RESUMO
The γ-aminobutyric acid (GABA) receptors play pivotal roles in the transmission of neuronal information in the nervous system of insects, which has led these proteins to be targeted by synthetic and natural products. Here, we assessed the insecticidal potential of the essential oil of Pectis brevipedunculata (Gardner) Sch. Bip., a neotropical Asteraceae plant used in traditional medicine, for controlling Drosophila suzukii (Matsumura) adults by feeding exposure. By using in silico approaches, we disentangle the contribution of GABA receptors and other potential neuronal targets (e.g., acetylcholinesterase, glutathione-S-transferases) in insects that may explain the essential oil differential activities against D. suzukii and two essential pollinator bees (Apis mellifera Linnaeus and Partamona helleri Friese). Neral (26.7%) and geranial (33.9%) were the main essential oil components which killed D. suzukii with an estimated median lethal concentration (LC50) of 2.25 µL/mL. Both pollinator forager bee species, which would likely contact this compound in the field, were more tolerant to the essential oil and did not have their diet consumptions affected by the essential oil. Based on the molecular predictions for the three potential targets and the essential oil main components, a higher affinity of interaction with the GABA receptors of D. suzukii (geranial -6.2 kcal/mol; neral -5.8 kcal/mol) in relation to A. mellifera (geranial -5.2 kcal/mol; neral -4.9 kcal/mol) would contribute to explaining the difference in toxicities observed in the bioassays. Collectively, our findings indicated the involvement of GABA receptors in the potential of P. brevipedunculata essential oil as an alternative tool for controlling D. suzukii.
RESUMO
We investigated the larvicidal activity of the essential oil (EO) from Tetradenia riparia and its majority compound fenchone for controlling Culex quinquefasciatus larvae, focusing on reactive oxygen and nitrogen species (RONS), catalase (CAT), glutathione S-transferase (GST), acetylcholinesterase (AChE) activities, and total thiol content as oxidative stress indicators. Moreover, the lethal effect of EO and fenchone was evaluated against Anisops bouvieri, Diplonychus indicus, Danio rerio, and Paracheirodon axelrodi. The EO and fenchone (5 to 25 µg/mL) showed larvicidal activity (LC50 from 16.05 to 18.94 µg/mL), followed by an overproduction of RONS, and changes in the activity of CAT, GST, AChE, and total thiol content. The Kaplan-Meier followed by Log-rank (Mantel-Cox) analyses showed a 100% survival rate for A. bouvieri, D. indicus, D. rerio, and P. axelrodi when exposed to EO and fenchone (262.6 and 302.60 µg/mL), while α-cypermethrin (0.25 µg/mL) was extremely toxic to these non-target animals, causing 100% of death. These findings emphasize that the EO from T. riparia and fenchone serve as suitable larvicides for controlling C. quinquefasciatus larvae, without imposing lethal effects on the non-target animals investigated.
Assuntos
Culex , Lamiaceae , Larva , Óleos Voláteis , Estresse Oxidativo , Animais , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Culex/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Larva/efeitos dos fármacos , Lamiaceae/química , Inseticidas , Canfanos , NorbornanosRESUMO
The comparative metabolic profiling and their biological properties of eight extracts obtained from diverse parts (leaves, flowers, roots) of the medicinal plant Flourensia fiebrigii S.F. Blake, a chemotype growing in highland areas (2750â m a.s.l.) of northwest Argentina, were investigated. The extracts were analysed by GC-MS and UHPLC-MS/MS. GC-MS analysis revealed the presence of encecalin (relative content: 24.86 %) in ethereal flower extract (EF) and this benzopyran (5.93 %) together sitosterol (11.35 %) in the bioactive ethereal leaf exudate (ELE). By UHPLC-MS/MS the main compounds identified in both samples were: limocitrin, (22.31 %), (2Z)-4,6-dihydroxy-2-[(4-hydroxy-3,5-dimethoxyphenyl)methylidene]-1-benzofuran-3-one (21.31 %), isobavachin (14.47 %), naringenin (13.50 %), and sternbin, (12.49 %). Phytocomplexes derived from aerial parts exhibited significant activity against biofilm production of Pseudomonas aeruginosa and Staphylococcus aureus, reaching inhibitions of 74.7-99.9 % with ELE (50â µg/mL). Notably, the extracts did not affect nutraceutical and environmental bacteria, suggesting a selective activity. ELE also showed the highest reactive species scavenging ability. This study provides valuable insights into the potential applications of this chemotype.
