Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
J Environ Manage ; 356: 120619, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38518489

RESUMO

Hydrothermal liquefaction (HTL) is promising for treating waste with high moisture, such as municipal sludge, and producing biocrude (a petroleum-like biofuel). However, a large amount of wastewater byproduct, HTL aqueous, is generated. The presence of hazardous compounds (e.g., phenolic compounds and nitrogenous organics) makes HTL aqueous the biggest bottleneck for full-scale implementation at treatment plants. This study investigated the adsorption of various pollutants, focusing on chemical oxygen demand (COD), in HTL aqueous to granular activated carbon (GAC), biochar, and hydrochar. It assessed the effect of pH, temperature, time, and adsorbent concentration on adsorption efficiency and identified proper adsorbent and process conditions for removing most of the pollutants from HTL aqueous. GAC showed the highest adsorption capacity (184 mg/g) for COD, surpassing biochar (44 mg/g) and hydrochar (42 mg/g). The adsorption of COD to all adsorbents followed pseudo-second-order kinetic and Freundlich isotherm, suggesting that the adsorption of HTL aqueous pollutants is a heterogeneous and multilayer process, limited by chemosorption. The adsorption was endothermic, favored by elevated temperatures and neutral pH. This means adsorption is more efficient and economical for treating HTL aqueous that is a hot stream at the large-scale and it saves chemical needs. Lastly, GAC was highly efficient and selective in removing harmful pollutants, such as COD (up to 66%), total phenolic compounds (up to 94%), pyrazines (up to 99%), pyridines (up to 100%), and cyclic ketones (up to 95%) while preserving valuable volatile fatty acids (VFAs) and ammonia for subsequent recovery. Removal of potentially inhibitory compounds and preserving VFAs are crucial for carbon recovery in anaerobic biological treatment of HTL aqueous. The results suggested the necessity of optimizing adsorbent dose for maximizing removal of specific group of inhibitory compounds in full-strength HTL aqueous for enhancing downstream biological treatment. Lastly, this study established the groundwork for HTL aqueous adsorption, elucidating its effectiveness and mechanism for pollutant removal.


Assuntos
Esgotos , Poluentes Químicos da Água , Esgotos/química , Carvão Vegetal/química , Adsorção , Água/química , Cinética , Poluentes Químicos da Água/química
2.
Fitoterapia ; 172: 105783, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38110127

RESUMO

Eight nitrogenous compounds including five undescribed ones, aeswilnitrousol A (1), aeswilnitrousosides BD (2-4), and 6-(2-hydroxy-3-methylbutylamino)-8-oxoadenine (5) were isolated from the seeds of Aesculus wilsonii. Their structures and absolute configurations were established based on spectroscopic determination, calculated electronic circular dichroism (ECD) analysis, as well as chemical reaction methods. Among the three known compounds, 7 and 8 were obtained from the Aesculus genus for the first time, and 6 was gained from this plant initially. The 13C NMR data of 7 and 8 were reported for the first time. Moreover, the inhibitory effect of all the isolates against LPS-induced nitric oxide production in RAW264.7 macrophages was evaluated. As a result, compounds 2 and 8 exhibited anti-inflammatory activity in a concentration-dependent manner at 10, 25, and 50 µM.


Assuntos
Aesculus , Estrutura Molecular , Aesculus/química , Compostos de Nitrogênio/análise , Anti-Inflamatórios/farmacologia , Sementes/química , Óxido Nítrico
3.
Rev. argent. microbiol ; 55(3): 4-4, Oct. 2023.
Artigo em Espanhol | LILACS-Express | LILACS | ID: biblio-1529619

RESUMO

Resumen Muchos de los hongos degradadores de madera están implicados en la síntesis de metabolitos bioactivos de naturaleza antimicrobiana y terapéutica, así como de compuestos de importancia biotecnológica, incluyendo derivados indólicos, entre otros. Estos hongos brindan ciertos beneficios ecológicos a las plantas, entre los que se destacan la protección contra fitopatógenos y la promoción del crecimiento radicular. Xylaria sp. es un hongo degradador de celulosa (lignocelulolítico) con potencial biotecnológico. El ácido indol-3-acético (AIA) desempeña un papel sumamente importante en las interacciones planta-microorganismo, ya que es esencial para la fisiología y el correcto desarrollo morfológico vegetal. Se sabe que las enzimas nitrilo-hidrolíticas (nitrilasas) están involucradas en la síntesis de compuestos indólicos en las plantas, no obstante, se dispone de poca información acerca de la naturaleza de estas enzimas en el reino de los hongos. A través de una aproximación bioquímica y de genética molecular, se demuestra por primera vez que Xylaria sp. posee actividad enzimática nitrilasa utilizando compuestos ricos en nitrógeno y carbono como sustrato. La cepa estudiada aumentó sus niveles de expresión génica relativa y mostró crecimiento micelial, ambos en presencia de compuestos químicos como cianobenceno y KCN. Los resultados de este trabajo sugieren que el microorganismo es capaz de degradar moléculas nitrogenadas complejas. Por otra parte, mediante biofertilización con extractos fúngicos, se observó que Xylaria sp. promueve el desarrollo del sistema radicular de plántulas de Arabidopsis thaliana, además de sintetizar AIA.


