Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 183
Filtrar
1.
Arch Microbiol ; 206(8): 345, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38976047

RESUMO

Neurological complications, both acute and chronic, are reported commonly in COVID-19 affected individuals. In this context, the understanding of pathogenesis of SARS-CoV-2 in specific cells of central nervous system (CNS) origin is relevant. The present study explores infection biology of a clinical isolate of SARS-CoV-2 in human cell lines of neural origin such as the glioblastoma (U87-MG), neuroblastoma (SHSY5Y) and microglia (C20). Despite showing clear evidence of infection by immunofluorescence with an anti-spike protein antibody, all the three neural cell lines were observed to be highly restrictive to the replication of the infecting virus. While the U87-MG glioblastoma cells demonstrated no cytopathic effects and a low viral titre with no signs of replication, the SHSY5Y neuroblastoma cells exhibited cytopathic effects with bleb formation but no evidence of viable virus. The C20 microglial cells showed neither signs of cytopathic effects nor viable virus. Ultrastructural studies demonstrated intracellular virions in infected neural cells. The presence of lipid droplets in infected SHSY5Y cells suggested an impact on host cell metabolism. The decrease in viral RNA levels over time in all the neural cell lines suggested restricted viral replication. In conclusion, this study highlights the limited susceptibility of neural cells to SARS-CoV-2 infection. This reduced permissibility of neural cell lines to SARS-CoV-2 may point to their inherent lower expression of receptors that support viral entry in addition to the intracellular factors that potently inhibit viral replication. The study findings prompt further investigation into the mechanisms of SARS-CoV-2 infection of neural cells.


Assuntos
COVID-19 , Microglia , Neuroglia , Neurônios , SARS-CoV-2 , Replicação Viral , Humanos , Microglia/virologia , SARS-CoV-2/fisiologia , SARS-CoV-2/patogenicidade , Neurônios/virologia , COVID-19/virologia , Neuroglia/virologia , Linhagem Celular Tumoral , Linhagem Celular , Efeito Citopatogênico Viral , Glicoproteína da Espícula de Coronavírus/metabolismo , RNA Viral/genética
2.
World J Otorhinolaryngol Head Neck Surg ; 10(2): 137-147, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38855289

RESUMO

Neurological and psychiatric complications continue to be a public health concern in long coronavirus disease 2019 (COVID-19). This varies from olfactory dysfunctions such as parosmia to cognitive and emotional challenges. Historically, the surge of neurological disorders followed the viral pandemics, for example, the emergence of Encephalitis Lethargica after the outbreak of Spanish Influenza. During and after COVID-19 infection, the problems associated with the sense of smell and the reports of affected olfactory and limbic brain areas are leading to a growing concern about the similarity with the symptoms and the pattern of degeneration observed at the onset of Parkinson's disease and Alzheimer's disease. These reports reveal the essentiality of long-term studies of olfactory and cognitive functions in the post-COVID era and the experiments using animal models to dissect the neural basis of these complications. In this manuscript, we summarize the research reporting the potential correlation between neurological disorders and viral pandemic outbreaks with a historical perspective. Further, we discuss the studies providing evidence of neurodegeneration due to severe acute respiratory syndrome coronavirus 2 infection by focusing on viral Parkinsonism.

