Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 261
Filtrar
1.
Med Phys ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38941539

RESUMO

BACKGROUND: An ultra-high dose rate (UHDR) electron accelerator for FLASH radiotherapy (RT) produces very intense bremsstrahlung by the interaction of the electron beam with objects both inside and outside of the accelerator. The bremsstrahlung dose per pulse is typically 1-2 orders of magnitude larger than that of conventional RT x-ray treatment of the same energy, and for electron energies above 10 MeV, the bremsstrahlung produces substantially more induced radioactivity outside the accelerator than for conventional RT. Therefore, a thorough radiation safety assessment is mandatory prior to the operation of a UHDR electron accelerator. PURPOSE: To evaluate the radiation safety of a prototype FLASH-enabled Varian TrueBeam accelerator and to develop a general framework for assessment of all key radiation safety properties of a UHDR electron accelerator for FLASH RT. METHODS: Production of bremsstrahlung and induced radioactivity by a UHDR electron accelerator is modeled by various analytical methods. The analytical modeling is compared with National Institute of Standards and Technology (NIST) bremsstrahlung yield data as well as measurements of primary bremsstrahlung outside the bunker and induced radioactivity of irradiated thick targets for a FLASH-enabled 16 MeV Varian TrueBeam electron accelerator. In addition, the analytical modeling is complemented by measurements of secondary bremsstrahlung inside/outside the bunker and neutrons at the maze entrance. RESULTS: Calculated bremsstrahlung yields deviate maximum 8.5% from NIST data, and all measurements of primary bremsstrahlung and induced radioactivity agree with calculations, validating the analytical tools. In addition, it is found that scattering foil bremsstrahlung dominates primary bremsstrahlung and the main source of secondary bremsstrahlung is the irradiated object outside the accelerator. It follows that primary and secondary bremsstrahlung outside the bunker can be calculated using the same simple formalism as that used for conventional RT. Measured primary bremsstrahlung tenth-value layers for concrete of the simple formalism are in good agreement with NCRP and IAEA data, while measured secondary bremsstrahlung tenth-value layers for concrete are considerably lower than NCRP and IAEA data. All calculations and measurements form a general framework for assessment of all key radiation safety properties of a UHDR electron accelerator. CONCLUSIONS: The FLASH-enabled Varian TrueBeam accelerator is safe for normal operation (max. 99 pulses per irradiation) in a bunker designed for at least 15 MV conventional x-ray treatment unless the UHDR workload is much larger than the x-ray workload. A similar finding applies to other UHDR electron accelerators. However, during beam tuning, radiation survey, or other tests with extended irradiation time, the UHDR workload may become very large, necessitating the implementation of additional safety measures.

2.
Philos Trans A Math Phys Eng Sci ; 382(2275): 20230127, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38910455

RESUMO

We employ constrained path Auxiliary Field Quantum Monte Carlo (AFQMC) in the pursuit of studying physical nuclear systems using a lattice formalism. Since AFQMC has been widely used in the study of condensed-matter systems such as the Hubbard model, we benchmark our method against published results for both one- and two-dimensional Hubbard model calculations. We then turn our attention to cold atomic and nuclear systems. We use an onsite contact interaction that can be tuned in order to reproduce the known scattering length and effective range of a given interaction. Developing this machinery allows us to extend our calculations to study nuclear systems within a lattice formalism. We perform initial calculations for a range of nuclear systems from two- to few-body neutron systems. This article is part of the theme issue 'The liminal position of Nuclear Physics: from hadrons to neutron stars'.