Abstract Endophytic fungi inhabit plant tissues internally and asymptomatically, and many of them are involved in the synthesis of bioactive metabolites of antifungal and therapeutic nature, as well as other compounds of biotechnological importance including indole derivatives, among many others. Ecologically, they provide some benefits to plants including protection against phy-topathogens and promotion of root growth. In this sense, Xylaria sp. is a cellulose-decomposing fungus with biotechnological potential. It is worth mentioning that indole-3-acetic acid (IAA) also plays an extremely important role in plant-micro-organism interactions, as it is essential for physiology and proper plant morphological development. It is known that nitrile-hydrolytic enzymes (nitrilases) are involved in the synthesis of plant indole compounds; however, relatively little information is available concerning the nature of these enzymes in the fungal kingdom. In view of the above, through a biochemical and molecular-genetic approach, it has been demon-strated for the first time that Xylaria sp. carries out nitrile-hydrolytic enzyme activity using nitrogen and carbonrich compounds as substrate. The studied strain increased its relative gene expression levels and showed mycelial growth, both in the presence of chemical compounds such as cyanobenzene and KCN. Thus, the results of this work suggest that the micro-organism is capable of degrading complex nitrogenous molecules. On the other hand, through fungal biofertilization, it was observed that Xylaria sp. promotes the development of the root system of Arabidopsis thaliana seedlings, in addition to synthesizing IAA.

4.
Oral Dis ; 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37575013

RESUMO

OBJECTIVE: This work measures the intra-operative bleeding in end-stage renal disease patients and assesses whether laboratory coagulation tests and nitrogenous compounds are related to a higher bleeding risk. METHODS: Laboratory tests were performed on the day of surgery and some patients with thrombocytopenia and values above the normal levels of international normalised ratio (INR), thrombin time (TT) and activated partial thromboplastin time (aPTT) were identified. RESULTS: Haemostatic time ranged from 2 to 35 min (mean of 8.51 min) after suture. Bleeding volume ranged from 0.02 to 67.06 mL (mean of 4.38 mL) and the bleeding volume per minute ranged from 0.05 to 2.10 mL/min (median of 0.6 mL/min). Only seven patients (16.27%) had abnormal bleeding (more than 0.6 mL/min). Spearman's coefficient showed weak correlations between bleeding volume (mL/min) and serum urea (r = 0.226), TT (r = 0.227), plasma urea (r = 0.148) and creatinine (r = 146), as well as very weak correlations with all other variables (r < 0.140) such as age, haemodialysis time, glycaemia, glycated haemoglobin, platelets, INR, aPTT and fibrinogen. CONCLUSION: It was not possible to associate any laboratory test or nitrogenous compounds present in the blood and saliva with an increased bleeding.

5.
Animals (Basel) ; 13(12)2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37370455

RESUMO

The pet food market is constantly expanding, and more and more attention is paid to the feeding of pets. Dry foods stand out and are often preferred due to their long shelf life, ease of administration, and low cost. In this context, dry foods are formulated from fresh meats, meat meals, or a mix of the two. These raw materials are often meat not fit for human consumption; they might be subject to contamination and proliferation of microorganisms which, by degrading the organic component, can lead to the formation of undesirable by-products such as biogenic amines. These nitrogenous compounds obtained by decarboxylation of amino acids can therefore be found in high-protein foods, and their ingestion in large quantities can cause intoxication and be harmful. This study aims at analyzing the possible presence of biogenic amines in three different formulations of chicken-based kibbles for pets: one obtained from fresh meat, one from meat meal, and one from a mix of the two. This study is also focused on the presence of free amino acids as they represent the key substrate for decarboxylating enzymes. Mass spectrometry (Q-TOF LC/MS) was used to analyze the presence of biogenic amines and free amino acids. The results show that fresh-meat-based products have a lower content of biogenic amines, and at the same time a higher quantity of free amino acids; on the contrary, meat-meal- and mix-based products have a greater quantity of biogenic amines and a lower concentration of free amino acids, suggesting that there has been a higher microbial proliferation as proved by the total aerobic mesophilic bacteria counts. It is therefore clear that fresh-meat-based kibbles are to be preferred when they are used for preparing dry pet food due to the lowest concentration of biogenic amines.