3.
Microbiol Spectr ; 12(6): e0069024, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38752731

RESUMO

Enterovirus A71 (EV-A71) is associated with neurological conditions such as acute meningitis and encephalitis. The virus is detected in the bloodstream, and high blood viral loads are associated with central nervous system (CNS) manifestations. We used an in vitro blood-brain barrier (BBB) model made up of human brain-like endothelial cells (hBLECs) and brain pericytes grown in transwell systems to investigate whether three genetically distinct EV-A71 strains (subgenogroups C1, C1-like, and C4) can cross the human BBB. EV-A71 poorly replicated in hBLECs, which released moderate amounts of infectious viruses from their luminal side and trace amounts of infectious viruses from their basolateral side. The barrier properties of hBLECs were not impaired by EV-A71 infection. We investigated the passage through hBLECs of EV-A71-infected white blood cells. EV-A71 strains efficiently replicated in immune cells, including monocytes, neutrophils, and NK/T cells. Attachment to hBLECs of immune cells infected with the C1-like virus was higher than attachment of cells infected with C1-06. EV-A71 infection did not impair the transmigration of immune cells through hBLECs. Overall, EV-A71 targets different white blood cell populations that have the potential to be used as a Trojan horse to cross hBLECs more efficiently than cell-free EV-A71 particles.IMPORTANCEEnterovirus A71 (EV-A71) was first reported in the USA, and numerous outbreaks have since occurred in Asia and Europe. EV-A71 re-emerged as a new multirecombinant strain in 2015 in Europe and is now widespread. The virus causes hand-foot-and-mouth disease in young children and is involved in nervous system infections. How the virus spreads to the nervous system is unclear. We investigated whether white blood cells could be infected by EV-A71 and transmit it across human endothelial cells mimicking the blood-brain barrier protecting the brain from adverse effects. We found that endothelial cells provide a strong roadblock to prevent the passage of free virus particles but allow the migration of infected immune cells, including monocytes, neutrophils, and NK/T cells. Our data are consistent with the potential role of immune cells in the pathogenesis of EV-A71 infections by spreading the virus in the blood and across the human blood-brain barrier.


Assuntos
Barreira Hematoencefálica , Células Endoteliais , Enterovirus Humano A , Infecções por Enterovirus , Barreira Hematoencefálica/virologia , Humanos , Enterovirus Humano A/genética , Enterovirus Humano A/fisiologia , Infecções por Enterovirus/virologia , Infecções por Enterovirus/imunologia , Células Endoteliais/virologia , Replicação Viral , Monócitos/virologia , Monócitos/imunologia , Pericitos/virologia , Leucócitos/virologia , Leucócitos/imunologia , Encéfalo/virologia , Células Matadoras Naturais/imunologia , Neutrófilos/imunologia , Neutrófilos/virologia
4.
Viruses ; 16(4)2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38675903

RESUMO

Gliomas account for approximately 75-80% of all malignant primary tumors in the central nervous system (CNS), with glioblastoma multiforme (GBM) considered the deadliest. Despite aggressive treatment involving a combination of chemotherapy, radiotherapy, and surgical intervention, patients with GBM have limited survival rates of 2 to 5 years, accompanied by a significant decline in their quality of life. In recent years, novel management strategies have emerged, such as immunotherapy, which includes the development of vaccines or T cells with chimeric antigen receptors, and oncolytic virotherapy (OVT), wherein wild type (WT) or genetically modified viruses are utilized to selectively lyse tumor cells. In vitro and in vivo studies have shown that the Zika virus (ZIKV) can infect glioma cells and induce a robust oncolytic activity. Consequently, interest in exploring this virus as a potential oncolytic virus (OV) for high-grade gliomas has surged. Given that ZIKV actively circulates in Colombia, evaluating its neurotropic and oncolytic capabilities holds considerable national and international importance, as it may emerge as an alternative for treating highly complex gliomas. Therefore, this literature review outlines the generalities of GBM, the factors determining ZIKV's specific tropism for nervous tissue, and its oncolytic capacity. Additionally, we briefly present the progress in preclinical studies supporting the use of ZIKV as an OVT for gliomas.


Assuntos
Neoplasias Encefálicas , Glioma , Terapia Viral Oncolítica , Vírus Oncolíticos , Zika virus , Animais , Humanos , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/virologia , Glioblastoma/terapia , Glioblastoma/virologia , Glioma/terapia , Glioma/virologia , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/genética , Vírus Oncolíticos/fisiologia , Zika virus/fisiologia , Infecção por Zika virus/virologia
5.
Virulence ; 15(1): 2329568, 2024 12.
Artigo em Inglês | MEDLINE | ID: mdl-38555518