Assuntos
Asteraceae , Espectrometria de Massas em Tandem , Cromatografia Gasosa-Espectrometria de Massas , Extratos Vegetais/farmacologia , Extratos Vegetais/metabolismo , Cromatografia Líquida de Alta Pressão , Folhas de Planta/metabolismo , Asteraceae/metabolismoRESUMO
Environmental contaminants endanger human health and non-target organisms such as crocodiles (Crocodylus acutus) that live in aquatic bodies surrounding agricultural areas. Due to their intrinsic characteristics, these organisms could be bioaccumulating and transmitting organochlorine pesticides (OCs) to their eggs. The objectives of this study were to determine the OCs in infertile eggs of C. acutus from Sinaloa and their correlation with the morphometric characteristics (MC), and to perform a preliminary estimate of the ecological risk due to the presence of pesticides using the PERPEST model. In June 2022, 76 infertile eggs (Ie) were collected: 57 from wild areas (Wa) and 19 from a crocodile farm (CSMf). Determination of OC in Ie was performed according to the USEPA method 8081b, modified. The observed percentages of Ie in Wa were 31.48% and 21.33% in CSMf. Twenty OCs were detected in the Ie, where dieldrin recorded the highest average concentration in Wa (6542.6 ng/g), and endosulfan-II in the CSMf (2172.8 ng/g). Bad negative and positive correlations were observed between OCs and MC, standing out the correlations between endosulfan-II and %Ie (-0.688) in the Wa, Cedritos drain, and between endrin and the weight of Ie (0.786) of the CSMf. The evaluation of the ecological risks of the aquatic environment due to the presence of OCs follow the sequence cyclodienes > aromatic > alicyclic hydrocarbons. A potential risk to the endocrine health of the species C. acutus was observed. Crocodiles are excellent biological models for monitoring the effects of OCs.
RESUMO
Fungicides are specifically used for controlling fungal infections. Strobilurins, a class of fungicides originating from the mushroom Strobilurus tenacellus, act on the fungal mitochondrial respiratory chain, interrupting the ATP cycle and causing oxidative stress. Although strobilurins are little soluble in water, they have been detected in water samples (such as rainwater and drinking water), indoor dust, and sediments, and they can bioaccumulate in aquatic organisms. Strobilurins are usually absorbed orally and are mainly eliminated via the bile/fecal route and urine, but information about their metabolites is lacking. Strobilurins have low mammalian toxicity; however, they exert severe toxic effects on aquatic organisms. Mitochondrial dysfunction and oxidative stress are the main mechanisms related to the genotoxic damage elicited by toxic compounds, such as strobilurins. These mechanisms alter genes and cause other dysfunctions, including hormonal, cardiac, neurological, and immunological impairment. Despite limitations, we have been able to compile literature information about strobilurins. Many studies have dealt with their toxic effects, but further investigations are needed to clarify their cellular and underlying mechanisms, which will help to find ways to minimize the harmful effects of these compounds.
Assuntos
Fungicidas Industriais , Animais , Humanos , Estrobilurinas/toxicidade , Fungicidas Industriais/toxicidade , Fungicidas Industriais/análise , Estresse Oxidativo , Saúde Ambiental , Água , MamíferosRESUMO
Bt soybean cultivation is increasing worldwide. The Cry1Ac protein expressed in Bt soybean efficiently controls several lepidopteran pests. The stink bug, Piezodorus guildinii (Westwood), a major pest for soybean in the Americas, is not controlled by Bt crops, although possible sub-lethal effects may occur. Even if there were no negative effects for sting bug, ingesting toxins could affect its bio-controllers. We tested through ELISA detection if P. guildinii ingests Cry1Ac from Bt soybean and possible effects on its development, reproduction, survival, and feeding behavior. Biological traits were evaluated under controlled conditions of nymphs and adults feeding on pods of near-isogenic cultivars DM5958iPRO (Bt) and DM59i (non-Bt). Feeding behavior was recorded using an AC-DC electropenetrography (EPG) device. Results indicated that P. guildinii ingested the Cry1Ac protein; however, nymphal period and accumulated survival percentage did not differ between cultivars. Feeding on Bt soybean pods did not affect fecundity (i.e., number of egg masses and eggs/female) nor egg viability. Different feeding behaviors were only detected on the pathway phase (stylet penetration into plant tissue), which was more pronounced in the Bt cultivar. However, the total duration of the feeding activities on seeds was numerically higher (ca. 2X) on Bt plants compared to non-Bt. This is the first study to demonstrate that P. guildinii does ingest the Cry1Ac protein and excrete it without being absorbed, probably explaining the lack of direct adverse effects on its biological parameters. EPG could indicate that Bt soybean plants might be less palatable than non-Bt to red-banded stink bug.