6.
Rev Argent Microbiol ; 55(3): 214-225, 2023.
Artigo em Espanhol | MEDLINE | ID: mdl-37024343

RESUMO

Endophytic fungi inhabit plant tissues internally and asymptomatically, and many of them are involved in the synthesis of bioactive metabolites of antifungal and therapeutic nature, as well as other compounds of biotechnological importance including indole derivatives, among many others. Ecologically, they provide some benefits to plants including protection against phytopathogens and promotion of root growth. In this sense, Xylaria sp. is a cellulose-decomposing fungus with biotechnological potential. It is worth mentioning that indole-3-acetic acid (IAA) also plays an extremely important role in plant-micro-organism interactions, as it is essential for physiology and proper plant morphological development. It is known that nitrile-hydrolytic enzymes (nitrilases) are involved in the synthesis of plant indole compounds; however, relatively little information is available concerning the nature of these enzymes in the fungal kingdom. In view of the above, through a biochemical and molecular-genetic approach, it has been demonstrated for the first time that Xylaria sp. carries out nitrile-hydrolytic enzyme activity using nitrogen and carbon-rich compounds as substrate. The studied strain increased its relative gene expression levels and showed mycelial growth, both in the presence of chemical compounds such as cyanobenzene and KCN. Thus, the results of this work suggest that the micro-organism is capable of degrading complex nitrogenous molecules. On the other hand, through fungal biofertilization, it was observed that Xylaria sp. promotes the development of the root system of Arabidopsis thaliana seedlings, in addition to synthesizing IAA.


Assuntos
Ácidos Indolacéticos , Indóis , Ácidos Indolacéticos/metabolismo , Indóis/metabolismo , Plantas , Nitrilas
7.
J Hazard Mater ; 453: 131406, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37084514

RESUMO

Due to the wide applications of polyurethane (PU), production is constantly increasing, accounting for 8% of produced plastics. PU has been regarded as the 6th most used polymer in the world. Improper disposal of waste PU will result in serious environmental consequences. The pyrolysis of polymers is one of the most commonly used disposal methods, but PU pyrolysis easily produces toxic and harmful nitrogen-containing substances due to its high nitrogen content. This paper reviews the decomposition pathways, kinetic characteristics, and migration of N-element by product distribution during PU pyrolysis. PU ester bonds break to produce isocyanates and alcohols or decarboxylate to produce primary amines, which are then further decomposed to MDI, MAI, and MDA. The nitrogenous products, including NH3, HCN, and benzene derivatives, are released by the breakage of C-C and C-N bonds. The N-element migration mechanism is concluded. Meanwhile, this paper reviews the removal of gaseous pollution from PU pyrolysis and discusses the removal mechanism in depth. Among the catalysts for pollutant removal, CaO has the most superior catalytic performance and can convert fuel-N to N2 by adsorption and dehydrogenation reactions. At the end of the review, new challenges for the utilization and high-quality recycling of PU are presented.

8.
Environ Sci Technol ; 57(1): 64-75, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36516990

RESUMO

Oxidation of volatile organic compounds (VOCs) forms oxygenated organic molecules (OOMs), which contribute to secondary pollution. Herein, we present measurement results of OOMs using chemical ionization mass spectrometry with nitrate as the reagent ion in Shanghai. Compared to those in forests and laboratory studies, OOMs detected at this urban site were of relatively lower degree of oxygenation. This was attributed to the high NOx concentrations (∼44 ppb), which overall showed a suppression on the propagation reactions. As another result, a large fraction of nitrogenous OOMs (75%) was observed, and this fraction further increased to 84% under a high NO/VOC ratio. By applying a novel framework on OOM categorization and supported by VOC measurements, 50 and 32% OOMs were attributed to aromatic and aliphatic precursors, respectively. Furthermore, aromatic OOMs are more oxygenated (effective oxygen number, nOeff = 4-6) than aliphatic ones (nOeff = 3-4), which can be partly explained by the difference in initiation mechanisms and points to possible discrimination in termination reactions. This study highlights the roles of NOx in OOM formation in urban areas, as well as the formation of nitrogenous products that might show discrimination between aromatic and aliphatic VOCs.


