Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
mBio ; : e0056824, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38888342

RESUMO

The interferon (IFN) system protects mammals from diseases caused by virus infections. IFN synthesis is induced by pattern recognition receptor signaling pathways activated by virus infection. IFN is secreted from the infected cells and acts upon neighboring cells by binding cell surface receptors and triggering induction of hundreds of IFN-stimulated genes and proteins, many of which block different steps of virus replication. The IFN-induced tetratricopeptide repeat proteins (IFIT) are a family of RNA-binding proteins. We and others have previously reported that IFIT2 protects mice from many neurotropic RNA viruses; indeed, Ifit2-/- mice are very susceptible to intranasal or subcutaneous infections with vesicular stomatitis virus (VSV). Here, using a newly generated conditional knockout mouse, we report that ablation of Ifit2 expression only in neuronal cells was sufficient to render mice susceptible to neuropathogenesis caused by intranasal, but not subcutaneous, infection of VSV. Another genetically modified mouse line, expressing a mutant IFIT2 that cannot bind RNA, was as susceptible to VSV infection as Ifit2-/- mice. These results demonstrated that IFIT2 RNA-binding activity is essential for protecting mice against neurological diseases caused by intranasal infection of VSV.IMPORTANCEInterferon's (IFN's) antiviral effects are mediated by the proteins encoded by the interferon-stimulated genes. IFN-stimulated genes (IFIT2) is one such protein, which inhibits replication of many RNA viruses in the mouse brain and the resultant neuropathology. Our study sheds light on how IFIT2 works. By ablating Ifit2 expression only in neuronal cells, using a newly generated conditional knockout mouse line, we showed that Ifit2 induction in the neurons of the infected mouse was necessary for antiviral function of interferon. IFIT2 has no known enzyme activity; instead, it functions by binding to cellular or viral proteins or RNAs. We engineered a new mouse line that expressed a mutant IFIT2 that cannot bind RNA. These mice were very susceptible to infection with vesicular stomatitis virus indicating that the RNA-binding property of IFIT2 was essential for its antiviral function in vivo.

2.
Front Cell Infect Microbiol ; 14: 1423394, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38887492

RESUMO

Extracellular vesicles (EVs) are membrane-bound vesicles secreted by all cell types that play a central role in cell-to-cell communication. Since these vesicles serve as vehicles of cellular content (nucleic acids, proteins and lipids) with the potential to cross biological barriers, they represent a novel attractive window into an otherwise inaccessible organ, such as the brain. The composition of EVs is cell-type specific and mirrors the physiological condition of the cell-of-origin. Consequently, during viral infection, EVs undergo significant changes in their content and morphology, thereby reflecting alterations in the cellular state. Here, we briefly summarize the potential of brain-derived EVs as a lens into viral infection in the central nervous system, thereby: 1) uncovering underlying pathophysiological processes at play and 2) serving as liquid biopsies of the brain, representing a non-invasive source of biomarkers for monitoring disease activity. Although translating the potential of EVs from research to diagnosis poses complexities, characterizing brain-derived EVs in the context of viral infections holds promise to enhance diagnostic and therapeutic strategies, offering new avenues for managing infectious neurological diseases.


Assuntos
Biomarcadores , Encéfalo , Vesículas Extracelulares , Viroses , Vesículas Extracelulares/metabolismo , Humanos , Biomarcadores/metabolismo , Encéfalo/patologia , Encéfalo/metabolismo , Encéfalo/virologia , Viroses/metabolismo , Animais , Comunicação Celular
3.
Rev Med Virol ; 34(1): e2513, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38282404

RESUMO

Neurotropic viruses, with their ability to invade the central nervous system, present a significant public health challenge, causing a spectrum of neurological diseases. Clinical manifestations of neurotropic viral infections vary widely, from mild to life-threatening conditions, such as HSV-induced encephalitis or poliovirus-induced poliomyelitis. Traditional diagnostic methods, including polymerase chain reaction, serological assays, and imaging techniques, though valuable, have limitations. To address these challenges, biosensor-based methods have emerged as a promising approach. These methods offer advantages such as rapid results, high sensitivity, specificity, and potential for point-of-care applications. By targeting specific biomarkers or genetic material, biosensors utilise technologies like surface plasmon resonance and microarrays, providing a direct and efficient means of diagnosing neurotropic infections. This review explores the evolving landscape of biosensor-based methods, highlighting their potential to enhance the diagnostic toolkit for neurotropic viruses.


