Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.484
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38963553

RESUMO

RATIONALE: Our study aimed to unravel the unknown mechanisms behind the exceptional efficacy of Psilocybin (PSI) in treating treatment-resistant depression (TRD). Focusing on Wistar-Kyoto (WKY) rats with a TRD phenotype and Wistar (WIS) rats as a normative comparison, we investigated behavioral and neuroplasticity-related responses to PSI, striving to shed light on the distinctive features of its antidepressant effects. OBJECTIVES: We set out to assess the behavioral impact of acute and prolonged PSI administration on WKY and WIS rats, employing Novel Object Recognition (NORT), Social Interaction (SI), and Forced Swimming Test (FST). Our secondary objectives involved exploring strain-specific alterations in neuroplasticity-related parameters, including brain-derived neurotrophic factor (BDNF) and activity-regulated cytoskeleton-associated protein (Arc). METHODS: Conducting post-acute and extended assessments after a single PSI administration, we applied behavioral tests and biochemical analyses to measure serum BDNF levels and neuroplasticity-related parameters in the prefrontal cortex. Statistical analyses were deployed to discern significant differences between the rat strains and assess the impact of PSI on behavioral and biochemical outcomes. RESULTS: Our findings uncovered significant behavioral disparities between WKY and WIS rats, indicating passive behavior and social withdrawal in the former. PSI demonstrated pronounced pro-social and antidepressant effects in both strains, each with its distinctive temporal trajectory. Notably, we identified strain-specific variations in BDNF-related signaling and observed the modulation of Arc expression in WKY rats. CONCLUSIONS: Our study delineated mood-related behavioral nuances between WKY and WIS rat strains, underscoring the antidepressant and pro-social properties of PSI in both groups. The distinct temporal patterns of observed changes and the identified strain-specific neuroplasticity alterations provide valuable insights into the TRD phenotype and the mechanisms underpinning the efficacy of PSI.

2.
Glia ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961612

RESUMO

The peripheral nervous system is a key regulator of cancer progression. In pancreatic ductal adenocarcinoma (PDAC), the sympathetic branch of the autonomic nervous system inhibits cancer development. This inhibition is associated with extensive sympathetic nerve sprouting in early pancreatic cancer precursor lesions. However, the underlying mechanisms behind this process remain unclear. This study aimed to investigate the roles of pancreatic Schwann cells in the structural plasticity of sympathetic neurons. We examined the changes in the number and distribution of Schwann cells in a transgenic mouse model of PDAC and in a model of metaplastic pancreatic lesions induced by chronic inflammation. Schwann cells proliferated and expanded simultaneously with new sympathetic nerve sprouts in metaplastic/neoplastic pancreatic lesions. Sparse genetic labeling showed that individual Schwann cells in these lesions had a more elongated and branched structure than those under physiological conditions. Schwann cells overexpressed neurotrophic factors, including glial cell-derived neurotrophic factor (GDNF). Sympathetic neurons upregulated the GDNF receptors and exhibited enhanced neurite growth in response to GDNF in vitro. Selective genetic deletion of Gdnf in Schwann cells completely blocked sympathetic nerve sprouting in metaplastic pancreatic lesions in vivo. This study demonstrated that pancreatic Schwann cells underwent adaptive reprogramming during early cancer development, supporting a protective antitumor neuronal response. These finding could help to develop new strategies to modulate cancer associated neural plasticity.