Assuntos
Glycine max , Heterópteros , Animais , Comportamento Alimentar , Reprodução , Sementes , NinfaRESUMO
Abstract The active ingredient glyphosate is the most commercialized herbicide on the world market due to its capability in eliminating weeds. However, it can harm the development of non-target organisms and threaten environmental quality. This study analyzed the effects of potentially toxic concentrations of glyphosate on germination, growth, cell cycle and genomic stability of Lactuca sativa L., and identified the most sensitive variables for assessing the toxicity of this herbicide to this biomonitor. Seeds of L. sativa were germinated in Petri dishes containing a sheet of filter paper moistened with 5 mL of a concentration of glyphosate (1.34, 3.35, 6.70, 10.05, 13.40 mg L-1). Controls consisted of distilled water (negative) and 3 mg L-1 CuSO4 (positive). Macroscopic and microscopic variables were analyzed. The germination of L. sativa was not affected by the concentrations of glyphosate. Root length and shoot height of the plants and the mitotic index decreased from the lowest concentration tested on. The chromosomal anomaly index and frequency of micronuclei increased by 3.2 and 22 times, respectively, with the presence of the lowest concentration of glyphosate compared to the negative control. The observed phytotoxic and cytogenotoxic effects demonstrate the negative influence that glyphosate has on the development of L. sativa. Root length and microscopic variables showed the highest sensitivity. This study warns of the possible harmful effects that glyphosate can have on non-target organisms and suggests greater control over the use of this herbicide to mitigate its environmental impact.
Resumo O ingrediente ativo glifosato é o herbicida mais comercializado do mercado mundial, pela sua capacidade de eliminar as plantas daninhas. No entanto, ele pode prejudicar o desenvolvimento dos organismos não-alvo e ameaçar a qualidade do ambiente. O estudo teve como objetivo analisar os efeitos de concentrações potencialmente tóxicas de glifosato sobre a germinação, o crescimento, o ciclo celular e a estabilidade genômica de Lactuca sativa L., e identificar as variáveis mais sensíveis para avaliar a toxicidade deste herbicida ao biomonitor. Sementes de L. sativa foram germinadas em placas de Petri contendo uma folha de papel-filtro umedecida com 5 mL das concentrações de glifosato (1,34, 3,35, 6,70, 10,05, 13,40 mg L-1). Os controles consistiram em água destilada (negativo) e 3 mg L-1 de CuSO4 (positivo). Variáveis macroscópicas e microscópicas foram analisadas. A germinação de L. sativa não foi afetada pelas concentrações de glifosato. O comprimento da raiz e a altura da parte aérea das plantas e o índice mitótico reduziram desde a menor concentração testada. O índice de anomalias cromossômicas e a frequência de micronúcleos aumentaram, respectivamente, 3,2 e 22 vezes na presença da menor concentração de glifosato em comparação ao controle negativo. Os efeitos fitotóxicos e citogenotóxicos observados demonstram a interferência negativa do herbicida no desenvolvimento de L. sativa. O comprimento da raiz e as variáveis microscópicas foram as que apresentaram maior sensibilidade. Este estudo alerta sobre os possíveis efeitos prejudiciais que o glifosato pode provocar nos organismos não-alvo, sugerindo um maior controle quanto à utilização deste herbicida, a fim de mitigar o seu impacto ambiental.