Assuntos
Técnicas Biossensoriais , Doenças do Sistema Nervoso , Poliomielite , Vírus , Humanos , Vírus/genética
4.
Brain Sci ; 14(1)2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38248274

RESUMO

Central nervous system (CNS) pathologies are a public health concern, with viral infections one of their principal causes. These viruses are known as neurotropic pathogens, characterized by their ability to infiltrate the CNS and thus interact with various cell populations, inducing several diseases. The immune response elicited by neurotropic viruses in the CNS is commanded mainly by microglia, which, together with other local cells, can secrete inflammatory cytokines to fight the infection. The most relevant neurotropic viruses are adenovirus (AdV), cytomegalovirus (CMV), enterovirus (EV), Epstein-Barr Virus (EBV), herpes simplex virus type 1 (HSV-1), and herpes simplex virus type 2 (HSV-2), lymphocytic choriomeningitis virus (LCMV), and the newly discovered SARS-CoV-2. Several studies have associated a viral infection with systemic lupus erythematosus (SLE) and neuropsychiatric lupus (NPSLE) manifestations. This article will review the knowledge about viral infections, CNS pathologies, and the immune response against them. Also, it allows us to understand the relevance of the different viral proteins in developing neuronal pathologies, SLE and NPSLE.

5.
ACS Chem Neurosci ; 14(17): 2968-2980, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37590965

RESUMO

Epigallocatechin-3-gallate (EGCG), a polyphenolic moiety found in green tea extracts, exhibits pleiotropic bioactivities to combat many diseases including neurological ailments. These neurological diseases include Alzheimer's disease, multiple sclerosis, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. For instance, in the case of Alzheimer's disease, the formation of a ß-sheet in the region of the 10th-21st amino acids was significantly reduced in EGCG-induced oligomeric samples of Aß40. Its interference induces the formation of Aß structures with an increase in intercenter-of-mass distances, reduction in interchain/intrachain contacts, reduction in ß-sheet propensity, and increase in α-helix. Besides, numerous neurotropic viruses are known to instigate or aggravate neurological ailments. It exerts an effect on the oxidative damage caused in neurodegenerative disorders by acting on GSK3-ß, PI3K/Akt, and downstream signaling pathways via caspase-3 and cytochrome-c. EGCG also diminishes these viral-mediated effects, such as EGCG delayed HSV-1 infection by blocking the entry for virions, inhibitory effects on NS3/4A protease or NS5B polymerase of HCV and potent inhibitor of ZIKV NS2B-NS3pro/NS3 serine protease (NS3-SP). It showed a reduction in the neurotoxic properties of HIV-gp120 and Tat in the presence of IFN-γ. EGCG also involves numerous viral-mediated inflammatory cascades, such as JAK/STAT. Nonetheless, it also inhibits the Epstein-Barr virus replication protein (Zta and Rta). Moreover, it also impedes certain viruses (influenza A and B strains) by hijacking the endosomal and lysosomal compartments. Therefore, the current article aims to describe the importance of EGCG in numerous neurological diseases and its inhibitory effect against neurotropic viruses.


Assuntos
Doença de Alzheimer , Infecções por Vírus Epstein-Barr , Doenças do Sistema Nervoso , Infecção por Zika virus , Zika virus , Humanos , Quinase 3 da Glicogênio Sintase , Fosfatidilinositol 3-Quinases , Herpesvirus Humano 4
6.
Cell Rep ; 42(5): 112489, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37167063