Assuntos
Poluentes Atmosféricos , Ozônio , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Compostos Orgânicos Voláteis/análise , China , Ozônio/análise , Monitoramento Ambiental , Nitrogênio/análise
9.
Arq. Ciênc. Vet. Zool. UNIPAR (Online) ; 25(2): e6378, jul-dez. 2022.
Artigo em Português | LILACS, VETINDEX | ID: biblio-1399609

RESUMO

Os resíduos provenientes da aquicultura são derivados da ração e da excreção dos peixes e podem estar sedimentados, suspensos ou dissolvidos, ocasionando elevados valores de DBO, DQO, nitrogênio e fósforo. A produção de camarões no Brasil tem gerado elevadas quantidades de resíduos sólidos, tendo em vista que os exoesqueletos dos camarões correspondem a cerca de 40% do seu peso total, resultando num forte impacto ambiental. Diversas pesquisas envolvendo a quitina estão sendo desenvolvidas na área de tratamento de água, devido principalmente a sua capacidade de formar filme, sendo utilizada em sistemas filtrantes. Este polissacarídeo também pode ser utilizado como agente floculante no tratamento de efluentes, como adsorvente na clarificação de óleos, e principalmente na produção de quitosana. Atualmente a quitosana possui aplicações multidimensionais, desde áreas como a nutrição humana, biotecnologia, ciência dos materiais, indústria farmacêutica, agricultura, terapia genética e proteção ambiental. A quitosana é muito eficiente na remoção de poluentes em diferentes concentrações. Apresenta alta capacidade e grande velocidade de adsorção, boa eficiência e seletividade tanto em soluções que possuem altas ou baixas concentrações. O uso da biotecnologia, através do processo de adsorção utilizando adsorventes naturais e baratos, como a quitina e quitosana, minimiza os impactos ambientais da aquicultura tanto em relação aos provocados pelo lançamento de efluentes no meio ambiente quanto aos causados pelo descarte inadequado dos resíduos do processamento de camarões.(AU)


Aquaculture residues are derived from fish feed and excretion and may be sedimented, suspended or dissolved, resulting in high BOD, COD, nitrogen and phosphorus values. Shrimp production in Brazil has generated high amounts of solid waste, since shrimp exoskeletons account for about 40% of their total weight, resulting in a strong environmental impact. Several researches involving chitin are being developed in the area of water treatment, mainly due to its ability to form film, being used in filter systems. This polysaccharide can also be used as a flocculating agent in the treatment of effluents, as an adsorbent in the clarification of oils, and especially in the production of chitosan. Currently, chitosan has multidimensional applications, from areas such as human nutrition, biotechnology, materials science, pharmaceutical industry, agriculture, gene therapy and environmental protection. Chitosan is very efficient in the removal of pollutants at different concentrations. It presents high capacity and high adsorption velocity, good efficiency and selectivity both in solutions that have high or low concentrations. The use of biotechnology, through the adsorption process using natural and cheap adsorbents such as chitin and chitosan, minimizes the environmental impacts of aquaculture both in relation to those caused by the release of effluents into the environment and those caused by the inappropriate disposal of processing residues of shrimps.(AU)


Los residuos procedentes de la acuicultura se derivan de la ración y de la excreción de los peces y pueden estar sedimentados, suspendidos o disueltos, ocasionando elevados valores de DBO, DQO, nitrógeno y fósforo. La producción de camarones en Brasil ha generado grandes cantidades de residuos sólidos, teniendo en cuenta que los exoesqueletos de los camarones corresponden a cerca del 40% de su peso total, resultando en un fuerte impacto ambiental. Varias investigaciones involucrando la quitina se están desarrollando en el área de tratamiento de agua, debido principalmente a su capacidad de formar película, siendo utilizada en sistemas filtrantes. Este polisacárido también puede ser utilizado como agente floculante en el tratamiento de efluentes, como adsorbente en la clarificación de aceites, y principalmente en la producción de quitosana. Actualmente la quitosana posee aplicaciones multidimensionales, desde áreas como la nutrición humana, biotecnología, ciencia de los materiales, industria farmacéutica, agricultura, terapia genética y protección ambiental. La quitosana es muy eficiente en la eliminación de contaminantes en diferentes concentraciones. Presenta alta capacidad y gran velocidad de adsorción, buena eficiencia y selectividad tanto en soluciones que poseen altas o bajas concentraciones. El uso de la biotecnología, a través del proceso de adsorción utilizando adsorbentes naturales y baratos, como la quitina y quitosana, minimiza los impactos ambientales de la acuicultura tanto en relación a los provocados por el lanzamiento de efluentes en el medio ambiente en cuanto a los causados por el descarte inadecuado de los residuos del procesamiento de camarones.(AU)