RESUMO

Tilapia Lake Virus (TiLV) is associated with pathological changes in the brain of infected fish, but the mechanisms driving the virus's neuropathogenesis remain poorly characterized. TiLV establishes a persistent infection in the brain of infected fish even when the virus is no longer detectable in the peripheral organs, rendering therapeutic interventions and disease management challenging. Moreover, the persistence of the virus in the brain may pose a risk for viral reinfection and spread and contribute to ongoing tissue damage and neuroinflammatory processes. In this review, we explore TiLV-associated neurological disease. We discuss the possible mechanism(s) used by TiLV to enter the central nervous system (CNS) and examine TiLV-induced neuroinflammation and brain immune responses. Lastly, we discuss future research questions and knowledge gaps to be addressed to significantly advance this field.


Assuntos
Doenças dos Peixes , Infecções por Orthomyxoviridae , Tilápia , Vírus , Animais , Encéfalo/patologia
6.
Indian J Surg Oncol ; 15(1): 164-167, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38511025

RESUMO

Desmoplastic melanoma is an extremely rare subtype of malignant melanoma comprising only 1% of all the cutaneous melanomas. Being amelanotic and owing to its histopathological features of spindle cells lying in a collagenized stroma, it is often misdiagnosed as a dermatofibroma or scar tissue. The present case study describes a case of desmoplastic melanoma of the chest wall where the final diagnosis could be arrived at only after an extensive immunohistochemical panel to exclude other spindle cell proliferations.

7.
J Neuroinflammation ; 21(1): 38, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302975

RESUMO

BACKGROUND: Herpes simplex virus (HSV) encephalitis (HSE) is a serious and potentially life-threatening disease, affecting both adults and newborns. Progress in understanding the virus and host factors involved in neonatal HSE has been hampered by the limitations of current brain models that do not fully recapitulate the tissue structure and cell composition of the developing human brain in health and disease. Here, we developed a human fetal organotypic brain slice culture (hfOBSC) model and determined its value in mimicking the HSE neuropathology in vitro. METHODS: Cell viability and tissues integrity were determined by lactate dehydrogenase release in supernatant and immunohistological (IHC) analyses. Brain slices were infected with green fluorescent protein (GFP-) expressing HSV-1 and HSV-2. Virus replication and spread were determined by confocal microscopy, PCR and virus culture. Expression of pro-inflammatory cytokines and chemokines were detected by PCR. Cell tropism and HSV-induced neuropathology were determined by IHC analysis. Finally, the in situ data of HSV-infected hfOBSC were compared to the neuropathology detected in human HSE brain sections. RESULTS: Slicing and serum-free culture conditions were optimized to maintain the viability and tissue architecture of ex vivo human fetal brain slices for at least 14 days at 37 °C in a CO2 incubator. The hfOBSC supported productive HSV-1 and HSV-2 infection, involving predominantly infection of neurons and astrocytes, leading to expression of pro-inflammatory cytokines and chemokines. Both viruses induced programmed cell death-especially necroptosis-in infected brain slices at later time points after infection. The virus spread, cell tropism and role of programmed cell death in HSV-induced cell death resembled the neuropathology of HSE. CONCLUSIONS: We developed a novel human brain culture model in which the viability of the major brain-resident cells-including neurons, microglia, astrocytes and oligodendrocytes-and the tissue architecture is maintained for at least 2 weeks in vitro under serum-free culture conditions. The close resemblance of cell tropism, spread and neurovirulence of HSV-1 and HSV-2 in the hfOBSC model with the neuropathological features of human HSE cases underscores its potential to detail the pathophysiology of other neurotropic viruses and as preclinical model to test novel therapeutic interventions.