3.
Mol Neurobiol ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38965172

RESUMO

A pathological hallmark of Alzheimer's disease (AD) is the region-specific accumulation of the amyloid-beta protein (Aß), which triggers aberrant neuronal excitability, synaptic impairment, and progressive cognitive decline. Previous works have demonstrated that Aß pathology induced aberrant elevation in the levels and excessive enzymatic hydrolysis of voltage-gated sodium channel type 2 beta subunit (Navß2) in the brain of AD models, accompanied by alteration in excitability of hippocampal neurons, synaptic deficits, and subsequently, cognitive dysfunction. However, the mechanism is unclear. In this research, by employing cell models treated with toxic Aß1-42 and AD mice, the possible effects and potential mechanisms induced by Navß2. The results reveal that Aß1-42 induces remarkable increases in Navß2 intracellular domain (Navß2-ICD) and decreases in both BDNF exons and protein levels, as well as phosphorylated tropomyosin-related kinase B (pTrkB) expression in cells and mice, coupled with cognitive impairments, synaptic deficits, and aberrant neuronal excitability. Administration with exogenous Navß2-ICD further enhances these effects induced by Aß1-42, while interfering the generation of Navß2-ICD and/or complementing BDNF neutralize the Navß2-ICD-conducted effects. Luciferase reporter assay verifies that Navß2-ICD regulates BDNF transcription and expression by targeting its promoter. Collectively, our findings partially elucidate that abnormal enzymatic hydrolysis of Navß2 induced by Aß1-42-associated AD pathology leads to intracellular Navß2-ICD overload, which may responsible to abnormal neuronal excitability, synaptic deficit, and cognition dysfunction, through its transcriptional suppression on BDNF. Therefore, this work supplies novel evidences that Navß2 plays crucial roles in the occurrence and progression of cognitive impairment of AD by transcriptional regulatory activity of its cleaved ICD.

4.
Hand Clin ; 40(3): 399-408, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38972684

RESUMO

Following nerve injury, growth factors (GFs) are transiently upregulated in injured neurons, proliferating Schwann cells, and denervated muscle and skin. They act on these same cells and tissues to promote nerve regeneration and end-organ reinnervation. Consequently, much attention has been focused on developing GF-based therapeutics. A major barrier to clinical translation of GFs is their short half-life. To provide sustained GF treatment to the affected nerve, muscle, and skin in a safe and practical manner, engineered drug delivery systems are needed. This review highlights recent advancements in GF-based therapeutics and discusses the remaining hurdles for clinical translation.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular , Regeneração Nervosa , Regeneração Nervosa/fisiologia , Regeneração Nervosa/efeitos dos fármacos , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/uso terapêutico , Traumatismos dos Nervos Periféricos/cirurgia , Traumatismos dos Nervos Periféricos/tratamento farmacológico , Traumatismos dos Nervos Periféricos/fisiopatologia , Animais , Sistemas de Liberação de Medicamentos
5.
Cell Physiol Biochem ; 58(4): 292-310, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38973197

RESUMO

BACKGROUND/AIMS: Tactile perception relies on mechanoreceptors and nerve fibers, including c-fibers, Aß-fibers and Aδ-fibers. Schwann cells (SCs) play a crucial role in supporting nerve fibers, with non-myelinating SCs enwrapping c-fibers and myelinating SCs ensheathing Aß and Aδ fibers. Recent research has unveiled new functions for cutaneous sensory SCs, highlighting the involvement of nociceptive SCs in pain perception and Meissner corpuscle SCs in tactile sensation. Furthermore, Piezo2, previously associated with Merkel cell tactile sensitivity, has been identified in SCs. The goal of this study was to investigate the channels implicated in SC mechanosensitivity and the release process of neurotrophic factor secretion. METHODS: Immortalized IFRS1 SCs and human primary SCs generated two distinct subtypes of SCs: undifferentiated and differentiated SCs. Quantitative PCR was employed to evaluate the expression of differentiation markers and mechanosensitive channels, including TRP channels (TRPV4, TRPM7 and TRPA1) and Piezo channels (Piezo1 and Piezo2). To validate the functionality of specific mechanosensitive channels, Ca2+ imaging and electronic cell sizing experiments were conducted under hypotonic conditions, and inhibitors and siRNAs were used. Protein expression was assessed by Western blotting and immunostaining. Additionally, secretome analysis was performed to evaluate the release of neurotrophic factors in response to hypotonic stimulation, with BDNF, a representative trophic factor, quantified using ELISA. RESULTS: Induction of differentiation increased Piezo2 mRNA expression levels both in IFRS1 and in human primary SCs. Both cell types were responsive to hypotonic solutions, with differentiated SCs displaying a more pronounced response. Gd3+ and FM1-43 effectively inhibited hypotonicity-induced Ca2+ transients in differentiated SCs, implicating Piezo2 channels. Conversely, inhibitors of Piezo1 and TRPM7 (Dooku1 and NS8593, respectively) had no discernible impact. Moreover, Piezo2 in differentiated SCs appeared to participate in regulatory volume decreases (RVD) after cell swelling induced by hypotonic stimulation. A Piezo2 deficiency correlated with reduced RVD and prolonged cell swelling, leading to heightened release of the neurotrophic factor BDNF by upregulating the function of endogenously expressed Ca2+-permeable TRPV4. CONCLUSION: Our study unveils the mechanosensitivity of SCs and implicates Piezo2 channels in the release of neurotrophic factors from SCs. These results suggest that Piezo2 may contribute to RVD, thereby maintaining cellular homeostasis, and may also serve as a negative regulator of neurotrophic factor release. These findings underscore the need for further investigation into the role of Piezo2 in SC function and neurotrophic regulation.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Tamanho Celular , Canais Iônicos , Células de Schwann , Células de Schwann/metabolismo , Células de Schwann/citologia , Humanos , Canais Iônicos/metabolismo , Tamanho Celular/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Canais de Cátion TRPV/metabolismo , Canais de Cátion TRPV/genética , RNA Interferente Pequeno/metabolismo , Diferenciação Celular , Células Cultivadas , Interferência de RNA , Cálcio/metabolismo , Canal de Cátion TRPA1/metabolismo , Canal de Cátion TRPA1/genética , Mecanotransdução Celular
6.
Artigo em Inglês | MEDLINE | ID: mdl-38973499