RESUMO
The active ingredient glyphosate is the most commercialized herbicide on the world market due to its capability in eliminating weeds. However, it can harm the development of non-target organisms and threaten environmental quality. This study analyzed the effects of potentially toxic concentrations of glyphosate on germination, growth, cell cycle and genomic stability of Lactuca sativa L., and identified the most sensitive variables for assessing the toxicity of this herbicide to this biomonitor. Seeds of L. sativa were germinated in Petri dishes containing a sheet of filter paper moistened with 5 mL of a concentration of glyphosate (1.34, 3.35, 6.70, 10.05, 13.40 mg L-1). Controls consisted of distilled water (negative) and 3 mg L-1 CuSO4 (positive). Macroscopic and microscopic variables were analyzed. The germination of L. sativa was not affected by the concentrations of glyphosate. Root length and shoot height of the plants and the mitotic index decreased from the lowest concentration tested on. The chromosomal anomaly index and frequency of micronuclei increased by 3.2 and 22 times, respectively, with the presence of the lowest concentration of glyphosate compared to the negative control. The observed phytotoxic and cytogenotoxic effects demonstrate the negative influence that glyphosate has on the development of L. sativa. Root length and microscopic variables showed the highest sensitivity. This study warns of the possible harmful effects that glyphosate can have on non-target organisms and suggests greater control over the use of this herbicide to mitigate its environmental impact.
O ingrediente ativo glifosato é o herbicida mais comercializado do mercado mundial, pela sua capacidade de eliminar as plantas daninhas. No entanto, ele pode prejudicar o desenvolvimento dos organismos não-alvo e ameaçar a qualidade do ambiente. O estudo teve como objetivo analisar os efeitos de concentrações potencialmente tóxicas de glifosato sobre a germinação, o crescimento, o ciclo celular e a estabilidade genômica de Lactuca sativa L., e identificar as variáveis mais sensíveis para avaliar a toxicidade deste herbicida ao biomonitor. Sementes de L. sativa foram germinadas em placas de Petri contendo uma folha de papel-filtro umedecida com 5 mL das concentrações de glifosato (1,34, 3,35, 6,70, 10,05, 13,40 mg L-1). Os controles consistiram em água destilada (negativo) e 3 mg L-1 de CuSO4 (positivo). Variáveis macroscópicas e microscópicas foram analisadas. A germinação de L. sativa não foi afetada pelas concentrações de glifosato. O comprimento da raiz e a altura da parte aérea das plantas e o índice mitótico reduziram desde a menor concentração testada. O índice de anomalias cromossômicas e a frequência de micronúcleos aumentaram, respectivamente, 3,2 e 22 vezes na presença da menor concentração de glifosato em comparação ao controle negativo. Os efeitos fitotóxicos e citogenotóxicos observados demonstram a interferência negativa do herbicida no desenvolvimento de L. sativa. O comprimento da raiz e as variáveis microscópicas foram as que apresentaram maior sensibilidade. Este estudo alerta sobre os possíveis efeitos prejudiciais que o glifosato pode provocar nos organismos não-alvo, sugerindo um maior controle quanto à utilização deste herbicida, a fim de mitigar o seu impacto ambiental.
Assuntos
Meio Ambiente , Toxicidade , HerbicidasRESUMO
Advances in agriculture include integrated methods of controlling pests, diseases, and weeds with biocontrollers, which are constantly increasing, along with herbicides. The objective is to present a systematic review of the main reports of herbicide effects on non-target organisms used in applied biological control and those naturally occurring in the ecosystems controlling pests. The categories were divided into predatory and parasitoid arthropods. Three hundred and fifty reports were analyzed, being 58.3% with parasitoids and 41.7% with predators. Lethal or sublethal effects of herbicides on reproduction, predation, genotoxicity, and abundance of biological control organisms have been reported. Two hundred and four reports of the impact of herbicides on parasitoids were analyzed. The largest number of reports was with parasitoids of the genus Trichogramma, with wide use in managing pests of the herbicide-tolerant transgenic plants. Most tests evaluating effects on parasitism, emergence, and mortality of natural enemies subjected to herbicides are with parasitoids of Lepidoptera eggs with a high diversity and use in managing these pests in different crops. Additive and synergistic effects of molecules increase the risks of herbicide mixtures. Herbicide use for weed management must integrate other control methods, as the chemical can impact natural enemies, reducing the biological control of pests.