Assuntos
Encefalite por Herpes Simples , Herpes Simples , Herpesvirus Humano 1 , Recém-Nascido , Adulto , Humanos , Astrócitos/patologia , Necroptose , Herpes Simples/patologia , Encéfalo/patologia , Citocinas , Neurônios/patologia , Quimiocinas
8.
Clin Pract ; 14(1): 173-178, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38391400

RESUMO

Influenza is a viral infection presenting with general symptoms such as fever, headache, fatigue, and involvement of airways or the gastrointestinal tract. The nervous system may be involved, but less frequently. These neurological complications remain challenging to diagnose; moreover, no guidelines for management and treatment exist. Therefore, when presenting with neurological symptoms, patients undergo invasive diagnostic procedures and empirical treatments before making the correct diagnosis. During the winter of 2022-2023, four children between nine months and nine years of age were admitted to the Lausanne University Hospital, Switzerland, complaining of influenza and neurological complications. This report presents the symptoms of neurological manifestation and the treatment management of the four patients. All the legally authorized representatives gave their written informed consent before study inclusion.

9.
Proc Natl Acad Sci U S A ; 121(8): e2315653121, 2024 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-38346199

RESUMO

Monkeypox virus (MPXV) infections in humans cause neurological disorders while studies of MPXV-infected animals indicate that the virus penetrates the brain. Pyroptosis is an inflammatory type of regulated cell death, resulting from plasma membrane rupture (PMR) due to oligomerization of cleaved gasdermins to cause membrane pore formation. Herein, we investigated the human neural cell tropism of MPXV compared to another orthopoxvirus, vaccinia virus (VACV), as well as its effects on immune responses and cell death. Astrocytes were most permissive to MPXV (and VACV) infections, followed by microglia and oligodendrocytes, with minimal infection of neurons based on plaque assays. Aberrant morphological changes were evident in MPXV-infected astrocytes that were accompanied with viral protein (I3) immunolabelling and detection of over 125 MPXV-encoded proteins in cell lysates by mass spectrometry. MPXV- and VACV-infected astrocytes showed increased expression of immune gene transcripts (IL12, IRF3, IL1B, TNFA, CASP1, and GSDMB). However, MPXV infection of astrocytes specifically induced proteolytic cleavage of gasdermin B (GSDMB) (50 kDa), evident by the appearance of cleaved N-terminal-GSDMB (30 kDa) and C-terminal- GSDMB (18 kDa) fragments. GSDMB cleavage was associated with release of lactate dehydrogenase and increased cellular nucleic acid staining, indicative of PMR. Pre-treatment with dimethyl fumarate reduced cleavage of GSDMB and associated PMR in MPXV-infected astrocytes. Human astrocytes support productive MPXV infection, resulting in inflammatory gene induction with accompanying GSDMB-mediated pyroptosis. These findings clarify the recently recognized neuropathogenic effects of MPXV in humans while also offering potential therapeutic options.


Assuntos
Monkeypox virus , Mpox , Animais , Humanos , Monkeypox virus/fisiologia , Piroptose , Astrócitos , Gasderminas
10.
J Neurovirol ; 30(1): 39-51, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38172412

RESUMO

Sarbecoviruses such as SARS and SARS-CoV-2 have been responsible for two major outbreaks in humans, the latter resulting in a global pandemic. While sarbecoviruses primarily cause an acute respiratory infection, they have been shown to infect the nervous system. However, mechanisms of sarbecovirus neuroinvasion and neuropathogenesis remain unclear. In this study, we examined the infectivity and trans-synaptic transmission potential of the sarbecoviruses SARS and SARS-CoV-2 in human stem cell-derived neural model systems. We demonstrated limited ability of sarbecoviruses to infect and replicate in human stem cell-derived neurons. Furthermore, we demonstrated an inability of sarbecoviruses to transmit between synaptically connected human stem cell-derived neurons. Finally, we determined an absence of SARS-CoV-2 infection in olfactory neurons in experimentally infected ferrets. Collectively, this study indicates that sarbecoviruses exhibit low potential to infect human stem cell-derived neurons, lack an ability to infect ferret olfactory neurons, and lack an inbuilt molecular mechanism to utilise retrograde axonal trafficking and trans-synaptic transmission to spread within the human nervous system.