RESUMO

Parkinson's disease (PD) is a common neurodegenerative disorder characterized by progressive loss of dopamine neurons and aberrant deposits of alpha-synuclein (α-syn) in the brain. The symptomatic treatment is started after the onset of motor manifestations in a late stage of the disease. Preclinical studies with neurotrophic factors (NTFs) show promising results of disease-modifying neuroprotective or even neurorestorative effects. Four NTFs have entered phase I-II clinical trials with inconclusive outcomes. This is not surprising because the preclinical evidence is from acute early-stage disease models, but the clinical trials included advanced PD patients. To conclude the value of NTF therapies, clinical studies should be performed in early-stage patients with prodromal symptoms, that is, before motor manifestations. In this review, we summarize currently available diagnostic and prognostic biomarkers that could help identify at-risk patients benefiting from NTF therapies. Focus is on biochemical and imaging biomarkers, but also other modalities are discussed. Neuroimaging is the most important diagnostic tool today, but α-syn imaging is not yet viable. Modern techniques allow measuring various forms of α-syn in cerebrospinal fluid, blood, saliva, and skin. Digital biomarkers and artificial intelligence offer new means for early diagnosis and longitudinal follow-up of degenerative brain diseases.

7.
Neurosci Lett ; 836: 137880, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38885757

RESUMO

Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, plays key roles in neuronal protection and synaptic plasticity. Changes in BDNF are associated with various pathological conditions, including methamphetamine (meth) addiction, although the effects of meth on BDNF expression are not always consistent. We have previously demonstrated region-specific effects of a chronic meth regime on BDNF methylation and expression in the rat brain. This study aims to determine the effect of chronic meth administration on the expression of BDNF protein using immunohistochemistry in the rat frontal cortex and hippocampus. Novel object recognition (NOR) as a measure of cognitive function was also determined. Male Sprague Dawley rats were administered a chronic escalating dose (0.1-4 mg/kg over 14 days) (ED) of meth or vehicle; a subgroup of animals receiving meth were also given an acute "binge" (4x6mg) dose on the final day before NOR testing. The results showed that hippocampal CA1 BDNF protein was significantly increased by 72 % above control values in the ED-binge rats, while other hippocampal regions and frontal cortex were not significantly affected. Meth-administered animals also demonstrated deficits in NOR after 24 h delay. No significant effect of the additional binge dose on BDNF protein or NOR findings was apparent. This finding is consistent with our previous results of reduced DNA methylation and increased expression of the BDNF gene in this region. The hippocampal BDNF increase may reflect an initial increase in a protective factor produced in response to elevated glutamate release resulting in neurodegenerative excitotoxicity.

