal lobe epileptic mice model. Methods: We conducted Intellicage learning tests, Morris water maze, open field test, and step-down-type passive avoidance tests, respectively. In addition, body weight and brain-to-body ratio were calculated. Nissl staining, real-time quantitative PCR detection of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase 1 (HO-1) and NAD(P)H dehydrogenase quinone 1(NQO1) were performed. Content of malondialdehyde (MDA) and activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and total antioxidant capacity (T-AOC) were determined. Results: Our results demonstrate that BITC enhances cognitive function and motor ability in mice, as determined by Intellicage learning tests, Morris water maze, open field test, and step-down-type passive avoidance tests, respectively. Epilepsy leads to the loss of neurons in the CA3 region, while BITC treatment plays a positive role in neuroprotection, especially in the cortex. In comparison to the control group, the EP group exhibited decreased transcription levels of HO-1 and NQO1, alongside reduced GSH-Px activity, while MDA content was elevated. Conversely, the BITC treatment group, when compared to the EP group, showed enhanced transcription levels of Nrf2, HO-1, and NQO1, along with increased GSH-Px activity, and a decrease in MDA content. Conclusion: In summary, our study provides evidence that BITC can improve cognitive impairments in pilocarpine-induced epileptic mice, demonstrating significant antioxidant effects and neuroprotective properties. This highlights its potential as a phytochemical for managing the sequelae of epilepsy.

8.
Bioorg Chem ; 148: 107434, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38744168

RESUMO

Azaphilones represent a particular group of fascinating pigments from fungal source, with easier industrialization and lower cost than the traditional plant-derived pigments, and they also display a wide range of pharmacological activities. Herein, 28 azaphilone analogs, including 12 new ones, were obtained from the fermentation culture of a marine fungus Penicillium sclerotium UJNMF 0503. Their structures were elucidated by MS, NMR and ECD analyses, together with NMR and ECD calculations and biogenetic considerations. Among them, compounds 1 and 2 feature an unusual natural benzo[d][1,3]dioxepine ring embedded with an orthoformate unit, while 3 and 4 represent the first azaphilone examples incorporating a novel rearranged 5/6 bicyclic core and a tetrahydropyran ring on the side chain, respectively. Our bioassays revealed that half of the isolates exhibited neuroprotective potential against H2O2-induced injury on RSC96 cells, while compound 13 displayed the best rescuing capacity toward the cell viability by blocking cellular apoptosis, which was likely achieved by upregulating the PI3K/Akt signaling pathway.


Assuntos
Apoptose , Benzopiranos , Relação Dose-Resposta a Droga , Peróxido de Hidrogênio , Fármacos Neuroprotetores , Penicillium , Fosfatidilinositol 3-Quinases , Pigmentos Biológicos , Proteínas Proto-Oncogênicas c-akt , Apoptose/efeitos dos fármacos , Penicillium/química , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/isolamento & purificação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Fosfatidilinositol 3-Quinases/metabolismo , Pigmentos Biológicos/farmacologia , Pigmentos Biológicos/química , Pigmentos Biológicos/isolamento & purificação , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/antagonistas & inibidores , Estrutura Molecular , Benzopiranos/farmacologia , Benzopiranos/química , Benzopiranos/isolamento & purificação , Relação Estrutura-Atividade , Animais , Sobrevivência Celular/efeitos dos fármacos , Ratos , Transdução de Sinais/efeitos dos fármacos
9.
Biomater Adv ; 161: 213895, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38795474

RESUMO

Ischemic stroke, a cerebrovascular disease caused by arterial occlusion in the brain, can lead to brain impairment and even death. Stem cell therapies have shown positive advantages to treat ischemic stroke because of their extended time window, but the cell viability is poor when transplanted into the brain directly. Therefore, a new hydrogel GelMA-T was developed by introducing taurine on GelMA to transplant neural stem cells. The GelMA-T displayed the desired photocuring ability, micropore structure, and cytocompatibility. Its compressive modulus was more similar to neural tissue compared to that of GelMA. The GelMA-T could protect SH-SY5Y cells from injury induced by OGD/R. Furthermore, the NE-4C cells showed better proliferation performance in GelMA-T than that in GelMA during both 2D and 3D cultures. All results demonstrate that GelMA-T possesses a neuroprotective effect for ischemia/reperfusion injury against ischemic stroke and plays a positive role in promoting NSC proliferation. The novel hydrogel is anticipated to function as cell vehicles for the transplantation of neural stem cells into the stroke cavity, aiming to treat ischemic stroke.