3.
Clin Case Rep ; 12(5): e8868, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38756618

RESUMO

Key Clinical Message: A patient presented with cardiogenic shock, requiring the implantation of a left ventricular assist device (LVAD), and acute myeloblastic leukemia. This necessitated total body irradiation (TBI) while balancing dose reduction to the LVAD components to avoid potential radiation damage. Here we outline our treatment approach and dose estimates to the LVAD. Abstract: This case report discusses the delivery of TBI to a patient with an LVAD. This treatment required radiation-dose determinations and consequential reductions for the heart, LVAD, and an external controller connected to the LVAD. The patient was treated using a traditional 16MV anterior posterior (AP)/posterior anterior (PA) technique at a source-to-surface-distance of 515 cm for 400 cGy in two fractions. A 3 cm thick Cerrobend block was placed on the beam spoiler to reduce dose to the heart and LVAD to 150 cGy. The external controller was placed in a 1 cm thick acrylic box to reduce neutron dose and positioned as far from the treatment fields as achievable. In vivo measurements were made using optically stimulated luminescence dosimeters (OSLDs) placed inside the box at distances of 2 cm, 8.5 cm, and 14 cm from the field edge, and on the patient along the central axis and centered behind the LVAD block. Further ion chamber measurements were made using a solid water phantom to more accurately estimate the dose delivered to the LVAD. Neutron dose measurements were also conducted. The total estimated dose to the controller ranged from 135.3 cGy to 91.5 cGy. The LVAD block reduced the surface dose to the patient to 271.6 cGy (68.1%). The block transmission factors of the 3 cm Cerrobend block measured in the phantom were 45% at 1 cm depth and decreased asymptotically to around 30% at 3 cm depth. Applying these transmission factors to the in vivo measurements yielded a dose of 120 cGy to the implanted device. The neutron dose the LVAD region is estimated around 0.46 cGy. Physical limitations of the controller made it impossible to completely avoid dose. Shielding is recommended. The block had limited dose reduction to the surface, due to secondary particles, but appropriately reduced the dose at 3 cm and beyond. More research on LVADs dose limits would be beneficial.

4.
Sci Rep ; 14(1): 10014, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693293

RESUMO

The current work discusses the radiation attenuation capability and different shielding characteristics of different mortar samples. The samples were prepared by replacing different percentages of fine aggregate with iron filling and replacing different percentages of hydrated lime with Bi2O3 (0-50 wt.%). The prepared mortar samples are coded as CHBFX where X = 0, 10, 30, and 50 wt.%. The mass and linear attenuation coefficient was determined experimentally using a narrow beam technique, where a high purity germanium detector, and different point gamma-ray sources (such as Am-241, Cs-137, and Co-60). The linear attenuation coefficient was also calculated using the Monte-Carlo simulation code and the online Phy-X/PSD software. The comparison of the three methods showed a good agreement in the results. The linear attenuation coefficient drops from 19.821 to 0.053 cm-1 for CHBF0, from 27.496 to 0.057 cm-1 for CHBF10, from 42.351 to 0.064 cm-1 for CHBF30, and from 55.068 to 0.071 cm-1 for CHBF50 at photon energy range from 0.015 to 15 MeV. The half-value layer thickness, tenth-value layer thickness, and mean free path of the prepared mortar composites were also calculated photon energy ranged from 0.015 to 15 MeV. The fast neutron removal cross-section of the prepared CHBFX mortar samples have values of 0.096 cm-1, 0.098 cm-1, 0.103 cm-1, and 0.107 cm-1 for the mortar samples CHBF0, CHBF10, CHBF30, and CHBF50, respectively. The results showed that the mortar sample with the highest iron filing concentration, CHBF50, provides the best protection against gamma rays and fast neutrons which could be used in the nuclear and medical fields.

5.
Adv Mater ; 36(28): e2400443, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38656603

RESUMO

Scintillating materials emit light when exposed to ionizing radiation or particles and are used for the detection of nuclear threats, medical imaging, high-energy physics, and other usages. For some of these applications, it is vital to distinguish neutrons and charged particles from γ-rays. This is achievable by pulse shape discrimination (PSD), a time-gated technique, which exploits that the scintillation kinetics can depend on the nature of the incident radiation. However, it proves difficult to realize efficient PSD with plastic scintillators, which have several advantages over liquid or crystalline scintillating materials, including mechanical robustness and shapeability. It is shown here that sensitive and rapid PSD is possible with nanostructured polymer scintillators that consist of a solid polymer matrix and liquid nanodomains in which an organic dye capable of triplet-triplet annihilation (TTA) is dissolved. The liquid nature of the nanodomains renders TTA highly efficient so that delayed fluorescence can occur at low energy density. The nanostructured polymer scintillators allow discriminating α particles, neutrons, and γ-rays with a time response that is better than that of commercial scintillators. Exploiting that the liquid nanodomains can facilitate energy transfer processes otherwise difficult to realize in solid polymers, an auxiliary triplet sensitizer is incorporated. This approach further increases the scintillator's sensitivity toward α particles and neutrons and other high-energy processes where localized interactions are involved.