8.
Biomolecules ; 14(6)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38927039

RESUMO

Nerve growth factor (NGF), the first neurotrophin to be discovered, has a long and eventful research journey with a series of turning points, setbacks, and achievements. Since the groundbreaking investigations led by Nobel Prize winner Rita Levi-Montalcini, advancements in the comprehension of NGF's functions have revolutionized the field of neuroscience, offering new insights and opportunities for therapeutic innovation. However, the clinical application of NGF has historically been hindered by challenges in determining appropriate dosing, administration strategies, and complications related to the production process. Recent advances in the production and scientific knowledge of recombinant NGF have enabled its clinical development, and in 2018, the United States Food and Drug Administration approved cenegermin-bkbj, a recombinant human NGF, for the treatment of all stages of neurotrophic keratitis. This review traces the evolutionary path that transformed NGF from a biological molecule into a novel therapy with potential research applications beyond the eye. Special emphasis is put on the studies that advanced NGF from discovery to the first medicinal product approved to treat a human disease.


Assuntos
Fator de Crescimento Neural , Humanos , Fator de Crescimento Neural/metabolismo , Fator de Crescimento Neural/história , Animais , Proteínas Recombinantes/uso terapêutico , Proteínas Recombinantes/química , História do Século XX , História do Século XXI
9.
Biology (Basel) ; 13(6)2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38927306

RESUMO

The potential of Marrubium vulgare to alleviate scopolamine (Sco)-induced deficits in spatial working memory has drawn considerable scientific interest. This effect is partly attributed to its potent antioxidant and acetylcholinesterase inhibitory (AChEI) activities. This study examined the effects of M. vulgare extract, standardized to marrubiin content, on recognition memory in healthy and Sco-treated rats. Male Wistar rats (200-250 g) were divided into four groups. The extract was orally administered for 21 days and Sco (2 mg/kg) was intraperitoneally injected for 11 consecutive days. Memory performance was assessed using the novel object recognition test. Levels of acetylcholine (ACh), noradrenaline (NA), serotonin (Sero), and brain-derived neurotrophic factor (BDNF) and the phosphorylation of cAMP response element-binding protein (p-CREB) were evaluated in the cortex and hippocampus via ELISA. BDNF and CREB expression levels were assessed using RT-PCR. The results showed that M. vulgare significantly alleviated Sco-induced memory impairment, preserved cholinergic function in the hippocampus, increased NA levels in the brain, and restored pCREB expression in the cortex following Sco-induced reduction. In healthy rats, the extract upregulated BDNF, pCREB, and Bcl2 expression. Our findings indicate that the neuroprotective effects of M. vulgare may be linked to the modulation of cholinergic function, regulation of NA neurotransmission, and influence on key memory-related molecules.

10.
Cells ; 13(12)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38920687

RESUMO

Glial cell line-derived neurotrophic factor (GDNF) is among the strongest dopamine neuron function- and survival-promoting factors known. Due to this reason, it has clinical relevance in dopamine disorders such as Parkinson's disease and schizophrenia. In the striatum, GDNF is exclusively expressed in interneurons, which make up only about 0.6% of striatal cells. Despite clinical significance, histological analysis of striatal GDNF system arborization and relevance to incoming dopamine axons, which bear its receptor RET, has remained enigmatic. This is mainly due to the lack of antibodies able to visualize GDNF- and RET-positive cellular processes; here, we overcome this problem by using knock-in marker alleles. We find that GDNF neurons chemoattract RET+ axons at least seven times farther in distance than medium spiny neurons (MSNs), which make up 95% of striatal neurons. Furthermore, we provide evidence that tyrosine hydroxylase, the rate-limiting enzyme in dopamine synthesis, is enriched towards GDNF neurons in the dopamine axons. Finally, we find that GDNF neuron arborizations occupy approximately only twelve times less striatal volume than 135 times more abundant MSNs. Collectively, our results improve our understanding of how endogenous GDNF affects striatal dopamine system function.


Assuntos
Axônios , Corpo Estriado , Neurônios Dopaminérgicos , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Proteínas Proto-Oncogênicas c-ret , Animais , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Axônios/metabolismo , Corpo Estriado/metabolismo , Corpo Estriado/citologia , Camundongos , Proteínas Proto-Oncogênicas c-ret/metabolismo , Proteínas Proto-Oncogênicas c-ret/genética , Neurônios Dopaminérgicos/metabolismo , Dopamina/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Neurônios Espinhosos Médios
11.
Brain Behav Immun ; 120: 471-487, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38925417