Assuntos
Proliferação de Células , Hidrogéis , Células-Tronco Neurais , Fármacos Neuroprotetores , Taurina , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/transplante , Taurina/farmacologia , Proliferação de Células/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Humanos , Animais , Sobrevivência Celular/efeitos dos fármacos
10.
Neurochem Int ; 177: 105762, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38723901

RESUMO

Linalool is a neuroprotective monoterpene found in essential oils from aromatic plants. Linalool's effectiveness in AD animal models has been established previously, but its mechanisms of action remain unclear. Therefore, this study aims to investigate whether linalool binds directly to the amyloid beta (Aß) fibrils to understand it's role in preventing neurodegeneration. The anti-aggregation ability of Linalool was determined using Dithiothreitol (DTT), and thermal aggregation assays followed by Thioflavin T (ThT) binding assay. AD animals were treated with Linalool, and Thioflavin T staining was used to check the binding of linalool to Aß fibrils in rat brain tissue sections. Preliminary studies revealed the anti-aggregation potential of linalool under the thermal and chemical stimulus. Further, in ThT binding assay Linalool inhibited Aß aggregation, binding directly to Aß fibrils. The reduced fluorescence intensity of ThT in AD brain tissues following linalool administration, highlights its neuroprotective potential as a therapeutic agent for AD.


Assuntos
Monoterpenos Acíclicos , Peptídeos beta-Amiloides , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/antagonistas & inibidores , Monoterpenos Acíclicos/farmacologia , Animais , Ratos , Masculino , Monoterpenos/farmacologia , Monoterpenos/uso terapêutico , Monoterpenos/química , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Fármacos Neuroprotetores/farmacologia , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Ratos Wistar , Agregados Proteicos/efeitos dos fármacos , Agregados Proteicos/fisiologia , Ratos Sprague-Dawley , Agregação Patológica de Proteínas/tratamento farmacológico , Agregação Patológica de Proteínas/metabolismo , Agregação Patológica de Proteínas/prevenção & controle
11.
BMC Complement Med Ther ; 24(1): 175, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664646

RESUMO

BACKGROUND: Excessive oxidative stress in the brain is an important pathological factor in neurological diseases. Acetoxypachydiol (APHD) is a lipophilic germacrane-type diterpene extracted as a major component from different species of brown algae within the genus Dictyota. There have been no previous reports on the pharmacological activity of APHD. The present research aims to explore the potential neuroprotective properties of APHD and its underlying mechanisms. METHODS: The possible mechanism of APHD was predicted using a combination of molecular docking and network pharmacological analysis. PC12 cells were induced by H2O2 and oxygen-glucose deprivation/reoxygenation (OGD/R), respectively. Western blot, flow cytometry, immunofluorescence staining, and qRT-PCR were used to investigate the antioxidant activity of APHD. The HO-1 inhibitor ZnPP and Nrf2 gene silencing were employed to confirm the influence of APHD on the signaling cascade involving HO-1, Nrf2, and Keap1 in vitro. RESULTS: APHD exhibited antioxidant activity in both PC12 cells subjected to H2O2 and OGD/R conditions by downregulating the release of LDH, the concentrations of MDA, and ROS, and upregulating SOD, GSH-Px, and GSH concentrations. APHD could potentially initiate the Keap1-Nrf2/HO-1 signaling cascade, according to the findings from network pharmacology evaluation and molecular docking. Furthermore, APHD was observed to increase Nrf2 and HO-1 expression at both mRNA and protein levels, while downregulating the protein concentrations of Keap1. Both Nrf2 silencing and treatment with ZnPP reversed the neuroprotective effects of APHD. CONCLUSIONS: APHD activated antioxidant enzymes and downregulated the levels of LDH, MDA, and ROS in two cell models. The neuroprotective effect is presumably reliant on upregulation of the Keap1-Nrf2/HO-1 pathway. Taken together, APHD from brown algae of the genus Dictyota shows potential as a candidate for novel neuroprotective agents.