Assuntos
Axônios , COVID-19 , Furões , SARS-CoV-2 , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Humanos , SARS-CoV-2/patogenicidade , SARS-CoV-2/fisiologia , Animais , COVID-19/virologia , COVID-19/transmissão , Axônios/virologia , Furões/virologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/fisiologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/patogenicidade , Neurônios/virologia , Replicação Viral , Chlorocebus aethiops , Células-Tronco Neurais/virologia , Células Vero
11.
BMC Vet Res ; 20(1): 18, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195523

RESUMO

Nowadays, the population is still struggling with a post-COVID19 syndrome known as long COVID, including a broad spectrum of neurological problems. There is an urgent need for a better understanding and exploration of the mechanisms of coronavirus neurotropism. For this purpose, the neurotropic strain of mouse hepatitis virus (MHV-JHM) originating from the beta-coronavirus genus, the same as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been used. The role of the cytoskeleton during virus replication in neurons in vitro was determined to understand the mechanisms of MHV-JHM neuroinfection. We have described for the first time the changes of actin filaments during MHV-JHM infection. We also observed productive replication of MHV-JHM in neurons during 168 h p.i. and syncytial cytopathic effect. We discovered that the MHV-JHM strain modulated neuronal cytoskeleton during infection, which were manifested by: (i) condensation of actin filaments in the cortical layer of the cytoplasm, (ii) formation of microtubule cisternae structures containing viral antigen targeting viral replication site (iii) formation of tunneling nanotubes used by MHV-JHM for intercellular transport. Additionally, we demonstrated that the use of cytoskeletal inhibitors have reduced virus replication in neurons, especially noscapine and nocodazole, the microtubule shortening factors.


Assuntos
COVID-19 , Vírus da Hepatite Murina , Doenças dos Roedores , Animais , Camundongos , Síndrome de COVID-19 Pós-Aguda/veterinária , COVID-19/veterinária , Antígenos Virais , Neurônios , SARS-CoV-2
12.
Neurol Int ; 15(4): 1359-1370, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37987459

RESUMO

The virus SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) is capable of attacking the nervous system in several ways and leading to neurological diseases such as GBS (Guillain-Barré syndrome) through the resulting neurotropism and immune response. The aim of this study is to show the relationship between Coronavirus disease (COVID-19) and GBS and to better understand the clinical symptoms to prevent poor outcomes. Data from 15 patients were extracted from the Department of Neurology, University Hospital of Split, Croatia, for the year 2021. The age of the patients ranged from 26 to 89 years, of whom 27% were women. Sixty seven percent of all GBS patients recovered from COVID-19 infection, whereas post-vaccinal polyradiculoneuritis was detected in 6%. Forty four percent of the patients who developed GBS had a severe form of COVID-19 infection. Forty percent of patients were treated with intravenous immunoglobulins (IVIG), followed by therapeutic plasma exchange (PLEX) in 27%. After the therapy, improvement was observed in 13 patients, while two patients died. The results suggest that SARS-CoV-2 triggers GBS because it follows a similar pattern of infection as the other viral and bacterial agents that contribute to the onset of GBS. There is no evidence that prior infection with COVID-19 worsens the clinical presentation of GBS.

13.
J Biol Chem ; 299(11): 105347, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37838171

RESUMO

The pseudorabies virus (PRV) TJ strain, a variant of PRV, induces more severe neurological symptoms and higher mortality in piglets and mice than the PRV SC strain isolated in 1980. However, the mechanism underlying responsible for the discrepancy in virulence between these strains remains unclear. Our study investigated the differences in neurotropism between PRV TJ and PRV SC using both in vitro and in vivo models. We discovered that PRV TJ enters neural cells more efficiently than PRV SC. Furthermore, we found that PRV TJ has indistinguishable genomic DNA replication capability and axonal retrograde transport dynamics compared to the PRV SC. To gain deeper insights into the mechanisms underlying these differences, we constructed gene-interchanged chimeric virus constructs and assessed the affinity between envelope glycoprotein B, C, and D (gD) and corresponding receptors. Our findings confirmed that mutations in these envelope proteins, particularly gD, significantly contributed to the heightened attachment and penetration capabilities of PRV TJ. Our study revealed the critical importance of the gDΔR278/P279 and gDV338A in facilitating viral invasion. Furthermore, our observations indicated that mutations in envelope proteins have a more significant impact on viral invasion than on virulence in the mouse model. Our findings provide valuable insights into the roles of natural mutations on the PRV envelope glycoproteins in cell tropism, which sheds light on the relationship between cell tropism and clinical symptoms and offers clues about viral evolution.