RESUMO

Activity-induced muscle pain increases interleukin-1ß (IL-1ß) release from muscle macrophages and the development of hyperalgesia is prevented by blockade of IL-1ß in muscle. Brain derived neurotrophic factor (BDNF) is released from sensory neurons in response to IL-1ß and mediates both inflammatory and neuropathic pain. Thus, we hypothesize that in activity-induced pain, fatigue metabolites combined with IL-1ß activate sensory neurons to increase BDNF release, peripherally in muscle and centrally in the spinal dorsal horn, to produce hyperalgesia. We tested the effect of intrathecal or intramuscular injection of BDNF-Tropomyosin receptor kinase B (TrkB) inhibitors, ANA-12 or TrkB-Fc, on development of activity-induced pain. Both inhibitors prevented the hyperalgesia when given before or 24hr after induction of the model in male but not female mice. BDNF messenger ribonucleic acid (mRNA) and protein were significantly increased in dorsal root ganglion (DRG) 24hr after induction of the model in both male and female mice. Blockade of IL-1ß in muscle had no effect on the increased BNDF mRNA observed in the activity-induced pain model, while IL-1ß applied to cultured DRG significantly induced BDNF expression, suggesting IL-1ß is sufficient but not necessary to induce BNDF. Thus, fatigue metabolites, combined with IL-1ß, upregulate BDNF in primary DRG neurons in both male and female mice, but contribute to activity-induced pain only in males.

12.
Ageing Res Rev ; 99: 102349, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38823488

RESUMO

Age-related cognitive and affective disorders pose significant public health challenges. Notably, emotional and cognitive symptoms co-occur across multiple age-associated conditions like normal aging, Alzheimer's disease (AD), and mood disorders such as depression and anxiety. While the intricate interplay underlying this relationship remains poorly understood, this article highlights the possibility that an imbalance between full-length (TrkB.FL) and truncated (TrkB.T1) isoforms of tyrosine kinase receptor TrkB in the neurotrophic system may significantly affect age-associated emotional and cognitive functions, by altering brain-derived neurotrophic factor (BDNF) signaling, integral to neuronal health, cognitive functions and mood regulation. While the contribution of this imbalance to pathogenesis awaits full elucidation, this review evaluates its potential mediating role, linking emotional and cognitive decline across age-related disorders The interplay between TrkB.T1 and TrkB.FL isoforms may be considered as a pivotal shared regulator underlying this complex relationship. The current review aims to synthesize current knowledge on TrkB isoform imbalance, specifically its contribution to age-related cognitive decline and mood disorders. By examining shared pathogenic pathways between aging, cognitive decline, and mood disorders through the lens of TrkB signaling, this review uncovers potential therapeutic targets not previously considered, offering a fresh perspective on combating age-related mental health issues as well as cognitive deficits.

13.
Zhongguo Zhen Jiu ; 44(6): 648-52, 2024 Jun 12.
Artigo em Chinês | MEDLINE | ID: mdl-38867626

RESUMO

OBJECTIVE: To observe the clinical effect of Tongdu Tiaoshen acupuncture (acupuncture for promoting the circulation of the governor vessel and regulating the spirit) for subjective tinnitus, and explore its potential mechanism. METHODS: A total of 92 patients with subjective tinnitus were randomly divided into an acupuncture group (46 cases, 5 cases dropped out) and a medication group (46 cases, 2 cases dropped out). The acupuncture group received Tongdu Tiaoshen acupuncture at Shuigou (GV 26), Yintang (GV 24+), Shenting (GV 24), Baihui (GV 20), Fengfu (GV 16), Dazhui (GV 14) and Zhongzhu (TE 3), Tinghui (GB 2), Yifeng (TE 17) on the affected side, 30 min each time, once every other day, 3 times a week. The medication group was orally administered ginkgo biloba leaves tablets (40 mg each time) and mecobalamin tablets (0.5 mg each time), 3 times a day. Both groups were treated for 4 weeks. The scores of tinnitus severity, tinnitus loudness visual analogue scale (VAS) and depression anxiety stress scale-21(DASS-21) before and after treatment were observed in the two groups, serum level of brain-derived neurotrophic factor (BDNF) before and after treatment in the two groups was detected, and the clinical effect was evaluated in the two groups. RESULTS: After treatment,the scores of tinnitus severity, tinnitus loudness VAS and DASS-21 were decreased compared with those before treatment in the two groups (P<0.01), and the scores in the acupuncture group were lower than those in the medication group (P<0.05). After treatment, the serum level of BDNF was decreased compared with that before treatment in the two groups (P<0.01), and the serum level of BDNF in the acupuncture group was lower than that in the medication group (P<0.05). The total effective rate of the acupuncture group was 82.9% (34/41), which was higher than 70.5% (31/44) in the medication group (P<0.05). CONCLUSION: Tongdu Tiaoshen acupuncture could improve the severity of tinnitus, tinnitus loudness and negative emotion in patients with subjective tinnitus. Its mechanism may be related to the regulation of serum level of BDNF and thus affect auditory central plasticity.