RESUMO

Upon recognizing danger signals produced by virally infected neurons, macrophages in the central nervous system (CNS) secrete multiple inflammatory cytokines to accelerate neuron apoptosis. The understanding is limited about which key effectors regulate macrophage-neuron crosstalk upon infection. We have used neurotropic-virus-infected murine models to identify that vascular endothelial growth factor receptor 3 (VEGFR-3) is upregulated in the CNS macrophages and that virally infected neurons secrete the ligand VEGF-C. When cultured with VEGF-C-containing supernatants from virally infected neurons, VEGFR-3+ macrophages suppress tumor necrosis factor α (TNF-α) secretion to reduce neuron apoptosis. Vegfr-3ΔLBD/ΔLBD (deletion of ligand-binding domain in myeloid cells) mice or mice treated with the VEGFR-3 kinase inhibitor exacerbate the severity of encephalitis, TNF-α production, and neuron apoptosis post Japanese encephalitis virus (JEV) infection. Activating VEGFR-3 or blocking TNF-α can reduce encephalitis and neuronal damage upon JEV infection. Altogether, we show that the inducible VEGF-C/VEGFR-3 module generates protective crosstalk between neurons and macrophages to alleviate CNS viral infection.


Assuntos
Vírus da Encefalite Japonesa (Espécie) , Encefalite Japonesa , Camundongos , Animais , Fator de Necrose Tumoral alfa/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Fator C de Crescimento do Endotélio Vascular/metabolismo , Ligantes , Fator A de Crescimento do Endotélio Vascular/metabolismo , Encefalite Japonesa/metabolismo , Encefalite Japonesa/patologia , Vírus da Encefalite Japonesa (Espécie)/metabolismo , Neurônios/metabolismo , Macrófagos/metabolismo
7.
J Neurovirol ; 29(2): 121-134, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37097597

RESUMO

Progress in stem cell research has revolutionized the medical field for more than two decades. More recently, the discovery of induced pluripotent stem cells (iPSCs) has allowed for the development of advanced disease modeling and tissue engineering platforms. iPSCs are generated from adult somatic cells by reprogramming them into an embryonic-like state via the expression of transcription factors required for establishing pluripotency. In the context of the central nervous system (CNS), iPSCs have the potential to differentiate into a wide variety of brain cell types including neurons, astrocytes, microglial cells, endothelial cells, and oligodendrocytes. iPSCs can be used to generate brain organoids by using a constructive approach in three-dimensional (3D) culture in vitro. Recent advances in 3D brain organoid modeling have provided access to a better understanding of cell-to-cell interactions in disease progression, particularly with neurotropic viral infections. Neurotropic viral infections have been difficult to study in two-dimensional culture systems in vitro due to the lack of a multicellular composition of CNS cell networks. In recent years, 3D brain organoids have been preferred for modeling neurotropic viral diseases and have provided invaluable information for better understanding the molecular regulation of viral infection and cellular responses. Here we provide a comprehensive review of the literature on recent advances in iPSC-derived 3D brain organoid culturing and their utilization in modeling major neurotropic viral infections including HIV-1, HSV-1, JCV, ZIKV, CMV, and SARS-CoV2.


Assuntos
COVID-19 , Células-Tronco Pluripotentes Induzidas , Viroses , Vírus , Infecção por Zika virus , Zika virus , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Infecção por Zika virus/genética , Células Endoteliais , RNA Viral/metabolismo , SARS-CoV-2 , Encéfalo , Viroses/metabolismo , Organoides/metabolismo
8.
Zool Res ; 44(3): 525-542, 2023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-37073800

RESUMO

Viral infections have led to many public health crises and pandemics in the last few centuries. Neurotropic virus infection-induced viral encephalitis (VE), especially the symptomatic inflammation of the meninges and brain parenchyma, has attracted growing attention due to its high mortality and disability rates. Understanding the infectious routes of neurotropic viruses and the mechanism underlying the host immune response is critical to reduce viral spread and improve antiviral therapy outcomes. In this review, we summarize the common categories of neurotropic viruses, viral transmission routes in the body, host immune responses, and experimental animal models used for VE study to gain a deeper understanding of recent progress in the pathogenic and immunological mechanisms under neurotropic viral infection. This review should provide valuable resources and perspectives on how to cope with pandemic infections.