Assuntos
Diterpenos , Heme Oxigenase (Desciclizante) , Proteína 1 Associada a ECH Semelhante a Kelch , Fator 2 Relacionado a NF-E2 , Fármacos Neuroprotetores , Estresse Oxidativo , Transdução de Sinais , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Fármacos Neuroprotetores/farmacologia , Ratos , Células PC12 , Estresse Oxidativo/efeitos dos fármacos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Transdução de Sinais/efeitos dos fármacos , Diterpenos/farmacologia , Simulação de Acoplamento Molecular , Antioxidantes/farmacologia , Heme Oxigenase-1/metabolismo
12.
Int J Mol Sci ; 25(7)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38612712

RESUMO

Tetraselmis chuii is an EFSA-approved novel food and dietary supplement with increasing use in nutraceutical production worldwide. This study investigated the neuroprotective potential of bioactive compounds extracted from T. chuii using green biobased solvents (ethyl acetate, AcOEt, and cyclopentyl methyl ether, CPME) under pressurized liquid extraction (PLE) conditions and supercritical fluid extraction (SFE). Response surface optimization was used to study the effect of temperature and solvent composition on the neuroprotective properties of the PLE extracts, including anticholinergic activity, reactive oxygen/nitrogen species (ROS/RNS) scavenging capacity, and anti-inflammatory activity. Optimized extraction conditions of 40 °C and 34.9% AcOEt in CPME resulted in extracts with high anticholinergic and ROS/RNS scavenging capacity, while operation at 180 °C and 54.1% AcOEt in CPME yielded extracts with potent anti-inflammatory properties using only 20 min. Chemical characterization revealed the presence of carotenoids (neoxanthin, violaxanthin, zeaxanthin, α- and ß-carotene) known for their anti-cholinesterase, antioxidant, and anti-inflammatory potential. The extracts also exhibited high levels of omega-3 polyunsaturated fatty acids (PUFAs) with a favorable ω-3/ω-6 ratio (>7), contributing to their neuroprotective and anti-inflammatory effects. Furthermore, the extracts were found to be safe to use, as cytotoxicity assays showed no observed toxicity in HK-2 and THP-1 cell lines at or below a concentration of 40 µg mL-1. These results highlight the neuroprotective potential of Tetraselmis chuii extracts, making them valuable in the field of nutraceutical production and emphasize the interest of studying new green solvents as alternatives to conventional toxic solvents.


Assuntos
Clorófitas , Ácidos Graxos Ômega-3 , Microalgas , Espécies Reativas de Oxigênio , Antagonistas Colinérgicos , Suplementos Nutricionais , Anti-Inflamatórios/farmacologia , Solventes
13.
Front Pharmacol ; 15: 1362857, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38567356

RESUMO

Introduction: Ischemic stroke is the second most common chronic disease worldwide and is associated with high morbidity and mortality. Thromboembolism and platelet aggregation are the most characteristic features of stroke. Other than aspirin, no standard, accepted, or effective treatment for acute ischemic stroke has been established. Consequently, it is essential to identify novel therapeutic compounds for this condition. Methods: In this study, novel ozagrel/paeonol-containing codrugs were synthesized and characterized using 1H-NMR, 13C-NMR, and mass spectroscopy. Their antiplatelet aggregation activity was evaluated, with compound PNC3 found to exhibit the best effect. Subsequently, studies were conducted to assess its neuroprotective effect, pharmacokinetic properties and model its binding mode to P2Y12 and TXA2, two proteins critical for platelet aggregation. Results: The results indicated that PNC3 has good bioavailability and exerts protective effects against oxygen-glucose deprivation injury in PC12 cells. Molecular docking analysis further demonstrated that the compound interacts with residues located in the active binding sites of the target proteins. Conclusion: The codrugs synthesized in this study display promising pharmacological activities and have the potential for development as an oral formulation.