6.
Polymers (Basel) ; 16(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38675059

RESUMO

Due to the increasing demands for improved radiation safety and the growing concerns regarding the excessive use of plastics, this work aimed to develop effective and eco-friendly thermal-neutron-shielding materials based on recycled high-density polyethylene (r-HDPE) composites containing varying surface-treated gadolinium oxide (Gd2O3) contents (0, 5, 10, 15, and 20 wt%). The results indicate that the overall thermal-neutron-shielding properties of the r-HDPE composites were enhanced with the addition of Gd2O3, as evidenced by large reductions in I/I0, HVL, and TVL, as well as the substantial increases in ∑t and ∑t/ρ of the composites. Furthermore, the results reveal that the values for tensile properties initially increased up to 5-15 wt% of Gd2O3 and then gradually decreased at higher contents. In addition, the results show that the addition of Gd2O3 particles generally increased the density (ρ), the remaining ash at 600 °C, and the degree of crystallinity (%XC) of the composites. This work also determined the effects of gamma irradiation on relevant properties of the composites. The findings indicate that following gamma aging, the tensile modulus slightly increased, while the tensile strength, elongation at break, and hardness (Shore D) showed no significant (p < 0.05) differences, except for the sample containing 5 wt% of Gd2O3, which exhibited a noticeable reduction in elongation at break. Furthermore, by comparing the neutron-shielding and mechanical properties of the developed r-HDPE composites with common borated polyethylene (PE) containing 5 wt% and 15 wt% of boron, the results clearly indicate the superior shielding and tensile properties in the r-HDPE composites, implying the great potential of r-HDPE composites to replace virgin plastics as effective and more eco-friendly shielding materials.

7.
Life Sci Space Res (Amst) ; 41: 43-51, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38670651

RESUMO

Prolonged manned space flight exposure risks to galactic comic radiation, has led to uncertainties in a variety of health risks. Our previous work, utilizing either single ion or multiple ion radiation exposure conducted at the NSRL (NASA Space Radiation Laboratory, Brookhaven, NY) demonstrated that HZE ion components of the GCR result in persistent inflammatory signaling, increased mutations, and higher rates of cancer initiation and progression. With the development of the 33-beam galactic cosmic radiation simulations (GCRsim) at the NSRL, we can more closely test on earth the radiation environment found in space. With a previously used lung cancer susceptible mouse model (K-rasLA-1), we performed acute exposure experiments lasting 1-2 h, and chronic exposure experiments lasting 2-6 weeks with a total dose of 50 cGy and 75 cGy. We obtained histological samples from a subset of mice 100 days post-irradiation, and the remaining mice were monitored for overall survival up to 1-year post-irradiation. When we compared acute exposures (1-2 hrs.) and chronic exposure (2-6 weeks), we found a trend in the increase of lung adenocarcinoma respectively for a total dose of 50 cGy and 75 cGy. Furthermore, when we added neutron exposure to the 75 cGy of GCRsim, we saw a further increase in the incidence of adenocarcinoma. We interpret these findings to suggest that the risks of carcinogenesis are heightened with doses anticipated during a round trip to Mars, and this risk is magnified when coupled with extra neutron exposure that are expected on the Martian surface. We also observed that risks are reduced when the NASA official 33-beam GCR simulations are provided at high dose rates compared to low dose rates.


Assuntos
Radiação Cósmica , Progressão da Doença , Neoplasias Pulmonares , Neoplasias Induzidas por Radiação , Animais , Radiação Cósmica/efeitos adversos , Camundongos , Neoplasias Induzidas por Radiação/etiologia , Neoplasias Induzidas por Radiação/patologia , Neoplasias Pulmonares/etiologia , Neoplasias Pulmonares/patologia , Voo Espacial , Feminino , Masculino
8.
J Appl Crystallogr ; 57(Pt 2): 380-391, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38596742