Assuntos
Encefalite Viral , Viroses , Vírus , Animais , Encefalite Viral/veterinária , Viroses/veterinária , Encéfalo , Modelos Animais de Doenças
9.
Front Virol ; 22022.
Artigo em Inglês | MEDLINE | ID: mdl-36325520

RESUMO

Understanding the impact of viral pathogens on the human central nervous system (CNS) has been challenging due to the lack of viable human CNS models for controlled experiments to determine the causal factors underlying pathogenesis. Human embryonic stem cells (ESCs) and, more recently, cellular reprogramming of adult somatic cells to generate human induced pluripotent stem cells (iPSCs) provide opportunities for directed differentiation to neural cells that can be used to evaluate the impact of known and emerging viruses on neural cell types. Pluripotent stem cells (PSCs) can be induced to neural lineages in either two- (2D) or three-dimensional (3D) cultures, each bearing distinct advantages and limitations for modeling viral pathogenesis and evaluating effective therapeutics. Here we review the current state of technology in stem cell-based modeling of the CNS and how these models can be used to determine viral tropism and identify cellular phenotypes to investigate virus-host interactions and facilitate drug screening. We focus on several viruses (e.g., human immunodeficiency virus (HIV), herpes simplex virus (HSV), Zika virus (ZIKV), human cytomegalovirus (HCMV), SARS-CoV-2, West Nile virus (WNV)) to illustrate key advantages, as well as challenges, of PSC-based models. We also discuss how human PSC-based models can be used to evaluate the safety and efficacy of therapeutic drugs by generating data that are complementary to existing preclinical models. Ultimately, these efforts could facilitate the movement towards personalized medicine and provide patients and physicians with an additional source of information to consider when evaluating available treatment strategies.

10.
Virologie (Montrouge) ; 26(4): 275-281, 2022 07 01.
Artigo em Francês | MEDLINE | ID: mdl-36120974

RESUMO

The reality of human infections by Bornaviridae (and particularly by mammalian Orthobornaviruses BoDV-1 and BoDV-2) has long been the centre of debate and controversies. New data, however, have profoundly modified the game by providing strong and unambiguous pieces of evidence, even if many points still need to be clarified. This review aims at presenting the current state of the question, based on today's knowledge.


La question de la réalité des infections humaines par les Bornaviridae (et plus précisément par les Orthobornavirus des mammifères BoDV-1 ou BoDV-2) a longtemps constitué un point de controverse. Des données récentes ont cependant profondément remanié les cartes et permettent désormais d'avoir quelques données solides en la matière. Il n'en reste pas moins que plusieurs aspects restent mal compris. Cette revue vise à faire le point, au vu de nos connaissances à ce jour.


Assuntos
Bornaviridae , Animais , Bornaviridae/genética , Humanos , Mamíferos , RNA Viral
11.
Microorganisms ; 10(5)2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35630372

RESUMO

Crimean-Congo hemorrhagic fever (CCHF) is a zoonotic arboviral disease that poses a great threat to global health in the Old World, and it is endemic in Europe, Asia, and Africa, including Sudan. In this retrospective study, we reviewed previous epidemiological reports about the major epidemics of CCHF throughout Sudan between 2010 and 2020. During these epidemics, the infection of humans with Crimean-Congo hemorrhagic fever virus (CCHFV), the causative agent of CCHF, was diagnosed using qRT-PCR. We have identified 88 cases of CCHF, including 13 fatalities reported during five epidemics that occurred in 2010, 2011, 2015, 2019, and 2020. The two epidemics in 2010 and 2011 were by far the largest, with 51 and 27 cases reported, respectively. The majority of cases (78%) were reported in the endemic region of Kordofan. Here, we document that the first emergence of CCHFV in the Darfur region, West Sudan, occurred in 2010. We were not able to investigate outbreak dynamics through phylogenetic analysis due to the limited diagnostic capacity and the lack of sequencing services in the country. These findings call for establishing a genomic-based integrated One Health surveillance and response system for the early preparedness, prevention, and control of CCHF in the country.

12.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-958276

RESUMO

Blood-brain barrier is a natural barrier between blood and brain tissue that can protect the brain from invasion by infectious pathogens in blood and maintain the homeostasis of the brain environment. However, neurotropic viruses can escape or disrupt blood-brain barrier and then invade the brain, causing serious complications in the central nervous system such as encephalitis and meningitis, which seriously threaten human life. This paper mainly summarized the research progress in the pathogenic mechanisms of common neurotropic viruses crossing blood-brain barrier and invading the central nervous system.