Assuntos
Quitina/administração & dosagem , Adsorção/efeitos dos fármacos , Quitosana/administração & dosagem , Águas Residuárias/química , Biopolímeros/análise , Aquicultura , Eutrofização/fisiologia , Amônia/química
10.
Front Physiol ; 13: 797625, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35721543

RESUMO

The aquaculture industry is vital in providing a valuable protein food source for humans, but generates a huge amount of solid and dissolved wastes that pose great risks to the environment and aquaculture sustainability. Suspended solids (in short SS), one of the aquaculture wastes, are very difficult to be treated due to their high organic contents. The bioconversion from wastewater, food effluents, and activated sludge into poly-ß-hydroxybutyrate (PHB) is a sustainable alternative to generate an additional income and could be highly attractive to the agricultural and environmental management firms. However, little is known about its potential application in aquaculture wastes. In the present study, we first determined that 7.2% of SS was PHB. Then, the production of PHB was increased two-fold by the optimal fermentation conditions of wheat bran and microbial cocktails at a C/N ratio of 12. Also, the PHB-enriched SS showed a higher total ammonia nitrogen removal rate. Importantly, we further demonstrated that the PHB-enriched SS as a feed could promote fish growth and up-regulate the expression of the immune-related genes. Our study developed an eco-friendly and simple approach to transforming problematic SS wastes into PHB-enriched high-quality food for omnivorous fish, which will increase the usage efficiency of SS and provide a cheaper diet for aquatic animals.

11.
Environ Sci Pollut Res Int ; 29(42): 63815-63836, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35467182

RESUMO

An integrated aftertreatment system consisting of diesel oxidation catalyst (DOC), catalytic diesel particulate filter (CDPF), and selective catalytic reduction (SCR) is an effective way of reducing both NOx and particulate matter (PM). In this paper, the effect of DOC + CDPF + SCR on NOX and particle emissions is investigated during different operations to assess applicability of this aftertreatment for meeting more rigorous non-road emissions standard. Meanwhile non-negligible issue about regeneration emission is studied. The results show that the DOC + CDPF have no significant effect on NOx but increase the NO2/NOx ratio which is correlated with load. SCR is the main NOx reduction device with average efficiency of 86.5% for steady-state operations. Meanwhile, NH3 slip is lower than 16 ppm. During cold and hot non-road transient cycles (NRTC cycles), average NOx efficiencies are 56.7% and 57.8%, respectively, along with NH3 slip below 10 ppm. DOC + CDPF + SCR maintain filtration efficiency over 97% and 99% for PM and particle number (PN) for either steady-state operation or NRTC cycle, but particle size distributions change. Compared with the original emissions, NOx, PM, and PN emission factors are all below non-road China-IV limit after equipping with DOC + CDPF + SCR. However, during regeneration the aftertreatment does not maintain a high filtration performance but becomes particle generator. The penetration of nuclear particles and decomposition of agglomerated particles lead to high CDPF-out PN of 1.5 × 107 #/cm3-3.5 × 107 #/cm3. During regeneration, accumulated NOx is negligible, but the PM is 121.6 and 44.5 times higher than cold and hot NRTC cycles, respectively. In summary, DOC + CDPF + SCR is excellent way to improve non-road emissions but low SCR efficiency at low-temperature and high accumulated PM during regeneration process should be further addressed.