RESUMO

A multi-slit very small angle neutron scattering (MS-VSANS) instrument has been finally accepted at the China Spallation Neutron Source (CSNS). It is the first spallation neutron source based VSANS instrument. MS-VSANS has a good signal-to-noise ratio and can cover a wide scattering vector magnitude range from 0.00028 to 1.4 Å-1. In its primary flight path, a combined curved multichannel beam bender and sections of rotary exchange drums are installed to minimize the background downstream of the instrument. An exchangeable multi-slit beam focusing system is integrated into the primary flight path, enabling access to a minimum scattering vector magnitude of 0.00028 Å-1. MS-VSANS has three modes, namely conventional SANS, polarizing SANS and VSANS modes. In the SANS mode, three motorized high-efficiency 3He tube detectors inside the detector tank cover scattering angles from 0.12 to 35° simultaneously. In the polarizing SANS mode, a double-V cavity provides highly polarized neutrons and a high-efficiency 3He polarization analyser allows full polarization analysis. In the VSANS mode, an innovative high-resolution gas electron multiplier detector covers scattering angles from 0.016 to 0.447°. The absolute scattering intensities of a selection of standard samples are obtained using the direct-beam technique; the effectiveness of this method is verified by testing the standard samples and comparing the results with those from a benchmark instrument. The MS-VSANS instrument is designed to be flexible and versatile and all the design goals have been achieved.

9.
Structure ; 32(5): 630-643.e6, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38412856

RESUMO

X-rays, electrons, and neutrons probe different properties of matter. X-rays feel electron density (ED). Electrons sense the electrostatic potential (ESP) of electrons and nuclei. Neutrons are sensitive to nuclear coherent scattering length (NCSL). While NCSL maps are widely understood to be different, ED and ESP maps are tacitly assumed to be similar. Here, I show that the belief in ED and ESP map equivalence is mistaken, but contains a grain of truth. Using density functional theory (DFT), the Bethe-Mott (BM) relation, and the Thomas-Fermi (TF) and Cromer-Mann (CM) atomic models, I show that ED and ESP maps are indeed more similar to each other than to NCSL maps. Nevertheless, peak and integrated map values depend differently on the atomic order number and on the contributions from electrons in the inner and outer CM shells. ED and ESP maps also differ in the sign and relative magnitude of excess charge effects.


Assuntos
Elétrons , Nêutrons , Eletricidade Estática , Raios X , Modelos Moleculares , Teoria da Densidade Funcional
10.
Materials (Basel) ; 17(4)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38399032

RESUMO

Neutrons interact with the magnetic moment of the atomic shell of an atom, as is common for X-rays, but mainly they interact directly with the nucleus. Therefore, the atomic number and the related number of electrons does not play a role in the strength of an interaction. Instead, hydrogen that is nearly invisible for X-rays has a higher attenuation for neutrons than most of the metals, e.g., zirconium, and thus would be visible through dark contrast in neutron images. Consequently, neutron imaging is a precise, non-destructive method to quantify the amount of hydrogen in materials with low attenuation. Because nuclear fuel cladding tubes of light water reactors are made of zirconium (98%), the hydrogen amount and distribution in metallic claddings can be investigated. Even hydrogen concentrations smaller than 10 wt.ppm can be determined locally with a spatial resolution of less than 10 µm (with a high-resolution neutron microscope). All in all, neutron imaging is a very fast and precise method for several applications. This article explains the basics of neutron imaging and provides samples of investigation possibilities, e.g., for hydrogen in zirconium alloy cladding tubes or in situ investigations of hydrogen diffusion in metals.

11.
Nanomaterials (Basel) ; 14(4)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38392760

RESUMO

More than 15 years ago, the study of nanodiamond (ND) powders as a material for designing reflectors of very cold neutrons (VCNs) and cold neutrons (CNs) began. Such reflectors can significantly increase the efficiency of using such neutrons and expand the scope of their application for solving applied and fundamental problems. This review considers the principle of operation of VCN and CN reflectors based on ND powders and their advantages. Information is presented on the performed experimental and theoretical studies of the effect of the size, structure, and composition of NDs on the efficiency of reflectors. Methods of chemical and mechanical treatments of powders in order to modify their chemical composition and structure are discussed. The aim is to avoid, or at least to decrease, the neutron inelastic scatterers and absorbers (mainly hydrogen atoms but also metallic impurities and nitrogen) as well as to enhance coherent elastic scattering (to destroy ND clusters and sp2 carbon shells on the ND surface that result from the preparation of NDs). Issues requiring further study are identified. They include deeper purification of NDs from impurities that can be activated in high radiation fluxes, the stability of NDs in high radiation fluxes, and upscaling methods for producing larger quantities of ND powders. Possible ways of solving these problems are proposed.