13.
Front Microbiol ; 12: 767104, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867899

RESUMO

Neurotropic viruses have neural-invasive and neurovirulent properties to damage the central nervous system (CNS), leading to humans' fatal symptoms. Neurotropic viruses comprise a lot of viruses, such as Zika virus (ZIKV), herpes simplex virus (HSV), rabies virus (RABV), and severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2). Effective therapy is needed to prevent infection by these viruses in vivo and in vitro. However, the blood-brain barrier (BBB) usually prevents macromolecules from entering the CNS, which challenges the usage of the traditional probes, antiviral drugs, or neutralizing antibodies in the CNS. Functionalized nanoparticles (NPs) have been increasingly reported in the targeted therapy of neurotropic viruses due to their sensitivity and targeting characteristics. Therefore, the present review outlines efficient functionalized NPs to further understand the recent trends, challenges, and prospects of these materials.

14.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34873063

RESUMO

Flaviviruses such as Zika virus and West Nile virus have the potential to cause severe neuropathology if they invade the central nervous system. The type I interferon response is well characterized as contributing to control of flavivirus-induced neuropathogenesis. However, the interferon-stimulated gene (ISG) effectors that confer these neuroprotective effects are less well studied. Here, we used an ISG expression screen to identify Shiftless (SHFL, C19orf66) as a potent inhibitor of diverse positive-stranded RNA viruses, including multiple members of the Flaviviridae (Zika, West Nile, dengue, yellow fever, and hepatitis C viruses). In cultured cells, SHFL functions as a viral RNA-binding protein that inhibits viral replication at a step after primary translation of the incoming genome. The murine ortholog, Shfl, is expressed constitutively in multiple tissues, including the central nervous system. In a mouse model of Zika virus infection, Shfl-/- knockout mice exhibit reduced survival, exacerbated neuropathological outcomes, and increased viral replication in the brain and spinal cord. These studies demonstrate that Shfl is an important antiviral effector that contributes to host protection from Zika virus infection and virus-induced neuropathological disease.


Assuntos
Proteínas de Ligação a RNA/metabolismo , Infecção por Zika virus/patologia , Zika virus/metabolismo , Animais , Linhagem Celular , Efeito Citopatogênico Viral , Modelos Animais de Doenças , Suscetibilidade a Doenças/metabolismo , Suscetibilidade a Doenças/virologia , Flavivirus/genética , Infecções por Flavivirus/genética , Infecções por Flavivirus/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fármacos Neuroprotetores/metabolismo , Proteínas de Ligação a RNA/genética , Replicação Viral/fisiologia , Zika virus/patogenicidade , Infecção por Zika virus/genética
15.
Artigo em Russo | MEDLINE | ID: mdl-34184491

RESUMO

The article discusses the prospects for pharmacological conditioning as a method for adaptation of neurovascular unit in conditions of neurotropic viral infection. A step-by-step mechanism for development of preconditioning and postconditioning is presented with a detailed description of it's main stages (trigger, signal and effector). The role of neuroinflammation as the leading mechanism of damage and the possibility of influencing the brain neurotrophic factor are considered. It is shown that different medications including neurotrophic drugs (cerebrolysin) can serve as inducers of conditioning. Usage of neurotrophic drugs in different doses for preconditioning and postconditioning is pathogenetically justified.


Assuntos
Encéfalo , Viroses , Humanos
16.
Mitochondrion ; 59: 8-16, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33838333

RESUMO

Calcium (Ca2+) plays fundamental and diverse roles in brain cells as a second messenger of many signaling pathways. Given the high energy demand in the brain and the generally non-regenerative state of neurons, the role of brain mitochondrial calcium [Ca2+]m in particular, in regulating ATP generation and determination of cell fate by initiation or inhibition of programmed cell death (PCD) becomes critical. Since [Ca2+]m signaling has a central role in brain physiology, it represents an ideal target for viruses to hijack the Ca2+ machinery to favor their own persistence, replication and/or dissemination by modulating cell death. This review discusses the ways by which neurotropic viruses are known to exploit the [Ca2+]m signaling of their host cells to regulate cell death in the brain, particularly in neurons. We hope our review will highlight the importance of [Ca2+]m handling in the virus-infected brain and stimulate further studies towards exploring novel [Ca2+]m related therapeutic strategies for viral effects on the brain.