Assuntos
Herpesvirus Suídeo 1 , Pseudorraiva , Proteínas do Envelope Viral , Tropismo Viral , Animais , Camundongos , Genômica , Herpesvirus Suídeo 1/genética , Mutagênese , Mutação , Pseudorraiva/genética , Suínos , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo
14.
Viruses ; 15(10)2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37896797

RESUMO

The utility of human neuroblastoma cell lines as in vitro model to study neuro-invasiveness and neuro-virulence of SARS-CoV-2 has been demonstrated by our laboratory and others. The aim of this report is to further characterize the associated cellular responses caused by a pre-alpha SARS-CoV-2 strain on differentiated SH-SY5Y and to prevent its cytopathic effect by using a set of entry inhibitors. The susceptibility of SH-SY5Y to SARS-CoV-2 was confirmed at high multiplicity-of-infection, without viral replication or release. Infection caused a reduction in the length of neuritic processes, occurrence of plasma membrane blebs, cell clustering, and changes in lipid droplets electron density. No changes in the expression of cytoskeletal proteins, such as tubulins or tau, could explain neurite shortening. To counteract the toxic effect on neurites, entry inhibitors targeting TMPRSS2, ACE2, NRP1 receptors, and Spike RBD were co-incubated with the viral inoculum. The neurite shortening could be prevented by the highest concentration of camostat mesylate, anti-RBD antibody, and NRP1 inhibitor, but not by soluble ACE2. According to the degree of entry inhibition, the average amount of intracellular viral RNA was negatively correlated to neurite length. This study demonstrated that targeting specific SARS-CoV-2 host receptors could reverse its neurocytopathic effect on SH-SY5Y.


Assuntos
COVID-19 , Neuroblastoma , Humanos , Neuritos/metabolismo , SARS-CoV-2/metabolismo , Enzima de Conversão de Angiotensina 2 , Internalização do Vírus , Glicoproteína da Espícula de Coronavírus/metabolismo
15.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-37544807

RESUMO

The outbreak of the Coronavirus Disease 2019 (COVID-19) pandemic in 2020 caused a rapid worsening of global mental health. Patients with severe mental disorders, including schizophrenia, are at higher risk of being infected. The neuroinvasive potential of the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) has been confirmed. The aim of this article was to present a narrative and comprehensive review of multidimensional associations between schizophrenia and COVID-19 with special emphasis on common biological pathways. Online searches were performed in the PubMed database and covered the publication period until September 17, 2022. Search terms included "psychosis", "schizophrenia", "inflammation" and "COVID-19". Viewed as a neuroinflammatory state, schizophrenia shares several neurobiological mechanisms with the COVID-19. Environmental stress, common comorbidities of schizophrenia and adverse effects of antipsychotic treatment are associated with the higher severity and mortality of the COVID-19. Additionally, more frequent relapses of psychosis have been observed, and might be related to lower treatment adherence. In the context of clinical manifestation, higher level of negative symptoms has been identified among patients with schizophrenia during the pandemic. Improvements in mental health care policy and treatment adjustment are necessary to protect people with schizophrenia who are the population that is particularly vulnerable to the consequences of the COVID-19 pandemic. Future research will show if prenatal infection with the SARS-CoV-2 increases a risk of psychosis.