14.
Fitoterapia ; 175: 105980, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38685510

RESUMO

Forty-three diarylheptanoids were isolated from Alpinia officinarum rhizomes among them eight ones (1-6) were undescribed compounds whose structures were identified by UV, IR, HRESIMS, and NMR. The neuroprotective effects of these diarylheptanoids were evaluated on H2O2-damaged SH-SY5Y cells. Compounds 7, 10, 12, 20, 22, 25, 28, 33, 35, 37, and 42 presented significant neuroprotective effects than that of the positive control (EGCG) at the concentrations of 5, 10 or 20 µM. Compounds 10, 22, 25, and 33 significantly reduced the ROS levels and inhibited the generations of MDA and NO in oxidative injured cells to display neuroprotective effects. This study lay the foundation for the application of Alpinia officinarum rhizomes.


Assuntos
Alpinia , Diarileptanoides , Fármacos Neuroprotetores , Rizoma , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/isolamento & purificação , Diarileptanoides/farmacologia , Diarileptanoides/isolamento & purificação , Diarileptanoides/química , Rizoma/química , Alpinia/química , Estrutura Molecular , Humanos , Linhagem Celular Tumoral , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/isolamento & purificação , Espécies Reativas de Oxigênio/metabolismo , China , Estresse Oxidativo/efeitos dos fármacos , Óxido Nítrico/metabolismo
15.
Heliyon ; 10(5): e26642, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38434355

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by memory loss, cognitive disorder, language dysfunction, and mental disability. The main neuropathological changes in AD mainly include amyloid plaque deposition, neurofibrillary tangles, synapse loss, and neuron reduction. However, the current anti-AD drugs do not demonstrate a favorable effect in altering the pathological course of AD. Moreover, long-term use of these drugs is usually accompanied with various side effects. Ginsenosides are the major active constituents of ginseng and have protective effects on AD through various mechanisms in both in vivo and in vitro studies. In this review, we focused on discussing the therapeutic potential effects and the mechanisms of pharmacological activities of ginsenosides in AD, to provide new insight for further research and clinical application of ginsenosides in the future. Recent studies on the pharmacological effects and mechanisms of ginsenosides were retrieved from Chinese National Knowledge Infrastructure, National Science and Technology Library, Wanfang Data, Elsevier, ScienceDirect, PubMed, SpringerLink, and the Web of Science database up to April 2023 using relevant keywords. Network pharmacology and bioinformatics analysis were used to predict the therapeutic effects and mechanisms of ginsenosides against AD. Ginsenosides presented a wide range of therapeutic and biological activities, including alleviating Aß deposition, decreasing tau hyperphosphorylation, regulating the cholinergic system, resisting oxidative stress, modulating Ca2+ homeostasis, as well as anti-inflammation and anti-apoptosis in neurons, respectively. For further developing the therapeutic potential as well as clinical applications, the network pharmacology approach was combined with a summary of published studies.

16.
Neurotherapeutics ; 21(3): e00342, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38493057

RESUMO

Novel therapeutics for the treatment of ischemic stroke remains to be the unmet clinical needs. Previous studies have indicated that salvianolic acid A (SAA) is a promising candidate for the treatment of the brain diseases. However, SAA has poor absolute bioavailability and does not efficiently cross the intact blood-brain barrier (BBB), which limit its efficacy. To this end we developed a brain-targeted liposomes for transporting SAA via the BBB by incorporating the liposomes to a transport receptor, insulin-like growth factor-1 receptor (IGF1R). The liposomes were prepared by ammonium sulfate gradients loading method. The prepared SAA-loaded liposomes (Lipo/SAA) were modified with IGF1R monoclonal antibody to generate IGF1R antibody-conjugated Lipo/SAA (IGF1R-targeted Lipo/SAA). The penetration of IGF1R-targeted Lipo/SAA into the brain was confirmed by labeling with Texas Red, and their efficacy were evaluate using middle cerebral artery occlusion (MCAO) model. The results showed that IGF1R-targeted Lipo/SAA are capable of transporting SAA across the BBB into the brain, accumulation in brain tissue, and sustained releasing SAA for several hours. Administration o IGF1R-targeted Lipo/SAA notably reduced infarct size and neuronal damage, improved neurological function and inhibited cerebral inflammation, which had much higher efficiency than no-targeted SAA.


