Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Biomolecules ; 12(11)2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36359016

RESUMO

Drug repositioning, an important method of drug development, is utilized to discover investigational drugs beyond the originally approved indications, expand the application scope of drugs, and reduce the cost of drug development. With the emergence of increasingly drug-disease-related biological networks, the challenge still remains to effectively fuse biological entity data and accurately achieve drug-disease repositioning. This paper proposes a new drug repositioning method named EMPHCN based on enhanced message passing and hypergraph convolutional networks (HGCN). It firstly constructs the homogeneous multi-view information with multiple drug similarity features and then extracts the intra-domain embedding of drugs through the combination of HGCN and channel attention mechanism. Secondly, inter-domain information of known drug-disease associations is extracted by graph convolutional networks combining node and edge embedding (NEEGCN), and a heterogeneous network composed of drugs, proteins and diseases is built as an important auxiliary to enhance the inter-domain message passing of drugs and diseases. Besides, the intra-domain embedding of diseases is also extracted through HGCN. Ultimately, intra-domain and inter-domain embeddings of drugs and diseases are integrated as the final embedding for calculating the drug-disease correlation matrix. Through 10-fold cross-validation on some benchmark datasets, we find that the AUPR of EMPHCN reaches 0.593 (T1) and 0.526 (T2), respectively, and the AUC achieves 0.887 (T1) and 0.961 (T2) respectively, which shows that EMPHCN has an advantage over other state-of-the-art prediction methods. Concerning the new disease association prediction, the AUC of EMPHCN through the five-fold cross-validation reaches 0.806 (T1) and 0.845 (T2), which are 4.3% (T1) and 4.0% (T2) higher than the second best existing methods, respectively. In the case study, EMPHCN also achieves satisfactory results in real drug repositioning for breast carcinoma and Parkinson's disease.


Assuntos
Algoritmos , Reposicionamento de Medicamentos , Reposicionamento de Medicamentos/métodos
2.
Sichuan Mental Health ; (6): 302-306, 2022.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-987387

RESUMO

The purpose of this paper was to introduce the method of checking adjustment sets based on a causal graph model, finding common adjustment sets and implementing the statistical calculation with SAS software. Firstly, the basic concepts related to the causal graph model were introduced.Secondly, the primary contents of the causal graph theory were given, including the composition and terminology of the causality diagram. Finally, for the two instances and with the help of the CAUSALGRAPH procedure in SAS/STAT, the following two tasks were completed: the first task was to examine the adjustment set and enumerate paths; the second task was to find the adjustment set common to the multiple causal graph models.

3.
BMC Res Notes ; 10(1): 278, 2017 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-28705239

RESUMO

OBJECTIVE: Nowadays, due to the technological advances of high-throughput techniques, Systems Biology has seen a tremendous growth of data generation. With network analysis, looking at biological systems at a higher level in order to better understand a system, its topology and the relationships between its components is of a great importance. Gene expression, signal transduction, protein/chemical interactions, biomedical literature co-occurrences, are few of the examples captured in biological network representations where nodes represent certain bioentities and edges represent the connections between them. Today, many tools for network visualization and analysis are available. Nevertheless, most of them are standalone applications that often (i) burden users with computing and calculation time depending on the network's size and (ii) focus on handling, editing and exploring a network interactively. While such functionality is of great importance, limited efforts have been made towards the comparison of the topological analysis of multiple networks. RESULTS: Network Analysis Provider (NAP) is a comprehensive web tool to automate network profiling and intra/inter-network topology comparison. It is designed to bridge the gap between network analysis, statistics, graph theory and partially visualization in a user-friendly way. It is freely available and aims to become a very appealing tool for the broader community. It hosts a great plethora of topological analysis methods such as node and edge rankings. Few of its powerful characteristics are: its ability to enable easy profile comparisons across multiple networks, find their intersection and provide users with simplified, high quality plots of any of the offered topological characteristics against any other within the same network. It is written in R and Shiny, it is based on the igraph library and it is able to handle medium-scale weighted/unweighted, directed/undirected and bipartite graphs. NAP is available at http://bioinformatics.med.uoc.gr/NAP .


Assuntos
Redes Reguladoras de Genes , Internet , Transdução de Sinais , Software , Algoritmos , Análise por Conglomerados , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...