Assuntos
Encéfalo/virologia , Sinalização do Cálcio , Mitocôndrias/metabolismo , Viroses/metabolismo , Animais , Encéfalo/metabolismo , Cálcio/metabolismo , Regulação da Expressão Gênica , Humanos
17.
Cureus ; 12(8): e9674, 2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32923269

RESUMO

Neurotropic viruses are those viruses that can cause central nervous system (CNS) diseases with both neuroinvasive and neurovirulence properties. It comprises a wide range of viruses, including herpes simplex virus, poliovirus, enteroviruses, parechovirus, West Nile virus, Japanese encephalitis virus, measles, and mumps viruses among others. Some of these viruses are highly neuroinvasive and neurovirulent, while others are weakly neuroinvasive and neurovirulent. Moreover, some of them, like herpes simplex viruses, are highly neuroinvasive but weakly neurovirulent for the peripheral nervous system and highly neurovirulent but weakly neuroinvasive for the central nervous system. All these disparities are a result of differences in their genomic constitution, associated vectors, geographical region, and environmental factors. Therefore, a successful intervention will be almost impossible without a clear understanding of the molecular biology and epidemiology of these viruses. Thus, we conducted a review of the published studies on the molecular biology and epidemiology of the common neurotropic viruses to make the viral genetic makeup more understandable for targeted intervention and provide the morbidity and mortality data of the different neurotropic viruses for more serious action.

18.
Rev. cuba. med. trop ; 72(1): e476, ene.-abr. 2020. tab, graf
Artigo em Espanhol | CUMED, LILACS | ID: biblio-1126703

RESUMO

Introducción: La ataxia constituye una alteración en la coordinación de los movimientos, resultado de una disfunción del cerebelo, sus conexiones, así como alteraciones en la médula espinal, nervios periféricos o una combinación de estas condiciones. Las ataxias se clasifican en hereditarias, esporádicas y en adquiridas o secundarias, en las cuales los virus neurotrópicos constituyen los principales causantes. Objetivo: Actualizar los conocimientos relacionados con las ataxias causadas por virus neurotrópicos y los mecanismos neurodegenerativos que pudieran tener relación con la ataxia. Métodos: Se realizó una revisión bibliográfica incluyendo artículos publicados en las principales bases de datos bibliográficas (Web of Sciences, Scopus, SciELO). Se utilizaron las palabras claves: ataxia, virus neurotrópicos, ataxias cerebelosas, ataxias infecciosas, en inglés y español. Análisis e integración de la información: Los virus más conocidos que provocan ataxias infecciosas son el virus de inmunodeficiencia humana, virus del herpes simple, virus del herpes humano tipo 6, virus de la varicela zoster, virus Epstein-Barr, virus del Nilo Occidental, y enterovirus 71, aunque existen otros virus que causan esta afectación. Los mecanismos neuropatogénicos sugeridos son la invasión directa del virus y procesos inmunopatogénicos desencadenados por la infección. Estos virus pueden causar ataxia cerebelosa aguda, ataxia aguda posinfecciosa, síndrome opsoclono-mioclono-atáxico y ataxia por encefalomielitis aguda diseminada. Aunque la mayoría de los reportes de casos informan la evolución satisfactoria de los pacientes, algunos refieren complicaciones neurológicas e incluso la muerte. Conclusiones: Actualmente existe la necesidad de profundizar en el estudio de este tipo de ataxia para favorecer su diagnóstico y tratamiento(AU)