12.
Transl Anim Sci ; 6(1): txac009, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35233511

RESUMO

Protein is a macronutrient required by dogs for growth and maintenance metabolism. However, a portion of the crude protein listed on pet foods may actually arise from non-digestible organic nitrogen or potentially toxic inorganic non-protein nitrogen sources. Neither non-protein source is retained or used by the animal. However, these compounds may result in adverse effects such as methemoglobin formation and increased oxidative stress or potentially beneficial effects such as improved vascular distensibility and decreased inflammation. To analyze nitrogen retention and screen for non-protein nitrogen, four commercial, dry kibble dog foods and one laboratory-made diet were evaluated and then fed to beagles during two separate feeding trials. During the first trial, dogs were randomly assigned each diet (n = 4 dogs/diet) and fed chromium oxide-coated diets for 48 h, followed by total urine and marked fecal collection, as well as plasma collection for total nitrogen, nitrate, ammonia, and urea determination. The amount of nitrogen retained (93%-96%) did not differ among commercial diets. Protein total tract apparent digestibility (TTAD) ranged from 69% to 84%, with the high protein diets significantly higher than the laboratory-made and mid-ranged diets (1-way ANOVA: P < 0.05). The high protein diet also contained the highest concentration of nitrate with subsequent elevations in plasma nitrotyrosine levels (indicator of oxidative stress). During the second trial, eight dogs (n = 8) were fed the same diets for 6 d, after which echocardiography was completed with blood, urine, and feces collected. For health end-points, methemoblobin, plasma nitrotyrosine, and C-reactive protein (CRP; indicator of inflammation) levels were measured. Methemoglobin levels were significantly lower in the high protein diet (P > 0.05), possible due to the stimulation of methemoglobin reductase while nitrotyrosine was unchanged and CRP was undetectable. Furthermore, there was a positive relationship between crude protein, crude fat (simple linear regression: P = 0.02, r 2 > 0.6), price (P = 0.08, r 2 > 0.6), and caloric density (P = 0.11, r 2 > 0.6). There were no significant cardiovascular differences among any of the diets (P > 0.05). Ultimately, this study shows that in commercial diets, price does reflect protein content but that feeding dogs high protein diets for a long period of time may provide an excess in calories without a change in cardiovascular function or detectable increases in inflammation.

13.
Bioresour Technol ; 344(Pt A): 126143, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34678449

RESUMO

Microalgae are considered as a promising alternative to fossil fuels due to their ease of cultivation, short growth cycle and no occupation of cultivated land. In this study, N,N-Dimethylformamide (DMF) solvent was employed to assist hydrothermal pretreatment of Chlorella for coproduction of sugar, nitrogenous compounds and carbon dots (CDs). The effect of pretreatment conditions on the composition and pyrolysis bio-oil distribution of hydrothermal solid residues as well as CDs characteristic were investigated by varying the temperature (180-220 ℃) and reaction time (1-9 h). The results showed that pretreated residues had higher cellulose. And the yield of sugar and N-contained compounds reached 41.59% and 63.57% in the pyrolysis bio-oil of pretreated algae residues, respectively. Moreover, CDs obtained from hydrothermal solution fluoresced red under 365 nm excitation. The paper provides a new method for the complete utilization of microalgae.


Assuntos
Chlorella , Microalgas , Biocombustíveis , Carbono , Dimetilformamida , Compostos de Nitrogênio , Solventes , Açúcares , Temperatura
14.
Chem Biodivers ; 18(11): e2100549, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34643327

RESUMO

Bacteria can produce nitrogenous compounds via both primary and secondary metabolic processes. Many bacterial volatile nitrogenous compounds produced during the secondary metabolism have been identified and reported for their antioxidant, antibacterial, antifungal, algicidal and antitumor activities. The production of these nitrogenous compounds depends on several factors, including the composition of culture media, growth conditions, and even the organic solvent used for their extraction, thus requiring their identification in specific conditions. In this review, we describe the volatile nitrogenous compounds produced by bacteria especially focusing on their antimicrobial activity. We concentrate on azo-compounds mainly pyrazines and pyrrolo-pyridines reported for their activity against several microorganisms. Whenever significant, extraction and identification methods of these compounds are also mentioned and discussed. To the best of our knowledge, this is first review describing volatile nitrogenous compounds from bacteria focusing on their biological activity.


Assuntos
Antibacterianos/farmacologia , Compostos Azo/farmacologia , Bactérias/efeitos dos fármacos , Compostos Orgânicos Voláteis/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Compostos Azo/química , Compostos Azo/isolamento & purificação , Testes de Sensibilidade Microbiana , Estrutura Molecular , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/isolamento & purificação
15.
Chem Biol Drug Des ; 98(6): 1104-1115, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34614302