16.
Newborn (Clarksville) ; 2(2): 158-172, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37559696

RESUMO

Dengue viruses (DENVs) are single-stranded RNA viruses belonging to the family Flaviviridae. There are four distinct antigenically related serotypes, DENVs types 1, 2, 3, and 4. These are all mosquito-borne human pathogens. Congenital dengue disease occurs when there is mother-to-fetus transmission of the virus and should be suspected in endemic regions in neonates presenting with fever, maculopapular rash, and thrombocytopenia. Although most of the infected infants remain asymptomatic, some can develop clinical manifestations such as sepsis-like illness, gastric bleeding, circulatory failure, and death. Neurological manifestations include intracerebral hemorrhages, neurological malformations, and acute focal/disseminated encephalitis/encephalomyelitis. Dengue NS1Ag, a highly conserved glycoprotein, can help the detection of cases in the viremic stage. We do not have proven specific therapies yet; management is largely supportive and is focused on close monitoring and maintaining adequate intravascular volume.

17.
Brain Behav Immun ; 112: 188-205, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37329995

RESUMO

Whether or not SARS-CoV-2 can cross from mother to fetus during a prenatal infection has been controversial; however, recent evidence such as viral RNA detection in umbilical cord blood and amniotic fluid, as well as the discovery of additional entry receptors in fetal tissues suggests a potential for viral transmission to and infection of the fetus. Furthermore, neonates exposed to maternal COVID-19 during later development have displayed neurodevelopmental and motor skill deficiencies, suggesting the potential for consequential neurological infection or inflammation in utero. Thus, we investigated transmission potential of SARS-CoV-2 and the consequences of infection on the developing brain using human ACE2 knock-in mice. In this model, we found that viral transmission to the fetal tissues, including the brain, occurred at later developmental stages, and that infection primarily targeted male fetuses. In the brain, SARS-CoV-2 infection largely occurred within the vasculature, but also within other cells such as neurons, glia, and choroid plexus cells; however, viral replication and increased cell death were not observed in fetal tissues. Interestingly, early gross developmental differences were observed between infected and mock-infected offspring, and high levels of gliosis were seen in the infected brains 7 days post initial infection despite viral clearance at this time point. In the pregnant mice, we also observed more severe COVID-19 infections, with greater weight loss and viral dissemination to the brain, compared to non-pregnant mice. Surprisingly, we did not observe an increase in maternal inflammation or the antiviral IFN response in these infected mice, despite showing clinical signs of disease. Overall, these findings have concerning implications regarding neurodevelopment and pregnancy complications of the mother following prenatal COVID-19 exposure.


Assuntos
COVID-19 , Complicações Infecciosas na Gravidez , Gravidez , Feminino , Masculino , Humanos , Animais , Camundongos , SARS-CoV-2 , Encéfalo , Inflamação
18.
Ann Med Surg (Lond) ; 85(6): 2761-2766, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37363567

RESUMO

Neurotropic viruses are a threat to human populations due to ongoing zoonosis. A wide array of neurological manifestations can occur most often including parkinsonism, encephalitis/encephalopathy, flaccid myelitis, and Guillain-Barré syndrome. Neuroinvasion occurs through: transneural transmission, blood brain barrier (BBB) dysfunction, and 'trojan horse' mechanism or infected immune cell trafficking into the central nervous system (CNS). Transneural transmission occurs through virus mediated hijacking of intracellular transport proteins allowing retrograde viral transport. BBB dysfunction occurs through cytokine storm increasing membrane permissibility. Increased chemokine expression allows leukocyte trafficking to the BBB. Virally infected leukocytes may successfully pass through the BBB allowing the pathogen to infect microglia and other CNS cell types. We define cerebrospinal fluid (CSF) nondetection as a virus' ability to evade direct CSF detection but still causing significant neurological symptoms and disease. Mechanisms of CSF nondetection include: transneuronal propagation through trans-synaptic transmission, and synaptic microfusion, as well as intrathecal antibody synthesis and virus neutralization. Direct virus detection in CSF is associated with an increased neurological disease burden. However, the lack of CSF detection does not exclude CNS involvement due to possible neuroevasive mechanisms.