Introduction: Ataxia is an alteration in the coordination of movements caused by a dysfunction of the cerebellum and its connections, as well as alterations in the spinal cord, the peripheral nerves, or a combination of these factors. Ataxias are classified into hereditary, sporadic and acquired or secondary, in which neurotropic viruses are the main causative agents. Objective: Update knowledge about ataxias caused by neurotropic viruses and the neurodegenerative mechanisms which could bear a relationship to ataxia. Methods: A review was conducted of papers published in the main bibliographic databases (Web of Sciences, Scopus, SciELO), using the search terms ataxia, neurotropic virus, cerebellar ataxias, infectious ataxias, in English and in Spanish. Discussion: The best known viruses causing infectious ataxias are the human immunodeficiency virus, herpes simplex virus, human herpesvirus 6, varicella zoster virus, Epstein-Barr virus, Western Nile virus and enterovirus 71, though other viruses may also cause this condition. The neuropathogenic mechanisms suggested are direct invasion of the virus and immunopathogenic processes triggered by the infection. These viruses may cause acute cerebellar ataxia, acute postinfectious ataxia, opsoclonus-myoclonus-ataxia syndrome and ataxia due to acute encephalomyelitis disseminata. Though most case reports describe a satisfactory evolution of patients, some refer to neurological complications and even death. Conclusions: There is a current need to carry out further research about this type of ataxia to improve its diagnosis and treatment(AU)


Assuntos
Humanos , Masculino , Feminino , Ataxia Cerebelar/diagnóstico , Ataxia Cerebelar/epidemiologia , Fatores de Virulência
19.
Int J Mol Sci ; 21(5)2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-32131483

RESUMO

Neurotropic viruses infect the central nervous system (CNS) and cause acute or chronic neurologic disabilities. Regulatory T cells (Treg) play a critical role for immune homeostasis, but may inhibit pathogen-specific immunity in infectious disorders. The present review summarizes the current knowledge about Treg in human CNS infections and their animal models. Besides dampening pathogen-induced immunopathology, Treg have the ability to facilitate protective responses by supporting effector T cell trafficking to the infection site and the development of resident memory T cells. Moreover, Treg can reduce virus replication by inducing apoptosis of infected macrophages and attenuate neurotoxic astrogliosis and pro-inflammatory microglial responses. By contrast, detrimental effects of Treg are caused by suppression of antiviral immunity, allowing for virus persistence and latency. Opposing disease outcomes following Treg manipulation in different models might be attributed to differences in technique and timing of intervention, infection route, genetic background, and the host's age. In addition, mouse models of virus-induced demyelination revealed that Treg are able to reduce autoimmunity and immune-mediated CNS damage in a disease phase-dependent manner. Understanding the unique properties of Treg and their complex interplay with effector cells represents a prerequisite for the development of new therapeutic approaches in neurotropic virus infections.


Assuntos
Doenças do Sistema Nervoso Central/imunologia , Linfócitos T Reguladores/imunologia , Viroses/imunologia , Animais , Doenças do Sistema Nervoso Central/virologia , Humanos
20.
J Neuroimmune Pharmacol ; 14(4): 578-594, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31512166

RESUMO

Virus-induced diseases or neurological complications are huge socio-economic burden to human health globally. The complexity of viral-mediated CNS pathology is exacerbated by reemergence of new pathogenic neurotropic viruses of high public relevance. Although the central nervous system is considered as an immune privileged organ and is mainly protected by barrier system, there are a vast majority of neurotropic viruses capable of gaining access and cause diseases. Despite continued growth of the patient population and a number of treatment strategies, there is no successful viral specific therapy available for viral induced CNS diseases. Therefore, there is an urgent need for a clear alternative treatment strategy that can effectively target neurotropic viruses of DNA or RNA genome. To address this need, rapidly growing gene editing technology based on CRISPR/Cas9, provides unprecedented control over viral genome editing and will be an effective, highly specific and versatile tool for targeting CNS viral infection. In this review, we discuss the application of this system to control CNS viral infection and associated neurological disorders and future prospects. Graphical Abstract CRISPR/Cas9 technology as agent control over CNS viral infection.


Assuntos
Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas/genética , Doenças do Sistema Nervoso Central/genética , Doenças do Sistema Nervoso Central/terapia , Edição de Genes/tendências , Terapia Genética/tendências , Animais , Proteína 9 Associada à CRISPR/metabolismo , Doenças do Sistema Nervoso Central/metabolismo , Edição de Genes/métodos , Terapia Genética/métodos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...