Assuntos
Pontos de Acupuntura , Terapia por Acupuntura , Zumbido , Humanos , Zumbido/terapia , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Idoso , Fator Neurotrófico Derivado do Encéfalo/sangue , Resultado do Tratamento , Adulto Jovem
14.
Neuropsychiatr Dis Treat ; 20: 1247-1270, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38883414

RESUMO

Background: There is growing interest in the role of physical activity in patients with of Alzheimer's disease (AD), particularly regarding its impact of cognitive function, gut microbiota, metabolites, and neurotrophic factors. Objective: To investigate the impact of multisensory fusion training (MSFT) combined with 7, 8-dihydroxyflavone (DHF) on the behavioral characteristics, protein expression, microbiome, and serum metabolome using the AD model in mice induced with amyloid-ß (Aß). Methods: We assessed cognitive ability, anxiety-like and depression-like behaviors in Aß mice using behavioral measures. Western blotting was employed to detect the expression of relevant proteins. The 16S rRNA gene sequencing and metabolomics were used to analyze changes in the intestinal microbial composition and serum metabolic profile, respectively, of Aß mice. Results: The behavioral outcomes indicated that a 4-week intervention combining DHF and MSFT yielded remarkable improvements in cognitive function and reduced anxiety and depression-like behaviors in Aß mice. In the hippocampus of Aß mice, the combined intervention increased the levels of BDNF, VGF, PSD-95, Nrf2, p-GSK3ß and p-CREB proteins. Analyses of sequence and metabolomic data revealed that Bacteroides and Ruminococcaceae were remarkably more abundant following the combined intervention, influencing the expression of specific metabolites directly linked to the maintenance of neuronal and neurobehavioral functions. These metabolites play a crucial role in vital processes, such as amino acid metabolism, lipid metabolism, and neurotransmitter metabolism in mice. Conclusion: Our study highlighted that MSFT combined with DHF improves cognitive impairment, anxiety, and depression-like behavior in Aß mice through multiple mechanisms, and further validated the correlation between the gut microbiome and serum metabolome. These findings open up a promising avenue for future investigations into potential treatment strategies for AD.

15.
Health Sci Rep ; 7(6): e2175, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38895550

RESUMO

Background and Aims: Mild cognitive impairment (MCI) is a widespread condition in older individuals, posing significant risk of dementia. However, limited research has been conducted to explore effective interventions and clarify their impact at the neural level. Therefore, this study aimed to investigate the effects of computerized cognitive training (CCT) and explore the associated neural mechanisms in preventing dementia in older individuals with MCI, with a view to inform future intervention efforts. Methods: We reviewed the effects of CCT on biomarker outcomes in older adults with MCI. The search was conducted for studies published between 2010 and May 10, 2023, using three search engines: PubMed, Scopus, and Cumulative Index to Nursing and Allied Health Literature. The inclusion criteria were as follows: studies that involved participants diagnosed with MCI, included CCT, included quantitative assessment of biomarker results, and conducted randomized controlled trials. Results: Sixteen studies that used biomarkers, including magnetic resonance imaging, electroencephalography (EEG), functional near-infrared spectroscopy (fNIRS), and blood or salivary biomarkers, were extracted. The results showed that CCT caused changes in structure and function within the main brain network, including the default mode network, and decreased both theta rhythm activity on EEG and prefrontal activity on fNIRS, with improvement in cognitive function. Furthermore, CCT combined with physical exercise showed more significant structural and functional changes in extensive brain regions compared with CCT alone. Virtual reality-based cognitive training improved not only executive function but also instrumental activities of daily living. Conclusion: CCT causes functional and structural changes in extensive brain regions and improves cognitive function in older adults with MCI. Our findings highlight the potential of individualized intervention methods and biomarker assessment according to the specific causes of MCI. Future research should aim to optimize these personalized therapeutic strategies to maximize the benefits of CCT in older adults with MCI.