Assuntos
AVC Isquêmico , Lipossomos , Animais , AVC Isquêmico/tratamento farmacológico , Masculino , Ácidos Cafeicos/administração & dosagem , Ácidos Cafeicos/química , Ácidos Cafeicos/farmacologia , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Receptor IGF Tipo 1/metabolismo , Camundongos , Lactatos/administração & dosagem , Lactatos/química , Infarto da Artéria Cerebral Média/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Ratos Sprague-Dawley , Ratos , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos
17.
Fitoterapia ; 175: 105908, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38479621

RESUMO

Three undescribed sesquiterpenes, designed as pichinenoid A-C (1-3), along with nine known ones (4-12) were isolated from the stems and leaves of Picrasma chinensis. The new isolates including their absolute configurations were elucidated based on extensive spectroscopic methods, single crystal X-ray diffraction, and electronic circular dichroism (ECD) experiments, as well as comparison with literature data. Structurally, compounds 1 and 2 are descending sesquiterpenes, while pichinenoid C (3) is a rare sesquiterpene bearing a 2-methylenebut-3-enoic acid moiety at the C-6 side chain. All the isolated compounds were tested for their neuroprotective effects against the H2O2-induced damage on human neuroblastoma SH-SY5Y cells, and most of them showed moderate neuroprotective activity. Especially, compounds 1, 3-5, and 7 showed a potent neuroprotective effect at 25 or 50 µM. Moreover, the neuroprotective effects of compounds 1 and 4 were tested on a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease (PD) mouse model. Results of western blot and immunofluorescence indicated that compound 4 significantly counteract the toxicity of MPTP, and reversed the expression of tyrosine hydroxylase (TH) in substantia nigra (SN) and striatum (ST) of the mouse brain. Interestingly, western blot data suggested compound 4 also enhanced B-cell lymphoma-2 (Bcl-2) and heme oxygenase 1 (HO-1) expressions in the brain tissues from MPTP damaged mouse.


Assuntos
Fármacos Neuroprotetores , Picrasma , Folhas de Planta , Caules de Planta , Sesquiterpenos , Animais , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/isolamento & purificação , Sesquiterpenos/farmacologia , Sesquiterpenos/isolamento & purificação , Camundongos , Humanos , Linhagem Celular Tumoral , Estrutura Molecular , Picrasma/química , Caules de Planta/química , Folhas de Planta/química , Masculino , Heme Oxigenase-1/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , China , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/isolamento & purificação , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Camundongos Endogâmicos C57BL
18.
Psychogeriatrics ; 24(3): 701-718, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38528391

RESUMO

Curcumin and omega-3 polyunsaturated fatty acids (ω-3 PUFA) are multifunctional compounds which play an important role in Alzheimer's disease (AD) and little has been addressed about the role of these two compounds together in the progression of the disease. There is evidence of the beneficial effect of combined administration of ω-3 PUFA and other dietary supplements such as vitamins and polyphenols in the prevention of AD, although much remains to be understood about their possible complementary or synergistic activity. Therefore, the objective of this work is to review the research focused on studying the effect and mechanisms of action of curcumin, ω-3 PUFA, and the combination of these nutraceutical compounds, particularly on AD, and to integrate the possible ways in which these compounds can potentiate their effect. The most important pathophysiologies that manifest in AD will be addressed, in order to have a better understanding of the mechanisms of action through which these bioactive compounds exert a neuroprotective effect.