12.
Appl Radiat Isot ; 206: 111232, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38346373

RESUMO

The possibility of creating technical means for controlling the processes of accumulation and conversion of the energies of thermal and epithermal neutrons into the energy of monoenergetic photons due to neutron pumping of an active medium consisting of nuclei with long-lived isomeric states was studied in this work. The system under study consisted of an external pulse-periodic source of deuterium-tritium neutrons (PSN) and a subcritical blanket, which included a variable neutron-collimation beam-shaping assembly (vBSA) and an active medium. The vBSA was composed of moderating blocks and selective plates designed to trap and shape a pulsed neutron flux with subsequent conversion of a millisecond signature into monoenergetic photon emission. Gadolinium oxide enriched in 155Gd isotope was used as the active medium, where the heavier one could be at different excited states, the de-excitations of which were accompanied by photon emission. In this research, the possibility of using the conjugate system (i.e., blanket - PSN - vBSA) for converting excess neutron energy accumulated in the inverse state of 156Gd nuclei into photon emission was demonstrated in detail.

13.
Phys Med Biol ; 69(1)2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37995363

RESUMO

Objective.To study the secondary neutrons generated by primary oxygen beams for cancer treatment and compare the results to those from primary protons, helium, and carbon ions. This information can provide useful insight into the positioning of neutron detectors in phantom for future experimental dose assessments.Approach.Mono-energetic oxygen beams and spread-out Bragg peaks were simulated using the Monte Carlo particle transport codesFLUktuierende KAskade, tool for particle simulation, and Monte Carlo N-Particle, with energies within the therapeutic range. The energy and angular distribution of the secondary neutrons were quantified.Main results.The secondary neutron spectra generated by primary oxygen beams present the same qualitative trend as for other primary ions. The energy distributions resemble continuous spectra with one peak in the thermal/epithermal region, and one other peak in the fast/relativistic region, with the most probable energy ranging from 94 up to 277 MeV and maximum energies exceeding 500 MeV. The angular distribution of the secondary neutrons is mainly downstream-directed for the fast/relativistic energies, whereas the thermal/epithermal neutrons present a more isotropic propagation. When comparing the four different primary ions, there is a significant increase in the most probable energy as well as the number of secondary neutrons per primary particle when increasing the mass of the primaries.Significance.Most previous studies have only presented results of secondary neutrons generated by primary proton beams. In this work, secondary neutrons generated by primary oxygen beams are presented, and the obtained energy and angular spectra are added as supplementary material. Furthermore, a comparison of the secondary neutron generation by the different primary ions is given, which can be used as the starting point for future studies on treatment plan comparison and secondary neutron dose optimisation. The distal penumbra after the maximum dose deposition appears to be a suitable location for in-phantom dose assessments.


Assuntos
Nêutrons , Terapia com Prótons , Terapia com Prótons/métodos , Prótons , Dosagem Radioterapêutica , Método de Monte Carlo
14.
Cancers (Basel) ; 15(17)2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37686685

RESUMO

The recurrence rate of head and neck cancers (HNCs) after initial treatment may reach 70%, and poor prognosis is reported in most cases. Curative options for recurrent HNCs mainly depend on the treatment history and the recurrent tumor localization. Reirradiation for HNCs is effective and has been included in most guidelines. However, the option remains clinically challenging due to high incidence of severe toxicity, especially in cases of quick infield recurrence. Recent technical advances in radiation therapy (RT) provide the means for upgrade in reirradiation protocols. While the majority of hospitals stay focused on conventional and widely accessible modulated RTs, the particle therapy options emerge as tolerable and providing further treatment opportunities for recurrent HNCs. Still, the progress is impeded by high heterogeneity of the data and the lack of large-scale prospective studies. This review aimed to summarize the outcomes of reirradiation for HNCs in the clinical perspective.