16.
J Otolaryngol Head Neck Surg ; 53: 19160216241258431, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38888945

RESUMO

IMPORTANCE: Mesenchymal stem cells (MSCs) have the capability of providing ongoing paracrine support to degenerating tissues. Since MSCs can be extracted from a broad range of tissues, their specific surface marker profiles and growth factor secretions can be different. We hypothesized that MSCs derived from different sources might also have different neuroprotective potential. OBJECTIVE: In this study, we extracted MSCs from rodent olfactory mucosa and compared their neuroprotective effects on auditory hair cell survival with MSCs extracted from rodent adipose tissue. METHODS: Organ of Corti explants were dissected from 41 cochlea and incubated with olfactory mesenchymal stem cells (OMSCs) and adipose mesenchymal stem cells (AMSCs). After 72 hours, Corti explants were fixed, stained, and hair cells counted. Growth factor concentrations were determined in the supernatant and cell lysate using Enzyme-Linked Immunosorbent Assay (ELISA). RESULTS: Co-culturing of organ of Corti explants with OMSCs resulted in a significant increase in inner and outer hair cell stereocilia survival, compared to control. Comparisons between both stem cell lines, showed that co-culturing with OMSCs resulted in superior inner and outer hair cell stereocilia survival rates over co-culturing with AMSCs. Assessment of growth factor secretions revealed that the OMSCs secrete significant amounts of insulin-like growth factor 1 (IGF-1). Co-culturing OMSCs with organ of Corti explants resulted in a 10-fold increase in IGF-1 level compared to control, and their secretion was 2 to 3 times higher compared to the AMSCs. CONCLUSIONS: This study has shown that OMSCs may mitigate auditory hair cell stereocilia degeneration. Their neuroprotective effects may, at least partially, be ascribed to their enhanced IGF-1 secretory abilities compared to AMSCs.


Assuntos
Células Ciliadas Auditivas , Fator de Crescimento Insulin-Like I , Células-Tronco Mesenquimais , Animais , Fator de Crescimento Insulin-Like I/metabolismo , Células-Tronco Mesenquimais/metabolismo , Ratos , Células Ciliadas Auditivas/metabolismo , Mucosa Olfatória/citologia , Ensaio de Imunoadsorção Enzimática , Técnicas de Cocultura , Sobrevivência Celular , Células Cultivadas , Tecido Adiposo/citologia , Transplante de Células-Tronco Mesenquimais/métodos
17.
Cell Rep Med ; 5(6): 101593, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38843842

RESUMO

Aging compromises brain function leading to cognitive decline. A cyclic ketogenic diet (KD) improves memory in aged mice after long-term administration; however, short-term effects later in life and the molecular mechanisms that govern such changes remain unclear. Here, we explore the impact of a short-term KD treatment starting at elderly stage on brain function of aged mice. Behavioral testing and long-term potentiation (LTP) recordings reveal that KD improves working memory and hippocampal LTP. Furthermore, the synaptosome proteome of aged mice fed a KD long-term evidence changes predominantly at the presynaptic compartment associated to the protein kinase A (PKA) signaling pathway. These findings were corroborated in vivo by western blot analysis, with high BDNF abundance and PKA substrate phosphorylation. Overall, we show that a KD modifies brain function even when it is administered later in life and recapitulates molecular features of long-term administration, including the PKA signaling pathway, thus promoting synaptic plasticity at advanced age.