Assuntos
Artrópodes , Herbicidas , Himenópteros , Lepidópteros , Animais , Herbicidas/farmacologia , Ecossistema , Controle Biológico de Vetores/métodos , Controle de Plantas DaninhasRESUMO
Ethiprole, a phenylpyrazole insecticide, has been increasingly used in the Neotropical region to control stink bug pests in soybean and maize fields. However, such abrupt increases in use may have unintended effects on non-target organisms, including those inhabiting freshwater ecosystems. Here, we evaluated the effects of acute (96 h) sublethal exposure to ethiprole (up to 180 µg/L, which is equivalent to 0.013% of the recommended field dose) on biomarkers of stress in the gills, liver, and muscle of the Neotropical fish Astyanax altiparanae. We further recorded potential ethiprole-induced effects on the structural histology of A. altiparanae gills and liver. Our results showed that ethiprole exposure increased glucose and cortisol levels in a concentration-dependent manner. Ethiprole-exposed fish also exhibited higher levels of malondialdehyde and greater activity of antioxidant enzymes, such as glutathione-S-transferase and catalase, in both gills and liver. Furthermore, ethiprole exposure led to increased catalase activity and carbonylated protein levels in muscle. Morphometric and pathological analyses of the gills revealed that increasing ethiprole concentration resulted in hyperemia and loss of integrity of the secondary lamellae. Similarly, histopathological analysis of the liver demonstrated higher prevalence of necrosis and inflammatory infiltrates with increasing ethiprole concentration. Altogether, our findings demonstrated that sublethal exposure to ethiprole can trigger a stress response in non-target fish species, which may lead to potential ecological and economic imbalances in Neotropical freshwater systems.
Assuntos
Characidae , Poluentes Químicos da Água , Animais , Catalase/metabolismo , Ecossistema , Estresse Oxidativo , Poluentes Químicos da Água/metabolismo , Antioxidantes/metabolismo , Glutationa Transferase/metabolismo , Fígado/metabolismo , Brânquias/metabolismo , Peroxidação de LipídeosRESUMO
Organophosphate pesticides (OPs) have greatly facilitated food production worldwide, and their use is not limited to agriculture and the control of pests and disease vectors. However, these substances can directly affect the immune response of non-target organisms. In this sense, exposure to OPs can have negative effects on innate and adaptive immunity, promoting deregulation in humoral and cellular processes such as phagocytosis, cytokine expression, antibody production, cell proliferation, and differentiation, which are crucial mechanisms for host defense against external agents. This review focuses on the scientific evidence of exposure to OPs and their toxic effects on the immune system of non-target organisms (invertebrates and vertebrates) from a descriptive perspective of the immuno-toxic mechanisms associated with susceptibility to the development of bacterial, viral, and fungal infectious diseases. During the exhaustive review, we found that there is an important gap in the study of non-target organisms, examples of which are echinoderms and chondrichthyans. It is therefore important to increase the number of studies on other species directly or indirectly affected by Ops, to assess the degree of impact at the individual level and how this affects higher levels, such as populations and ecosystems.
Assuntos
Inseticidas , Praguicidas , Animais , Ecossistema , Invertebrados , Vertebrados , Compostos Organofosforados , Imunidade , Organofosfatos , Praguicidas/toxicidadeRESUMO
Nanopesticides, such as nanoencapsulated atrazine (nATZ), have been studied and developed as eco-friendly alternatives to control weeds in fields, requiring lower doses. This review contains a historical and systematic literature review about the toxicity of nATZ to non-target species. In addition, the study establishes protective concentrations for non-target organisms through a species sensitivity distribution (SSD) approach. Through the systematic search, we identified 3197 publications. Of these, 14 studies addressed "(nano)atrazine's toxicity to non-target organisms". Chronological and geographic data on the publication of articles, characterization of nATZ (type of nanocarrier, size, polydispersity index, zeta potential), experimental design (test species, exposure time, measurements, methodology, tested concentrations), and toxic effects are summarized and discussed. The data indicate that cell and algal models do not show sensitivity to nATZ, while many terrestrial and aquatic invertebrates, aquatic vertebrates, microorganisms, and plants have high sensitivity to nAZT. The SSD results indicated that D. similis is the most sensitive species to nATZ, followed by C. elegans, E. crypticus, and P. subcapitata. However, the limitations in terms of the number of species and endpoints available to elaborate the SSD reflect gaps in knowledge of the effects of nATZ on different ecosystems.