15.
Phys Med Biol ; 68(18)2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37607560

RESUMO

Objective.This work presents a method for enhanced detection, imaging, and measurement of the thermal neutron flux.Approach. Measurements were performed in a water tank, while the detector is positioned out-of-field of a 20 MeV ultra-high pulse dose rate electron beam. A semiconductor pixel detector Timepix3 with a silicon sensor partially covered by a6LiF neutron converter was used to measure the flux, spatial, and time characteristics of the neutron field. To provide absolute measurements of thermal neutron flux, the detection efficiency calibration of the detectors was performed in a reference thermal neutron field. Neutron signals are recognized and discriminated against other particles such as gamma rays and x-rays. This is achieved by the resolving power of the pixel detector using machine learning algorithms and high-resolution pattern recognition analysis of the high-energy tracks created by thermal neutron interactions in the converter.Main results. The resulting thermal neutrons equivalent dose was obtained using conversion factor (2.13(10) pSv·cm2) from thermal neutron fluence to thermal neutron equivalent dose obtained by Monte Carlo simulations. The calibrated detectors were used to characterize scattered radiation created by electron beams. The results at 12.0 cm depth in the beam axis inside of the water for a delivered dose per pulse of 1.85 Gy (pulse length of 2.4µs) at the reference depth, showed a contribution of flux of 4.07(8) × 103particles·cm-2·s-1and equivalent dose of 1.73(3) nSv per pulse, which is lower by ∼9 orders of magnitude than the delivered dose.Significance. The presented methodology for in-water measurements and identification of characteristic thermal neutrons tracks serves for the selective quantification of equivalent dose made by thermal neutrons in out-of-field particle therapy.


Assuntos
Algoritmos , Elétrons , Calibragem , Raios gama , Nêutrons
16.
Front Oncol ; 13: 1181450, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37469405

RESUMO

Age is a risk factor for both cardiovascular disease and cancer, and as such radiation oncologists frequently see a number of patients with cardiac implantable electronic devices (CIEDs) receiving proton therapy (PT). CIED malfunctions induced by PT are nonnegligible and can occur in both passive scattering and pencil beam scanning modes. In the absence of an evidence-based protocol, the authors emphasise that this patient cohort should be managed differently to electron- and photon- external beam radiation therapy (EBRT) patients due to distinct properties of proton beams. Given the lack of a PT-specific guideline for managing this cohort and limited studies on this important topic; the process was initiated by evaluating all PT-related CIED malfunctions to provide a baseline for future reporting and research. In this review, different modes of PT and their interactions with a variety of CIEDs and pacing leads are discussed. Effects of PT on CIEDs were classified into a variety of hardware and software malfunctions. Apart from secondary neutrons, cumulative radiation dose, dose rate, CIED model/manufacturer, distance from CIED to proton field, and materials used in CIEDs/pacing leads were all evaluated to determine the probability of malfunctions. The importance of proton beam arrangements is highlighted in this study. Manufacturers should specify recommended dose limits for patients undergoing PT. The establishment of an international multidisciplinary team dedicated to CIED-bearing patients receiving PT may be beneficial.

17.
Phys Med ; 112: 102625, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37331083

RESUMO

NeuCure® is the only accelerator-based boron neutron capture therapy (BNCT) system in the world with pharmaceutical approval. Until now, only flat collimators (FCs) on the patient side have been installed. However, in some cases of head and neck cancer patients, positioning the patient close enough to the collimator when using FCs was difficult. Thus, there are concerns about the prolongation of the irradiation time and overdose to normal tissues. To address these issues, a collimator with a convex-extended section on the patient side (extended collimators [ECs]) was developed, and its pharmaceutical approval was obtained in February 2022. This study evaluated the physical characterization and usefulness of each collimator using a simple geometry water phantom model and human model. In the water phantom model, the thermal neutron fluxes at 2 cm depth on the central axis were 5.13 × 108, 6.79 × 108, 1.02 × 109, and 1.17 × 109n/cm2/s for FC(120), FC(150), EC50(120), and EC100(120), respectively, when the distance from the irradiation aperture was kept constant at 18 cm. With ECs, the relative off-axis thermal neutron flux decreased steeply. In the hypopharyngeal cancer human model, the tumor dose changes were within <2%, but the maximum oral mucosa doses were 7.79, 8.51, 6.76, and 4.57 Gy-Eq, respectively. The irradiation times were 54.3, 41.3, 29.2, and 24.8 min, respectively. In cases where positioning the patient close to the collimator is difficult, the use of ECs may reduce the dose to normal tissues and shorten the irradiation time.