Assuntos
Envelhecimento , Proteínas Quinases Dependentes de AMP Cíclico , Dieta Cetogênica , Potenciação de Longa Duração , Memória , Proteoma , Transdução de Sinais , Animais , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Envelhecimento/fisiologia , Envelhecimento/metabolismo , Dieta Cetogênica/métodos , Proteoma/metabolismo , Camundongos , Masculino , Memória/fisiologia , Potenciação de Longa Duração/fisiologia , Camundongos Endogâmicos C57BL , Hipocampo/metabolismo , Sinapses/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Plasticidade Neuronal/fisiologia , Fosforilação
18.
J Lipid Atheroscler ; 13(2): 122-138, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38826183

RESUMO

Vascular dementia (VaD) is the second most common type of dementia and is characterized by memory impairment, blood-brain barrier disruption, neuronal cell loss, glia activation, impaired synaptic plasticity, and cholinergic system abnormalities. To effectively prevent and treat VaD a good understanding of the mechanisms underlying its neuropathology is needed. Brain-derived neurotrophic factor (BDNF) is an important neurotrophic factor with multiple functions in the systemic circulation and the central nervous system and is known to regulate neuronal cell survival, synaptic formation, glia activation, and cognitive decline. Recent studies indicate that when compared with normal subjects, patients with VaD have low serum BDNF levels and that BDNF deficiency in the serum and cerebrospinal fluid is an important indicator of VaD. Here, we review current knowledge on the role of BDNF signaling in the pathology of VaD, such as cerebrovascular dysfunction, synaptic dysfunction, and cholinergic system impairment.

19.
Pak J Med Sci ; 40(5): 939-945, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38827877

RESUMO

Objective: Although the role of brain-derived neurotrophic factor (BDNF) in allergic rhinitis and/or nasal polyps (NPs) development has been studied, the contribution of BDNF in non-allergic NPs has not been evaluated yet. This study was to investigate the possible role of BDNF in non-allergic NPs pathogenesis. Methods: The study was carried out at The Second Hospital of Shandong University from December 2020 to November 2021. The non-allergic NPs patients (n=26) and the control group (n=22) were included. Lund-Mackay CT scores, nasal endoscopy scores, and pulmonary function testing were evaluated before surgery. Tissue and serum levels of BDNF, eosinophil cationic protein (ECP), and cytokeratins 5 (CK5) were assessed between different groups. Result: The BDNF level in serum and tissue, CK5 count, and eosinophil infiltration in tissue were higher in non-allergic NPs. The eosinophils infiltration, ECP mRNA expression level, as well as BDNF mRNA level were increased in the BDNFhigh subgroup compared with BDNFlow subgroup. Significantly negative correlations between BDNF count and the situation of airway obstruction were found in non-allergic NPs. Conclusion: BDNF may have both local and systemic effects in non-allergic NPs pathogenesis. BDNF may be a possible therapeutic target or an indicator for eosinophilic NPs management.

20.
J Psychiatr Res ; 176: 33-39, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38838432

RESUMO

BACKGROUND: Sleeping late has been associated with cognitive impairment, and insufficient sleep can affect the secretion of feeding-related cytokines. Feeding-related cytokines may contribute to cognitive deficits resulting from delayed bedtime. Glial cell line-derived neurotrophic factor (GDNF) and mesencephalic astrocyte-derived neurotrophic factor (MANF), which are feeding-related neurotrophic factors, have been associated with improved cognitive function and neuroprotective abilities. Enhanced expression of GDNF and MANF is linked to increased energy expenditure and hyperphagia, respectively. AIMS: This study aimed to investigate the association between cerebrospinal fluid (CSF) GDNF, MANF, cognition, and sleep time and to explore the moderating effects of GDNF and MANF on cognitive impairment in individuals who sleep late. METHOD: This cross-sectional study included participants (mean age 31.76 ± 10.22 years) who were categorized as ≤23 o'clock sleepers (n = 66) and >23 o'clock sleepers (n = 125) based on sleep time. Cognition was assessed using Montreal Cognitive Assessment (MoCA), and GDNF and MANF levels in CSF were measured. RESULTS: MANF may play a moderating role in the relationship between sleep time and cognition (R2 = 0.06, ß = 0.59, p = 0.031). Age showed a negative correlation with MoCA scores (R2 = 0.08, ß = -0.18), while education exhibited a positive correlation (ß = 0.17, both p < 0.05). Only ≤23 o'clock sleepers exhibited a negative correlation between MANF levels and BMI (r = -0.35, p = 0.005). CONCLUSIONS: This study provides hitherto undocumented evidence of the potential protective effect of CSF MANF on cognitive impairment of late sleepers, which suggests that maintaining a regular sleep schedule may contribute to cognition and overall health, with MANF playing a role in this process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...