Assuntos
Doença de Alzheimer , Curcumina , Suplementos Nutricionais , Ácidos Graxos Ômega-3 , Fármacos Neuroprotetores , Curcumina/uso terapêutico , Curcumina/farmacologia , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/prevenção & controle , Humanos , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-3/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Sinergismo Farmacológico
19.
Front Pharmacol ; 15: 1328632, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38375037

RESUMO

Background: The Jiawei Kongsheng Zhenzhong pill (JKZP), a Chinese herbal prescription comprised of eight Chinese crude drugs, has been historically employed to treat neurological and psychological disorders. Nevertheless, the ambiguous material basis severely hindered its progress and application. Purpose: The current study aimed to establish a rapid analytical method for identifying the chemical components of the JKZP aqueous extract and the components absorbed into the rat serum to investigate the quality markers (Q-markers) responsible for the neuroprotective effects of JKZP. Methods: The qualitative detection of the chemical components, prototype components, and metabolites of the aqueous extracts of JKZP, as well as the serum samples of rats that were administered the drug, was performed using the ultra-performance liquid chromatography- quadrupole time-of-flight tandem mass spectrometry (UPLC-Q-TOF-MS/MS) technology. This analysis combined information from literature reports and database comparisons. Moreover, the study was conducted to anticipate the potential Q-markers for the neuroprotective effects of JKZP based on the "five principles" of Q-marker determination. Results: A total of 67 compounds and 111 serum components (comprising 33 prototypes and 78 metabolites) were detected and identified. Combining the principles of quality transmission and traceability, compound compatibility environment, component specificity, effectiveness, and measurability, the study predicted that five key compounds, namely, senkyunolide H, danshensu, echinacoside, loganin, and 3,6'-disinapoyl sucrose, may serve as potential pharmacological bases for the neuroprotective effects of JKZP. Conclusion: To summarize, the UPLC-Q-TOF-MS/MS technique can be employed to rapidly and accurately identify compounds in JKZP. Five active compounds have been predicted to be the Q-markers for the neuroprotective effects of JKZP. This discovery serves as a reference for improving quality, advancing further research and development, and utilizing Chinese herbal prescriptions.

20.
J Stroke Cerebrovasc Dis ; 33(8): 107628, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38342273

RESUMO

OBJECTIVES: Ischemic stroke (IS) is a leading cause of morbidity and mortality globally. This study aimed to investigate the role of exosomes (Exo) derived from bone marrow mesenchymal stem cells (BMSCs) treated with Musk Ketone (Mus treated-Exo) in the development of IS injury. METHODS: BMSCs were pretreated with 10 µM Mus for 36 h, and Exo derived from these Mus-treated BMSCs (Mus-treated Exo) were extracted. Rats with middle cerebral artery occlusion (MCAO) were administered either 2 mg/kg of control Exo (Ctrl-Exo), 2 mg/kg of Mus treated-Exo, or 10 µM Mus. Neurological deficit and cerebral infarction in the MCAO rats were assessed utilizing neurological scores and TTC staining. Neuronal apoptosis, activation of microglia/macrophages, and inflammation were evaluated through TUNEL staining, immunofluorescence staining, and western blot analysis, respectively. RESULTS: Our findings revealed that Mus-treated Exo possessed a more pronounced neuroprotective effect on MCAO rats when compared to Ctrl-Exo and Mus treatment alone. Specifically, Mus treated-Exo effectively ameliorated neurological function, reduced the volume of cerebral infarction, and diminished hemispheric swelling in MCAO rats. Moreover, it inhibited neuronal apoptosis and activation of microglia/macrophages, promoted the expression of the anti-apoptotic protein Bcl-2 while decreasing the expression of pro-apoptotic protein Bax, Cleaved-caspase 3, and pro-inflammatory factors IL-6 and COX-2. CONCLUSIONS: The findings imply that Mus treated-Exo could confer neuroprotection in rats affected by IS, potentially by attenuating apoptosis and neuroinflammation. The underlying mechanisms, however, warrant further investigation. Mus treated-Exo shows potential as a new therapeutic strategy for IS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...