Assuntos
Terapia por Captura de Nêutron de Boro , Neoplasias de Cabeça e Pescoço , Humanos , Método de Monte Carlo , Nêutrons , Neoplasias de Cabeça e Pescoço/radioterapia , Água , Preparações Farmacêuticas
18.
J Appl Crystallogr ; 56(Pt 3): 673-682, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37284268

RESUMO

The use of a phase-retrieval technique for propagation-based phase-contrast neutron imaging with a polychromatic beam is demonstrated. This enables imaging of samples with low absorption contrast and/or improving the signal-to-noise ratio to facilitate e.g. time-resolved measurements. A metal sample, designed to be close to a phase pure object, and a bone sample with canals partially filled with D2O were used for demonstrating the technique. These samples were imaged with a polychromatic neutron beam followed by phase retrieval. For both samples the signal-to-noise ratios were significantly improved and, in the case of the bone sample, the phase retrieval allowed for separation of bone and D2O, which is important for example for in situ flow experiments. The use of deuteration contrast avoids the use of chemical contrast enhancement and makes neutron imaging an interesting complementary method to X-ray imaging of bone.

19.
Phys Med Biol ; 68(14)2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37285847

RESUMO

Objective. The aim of this study was to investigate the feasibility of online monitoring of irradiation time (IRT) and scan time for FLASH proton radiotherapy using a pixelated semiconductor detector.Approach. Measurements of the time structure of FLASH irradiations were performed using fast, pixelated spectral detectors based on the Timepix3 (TPX3) chips with two architectures: AdvaPIX-TPX3 and Minipix-TPX3. The latter has a fraction of its sensor coated with a material to increase sensitivity to neutrons. With little or no dead time and an ability to resolve events that are closely spaced in time (tens of nanoseconds), both detectors can accurately determine IRTs as long as pulse pile-up is avoided. To avoid pulse pile-up, the detectors were placed well beyond the Bragg peak or at a large scattering angle. Prompt gamma rays and secondary neutrons were registered in the detectors' sensors and IRTs were calculated based on timestamps of the first charge carriers (beam-on) and the last charge carriers (beam-off). In addition, scan times inx,y, and diagonal directions were measured. The experiment was carried out for various setups: (i) a single spot, (ii) a small animal field, (iii) a patient field, and (iv) an experiment using an anthropomorphic phantom to demonstratein vivoonline monitoring of IRT. All measurements were compared to vendor log files.Main results. Differences between measurements and log files for a single spot, a small animal field, and a patient field were within 1%, 0.3% and 1%, respectively.In vivomonitoring of IRTs (95-270 ms) was accurate within 0.1% for AdvaPIX-TPX3 and within 6.1% for Minipix-TPX3. The scan times inx,y, and diagonal directions were 4.0, 3.4, and 4.0 ms, respectively.Significance. Overall, the AdvaPIX-TPX3 can measure FLASH IRTs within 1% accuracy, indicating that prompt gamma rays are a good surrogate for primary protons. The Minipix-TPX3 showed a somewhat higher discrepancy, likely due to the late arrival of thermal neutrons to the detector sensor and lower readout speed. The scan times (3.4 ± 0.05 ms) in the 60 mm distance ofy-direction were slightly less than (4.0 ± 0.06 ms) in the 24 mm distance ofx-direction, confirming the much faster scanning speed of the Y magnets than that of X. Diagonal scan speed was limited by the slower X magnets.


Assuntos
Terapia com Prótons , Radiometria , Radiometria/métodos , Raios gama , Terapia com Prótons/métodos , Prótons , Nêutrons
20.
J Radiol Prot ; 43(2)2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37257434

RESUMO

Iranian Light Source Facility (ILSF) is an under-construction synchrotron radiation accelerator consisting of a 150 MeV linac, a booster synchrotron operating from 150 MeV to 3 GeV, and a 3 GeV storage ring that stores a maximum of 400 mA current of electrons. As the stored beam circulates, a fraction of the beam is lost due to interactions with gas molecules, interactions among beam particles, and orbital bending, which produce radiation. The bulk shielding calculation for the ILSF and the input parameters used for this analysis are discussed in this paper. The potential of skyshine neutrons to cause radiation hazards is investigated as well. Moreover, the design and shielding simulation using the FLUKA Monte Carlo code is presented for the linac beam stop and primary and scattered gas bremsstrahlung for the first optics enclosure of the ILSF spectro microscopy beamline. Our designed radiation shielding system guarantees that the annual dose in all areas around the ILSF machine does not exceed the dose limit of 1 mSv.


Assuntos
Simulação por Computador , Proteção Radiológica , Síncrotrons , Irã (Geográfico) , Método de Monte Carlo , Nêutrons , Doses de Radiação , Síncrotrons/instrumentação , Síncrotrons/normas , Elétrons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...