RESUMO

Tetragonisca angustula honey was fractioned in a SiO2 column to furnish three fractions (A-C) in which four hydroxycinnamic acid-Spermidine amides (HCAAs), known as N', N″, N‴-tris-p-coumaroyl spermidine, N', N″-dicaffeoyl, N‴-coumaroyl spermidine, N', N″, N‴-tris-caffeoyl spermidine and N', N″-dicaffeoyl and N‴-feruloyl spermidine were identified in the fractions B and C by electrospray ionization tandem mass spectrometry. A primary culture model previously infected with Neospora caninum (72 h) was used to evaluate the honey fractions (A-C) for two-time intervals: 24 and 72 h. Parasitic reduction ranged from 38% on fraction C (12.5 µg/ml), after 24 h, to 54% and 41% with fractions B and C (25 µg/ml) after 72 h of treatment, respectively. Additionally, HCAAs did not show any cell toxicity for 24 and 72 h. For infected cultures (72 h), the active fractions B (12.5 µg/ml) and C (25 µg/ml) decreased their NO content. In silico studies suggest that HCAAs may affect the parasite's redox pathway and improve the oxidative effect of NO released from infected cells. Here, we presented for the first time, that HCAAs from T. angustula honey have the potential to inhibit the growth of N. caninum protozoa.


Assuntos
Antiprotozoários/farmacologia , Abelhas , Mel , Neospora/efeitos dos fármacos , Espermidina/química , Amidas/química , Animais , Antiprotozoários/química , Brasil , Células Cultivadas , Coccidiose/tratamento farmacológico , Simulação por Computador , Ácidos Cumáricos/química , NADH NADPH Oxirredutases/antagonistas & inibidores , Neuroglia/efeitos dos fármacos , Neuroglia/parasitologia , Óxido Nítrico/metabolismo , Ratos Wistar , Espermidina/análise
16.
Bioresour Technol ; 338: 125529, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34265592

RESUMO

Removal of nitrogenous and phosphorus compounds from aquaculture wastewater by green microalgae (Tetraselmis sp.) was investigated using a novel method of algal cell immobilization. Immobilized microalgae removed nitrogenous and phosphorous compounds efficiently from aquaculture wastewater. Results showed that Tetraselmis beads reduced significantly (p < 0.05) the total ammonia nitrogen, nitrite nitrogen and soluble reactive phosphorous concentration (0.08; 0.10 and 0.17 mg/L, respectively) from the initial concentration of 7.7, 3.1 and 2.0 mg/L respectively within 48 h compared to other treatments. Removal rate of total ammonia nitrogen, nitrite nitrogen and soluble reactive phosphorous were 99.2, 99.2 and 94.3% respectively, for the artificial wastewater within 24 h. For the shrimp pond wastewater, total ammonia nitrogen, nitrite nitrogen and soluble reactive phosphorous were reduced 98.9, 97.7 and 91.1% respectively within 48 h. It is concluded that Tetraselmis sp. beads is an effective means to reduce nitrogen and phosphorus levels in aquaculture wastewater.


Assuntos
Microalgas , Compostos de Fósforo , Aquicultura , Biomassa , Nitrogênio/análise , Fósforo , Águas Residuárias
17.
Environ Int ; 157: 106776, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34311224

RESUMO

Organic carbon produced by nitrifiers plays an important role in maintaining the microbial metabolism in the aphotic ocean layer with carbon and energy scarcity. However, the contribution of nitrifiers to organic carbon processing remains unclear. To explore how nitrification impacts the material cycle in the starved ecosystem, we set up an ultra-large volume, long-term incubation experiment. Seawater collected from the Halifax coastal ocean was pumped into the Aquatron Tower Tank located at Dalhousie University, Canada, and was incubated under dark conditions for 73 days. The results indicated that the relative abundance of nitrifiers increased and nitrification was strengthened in the dark system where energy and organic carbon were scarce. The importance of nitrogenous compounds in particulate materials increased over the course of the incubation. Correlation analysis showed that the relative abundances of nitrifiers and particulate organic compounds containing nitrogen were significantly and positively correlated. Furthermore, network analysis suggested that metabolic processes related to nitrogenous and aromatic compounds are most important to particle associated bacteria. This study suggests that the nitrifiers could produce a series of organic compounds that result in the alteration of organic matter composition by promoting the degradation of recalcitrant aromatic compounds, which has important implications for organic matter processing in the starved dark ecosystem.