19.
Cell Mol Life Sci ; 80(6): 140, 2023 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-37149825

RESUMO

The COVID-19 pandemic spread around the world is due to the enormous capacity of the SARS-CoV-2 coronavirus to be transmitted between humans, causing a threat to global public health. It has been shown that the entry of this virus into cells is highly facilitated by the presence of angiotensin-converting enzyme 2 (ACE2) in the cell membrane. Currently, we have no precise knowledge of how this receptor expresses in the brain of human fetus and, as a consequence, we do not know how susceptible the neural cells in the developing brain are to being infected through the vertical transmission of this virus, from mother to fetus. In this work, we describe the expression of ACE2 in the human brain at 20 weeks of gestation. This stage corresponds to the period of neuronal generation, migration, and differentiation in the cerebral cortex. We describe the specific expression of ACE2 in neuronal precursors and migratory neuroblasts of the dentate gyrus in the hippocampus. This finding implies that SARS-CoV-2 infection during the fetal period may affect neuronal progenitor cells and alter the normal development of the brain region where memory engrams are generated. Thus, although vertical transmission of SARS-CoV-2 infection was reported in few cases, the massive infection rate of young people in terms of the new variants leads to the possibility of increasing the ratio of congenital infections and originating cognitive alterations, as well as neuronal circuit anomalies that may represent vulnerability to mental problems throughout life.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Adolescente , SARS-CoV-2/metabolismo , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Pandemias , Peptidil Dipeptidase A , Hipocampo/metabolismo , Giro Denteado/metabolismo
20.
Medicina (B.Aires) ; 83(supl.2): 2-5, abr. 2023. graf
Artigo em Espanhol | LILACS-Express | LILACS | ID: biblio-1430820

RESUMO

Resumen La pandemia COVID-19 se extendió por todo por a la enorme capacidad del coronavirus SARS-CoV-2 para transmitirse entre humanos. El COVID-19 es una amenaza para la salud pública mundial. La entrada de este virus en las células se ve muy facilitada por la presencia de la enzima convertidora de angiotensina 2 (ACE2) en la membrana celular. Hoy en día no tenemos un conocimiento preciso de cómo se expresa este receptor en el cerebro durante el desarrollo humano y, como consecuencia, no sabemos si las células neurales en desarrollo son susceptibles de ser infectadas a través de la transmisión de madre a feto. Revisamos en este artículo los conocimientos sobre la expresión de ACE2 en el cerebro humano en desarrollo, con especial atención a la etapa fetal. Esta etapa corresponde al periodo de formación de la corteza cerebral. La posibilidad de infección por SARS-CoV-2 durante el periodo fetal puede alterar el desarrollo normal de la corteza cerebral. Así pues, aunque se han publicado pocos casos demostrando la transmisión vertical de la infección por SARS-CoV-2, el gran número de jóvenes infectados puede representar un problema sanitario que necesite seguimiento, por la posibilidad de que se originen alteraciones cognitivas y anomalías en el desarrollo de los circuitos corticales, que pueden representar predisposición a padecer problemas mentales a lo largo de la vida.


Abstract The COVID-19 pandemic spread around the world due to the enormous transmission of the SARS-CoV-2 among humans. COVID-19 represents a threat to global public health. The entry of this virus into cells is greatly facilitated by the presence of angiotensin-converting enzyme 2 (ACE2) in the cell membrane. Today we do not have a precise understanding of how this receptor expresses in the brain during human development and, as a consequence, we do not know whether neural cells in the developing brain are susceptible to infection. We review the knowledge about ACE2 expression in the developing human brain, with special attention to the fetal stage. This stage corresponds to the period of the cerebral cortex formation. Therefore, SARS-CoV-2 infection during the fetal period may alter the normal development of the cerebral cortex. Although few cases have been published demonstrating vertical transmission of SARS-CoV-2 infection, the large number of infected young people may represent a problem which requires health surveillance, due to the possibility of cognitive alterations and abnormalities in the development of cortical circuits that may represent a predisposition to mental problems later in life.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...