Assuntos
Microbiota , Material Particulado , Bactérias , Carbono , Humanos , Nitrificação , Água do Mar
18.
Environ Sci Technol ; 55(12): 7841-7849, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34041906

RESUMO

Seven nitrosamines and three nitramines in particulate matter with an aerodynamic diameter of less than or equal to 2.5 µm (PM2.5) collected in 2018 in Seoul, South Korea, were quantified. Annual mean concentrations of the sum of nitrosamines and nitramines were 9.81 ± 18.51 and 1.12 ± 0.70 ng/m3, respectively, and nitrosodi-methylamine (NDMA) and dimethyl-nitramine (DMN) comprised the largest portion of nitrosamines and nitramines, respectively. Statistical analyses such as non-parametric correlation analysis, positive matrix factorization, analysis of covariance, and orthogonal partial least squared discrimination analysis were carried out to identify contribution of the atmospheric reactions in producing NDMA and DMN. In addition, kinetic calculation using reaction information obtained from the previous chamber studies was performed to estimate concentrations of NDMA and DMN that might be produced from the atmospheric reactions. It was concluded that (1) the atmospheric reactions contributed to the concentrations of NDMA more than they did for those of DMN, (2) the contribution of atmospheric reactions to the concentrations of NDMA and DMN was significant due to high NO2 concentrations in winter, and (3) primary emissions predominantly affected the ambient concentrations of NDMA and DMN in spring, summer, and autumn.


Assuntos
Poluentes Atmosféricos , Nitrosaminas , Poluentes Atmosféricos/análise , Compostos de Anilina , Monitoramento Ambiental , Nitrobenzenos , Nitrosaminas/análise , Material Particulado/análise , República da Coreia , Seul
19.
Molecules ; 26(9)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946466

RESUMO

The species Pseudogymnoascus is known as a psychrophilic pathogenic fungus which is ubiquitously distributed in Antarctica. While the studies of its secondary metabolites are infrequent. Systematic research of the metabolites of the Antarctic fungus Pseudogymnoascus sp. HSX2#-11 led to the isolation of one new pyridine derivative, 4-(2-methoxycarbonyl-ethyl)-pyridine-2-carboxylic acid methyl ester (1), together with one pyrimidine, thymine (2), and eight diketopiperazines, cyclo-(dehydroAla-l-Val) (3), cyclo-(dehydroAla-l-Ile) (4), cyclo-(dehydroAla-l-Leu) (5), cyclo-(dehydroAla-l-Phe) (6), cyclo-(l-Val-l-Phe) (7), cyclo-(l-Leu-l-Phe) (8), cyclo-(l-Trp-l-Ile) (9) and cyclo-(l-Trp-l-Phe) (10). The structures of these compounds were established by extensive spectroscopic investigation, as well as by detailed comparison with literature data. This is the first report to discover pyridine, pyrimidine and diketopiperazines from the genus of Pseudogymnoascus.


Assuntos
Ascomicetos/química , Compostos de Nitrogênio/análise , Regiões Antárticas , Ascomicetos/metabolismo , Produtos Biológicos/química , Estrutura Molecular , Compostos de Nitrogênio/química , Metabolismo Secundário
20.
Bioorg Chem ; 102: 104086, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32688114

RESUMO

Pipajiains H-J (1-3), three new phenolic derivatives with an unusual sulfone group, pipajiamides A-C (4-6), three new amide derivatives, pipajiaine A (7), one new imidazole analogue, and pipajiaine B (8), a pair of new pyrrolidine derivatives, along with three known compounds were isolated from the insect Blaps japanensis. Their structures were identified by spectroscopic and computational methods. Chiral HPLC was used to separate the (-)- and (+)-antipodes of 4 and 8. Biological activities of all the new compounds against extracellular matrix in rat renal proximal tubular cells, human cancer cells (A549, Huh-7, and K562), COX-2, ROCK1, and JAK3 were evaluated. The results show that compounds 2, (+)-4, and (-)-4 are active against kidney fibrosis, whereas, compound 9 is active toward human cancer cells, inflammation, and JAK3 kinase.


Assuntos
Besouros/química , Compostos de Nitrogênio/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Enxofre/farmacologia , Animais , Células Cultivadas , Teoria da Densidade Funcional , Relação Dose-Resposta a Droga , Fibrose/tratamento farmacológico , Humanos , Janus Quinase 3/antagonistas & inibidores , Janus Quinase 3/metabolismo , Estrutura Molecular , Compostos de Nitrogênio/química , Compostos de Nitrogênio/isolamento & purificação , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/isolamento & purificação , Ratos , Relação Estrutura-Atividade , Enxofre/química , Enxofre/isolamento & purificação , Quinases Associadas a rho/antagonistas & inibidores , Quinases Associadas a rho/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...