Assuntos
Atrazina , Poluentes Químicos da Água , Animais , Atrazina/toxicidade , Ecossistema , Caenorhabditis elegans , Plantas , Projetos de Pesquisa , Poluentes Químicos da Água/toxicidade , Medição de Risco , Organismos AquáticosRESUMO
The dispersion of SARS-CoV-2 in aquatic environments via the discharge of domestic and hospital sewage has been confirmed in different locations. Thus, we aimed to evaluate the possible impacts of zebrafish (Danio rerio) exposure to SARS-CoV-2 peptide fragments (PSPD-2001, 2002, and 2003) alone and combined with a mix of emerging pollutants. Our data did not reveal the induction of behavioral, biometric, or mutagenic changes. But we noticed an organ-dependent biochemical response. While nitric oxide and malondialdehyde production in the brain, gills, and muscle did not differ between groups, superoxide dismutase activity was reduced in the "PSPD", "Mix", and "Mix+PSPD" groups. An increase in catalase activity and a reduction in DPPH radical scavenging activity were observed in the brains of animals exposed to the treatments. However, the "Mix+PSPD" group had a higher IBRv2 value, with NO levels (brain), the reduction of acetylcholinesterase activity (muscles), and the DPPH radical scavenging activity (brain and muscles), the most discriminant factors for this group. The principal component analysis (PCA) and hierarchical clustering analysis indicated a clear separation of the "Mix+PSPD" group from the others. Thus, we conclude that exposure to viral fragments, associated with the mix of pollutants, induced more significant toxicity in zebrafish adults than in others.
Assuntos
COVID-19 , Poluentes Ambientais , Poluentes Químicos da Água , Animais , Peixe-Zebra/fisiologia , SARS-CoV-2 , Acetilcolinesterase/metabolismo , Mutagênicos , Estresse Oxidativo , Poluentes Químicos da Água/toxicidade , Peptídeos , BiometriaRESUMO
PURPOSE: To evaluate the efficacy and safety of Prostatic Artery Embolization (PAE) using a reflux control microcatheter. MATERIALS AND METHODS: This is a prospective, single-center investigation that included 10 patients undergoing PAE for treatment of lower urinary tract symptoms (LUTS) attributed to benign prostate hyperplasia (BPH). Baseline, 3-month, and 12-month efficacy endpoints were obtained for all patients and included prostate-specific antigen (PSA), uroflowmetry, pelvic magnetic resonance imaging (MRI), and clinical assessment using the International Prostate Symptom Score (IPSS) questionnaire and the IPSS-Quality of life (QoL) item. Complications were assessed using the Cirse classification system. RESULTS: Ten patients entered statistical analysis and presented with significant LUTS improvement 12 months after PAE, as follows: mean IPSS reduction of 86.6% (2.8 vs. 20.7, - 17.9, P < 0.001), mean QoL reduction of 79.4% (1.1 vs. 5.4, - 4.3, P < 0.001), mean prostatic volume reduction of 38.4% (69.3 cm3 vs. 112.5 cm3, - 43.2 cm3, P < 0.001), mean peak urinary flow (Qmax) increase of 199.4% (19.9 mL/s vs. 6.6 mL/s, + 13.3 mL/s, P = 0.006) and mean PSA reduction of 50.1% (3.0 ng/mL vs. 6.1 ng/mL, - 3.0 ng/mL, P < 0.001). One patient (10%) needed transurethral resection of the prostate (TURP) after PAE due to a ball-valve effect. One microcatheter (10%) needed to be replaced during PAE due to occlusion. Non-target embolization was not observed in the cohort. CONCLUSION: This initial experience suggests that PAE using a reflux control microcatheter is effective and safe for the treatment of LUTS attributed to BPH.
RESUMO
The input of SARS-CoV-2 or its fragments into freshwater ecosystems (via domestic or hospital sewage) has raised concerns about its possible impacts on aquatic organisms. Thus, using mayfly larvae [Cloeon dipterum (L.), Ephemeroptera: Baetidae] as a model system, we aimed to evaluate the possible effects of the combined short exposure of SARS-CoV-2-derived peptides (named PSPD-2001, PSPD-2002, and PSPD-2003 - at 266.2 ng/L) with multiple emerging pollutants at ambient concentrations. After six days of exposure, we observed higher mortality of larvae exposed to SARS-CoV-2-derived peptides (alone or in combination with the pollutant mix) and a lower-body condition index than those unexposed larvae. In the "PSPD" and "Mix+PSPD" groups, the activity of superoxide dismutase, catalase, DPPH radical scavenging activity, and the total thiol levels were also lower than in the "control" group. In addition, we evidenced the induction of nitrosative stress (inferred by increased nitrite production) and reduced acetylcholinesterase activity by SARS-CoV-2-derived peptides. On the other hand, malondialdehyde levels in larvae exposed to treatments were significantly lower than in unexposed larvae. The values of the integrated biomarker response index and the principal component analysis (PCA) results confirmed the similarity between the responses of animals exposed to SARS-CoV-2-derived peptides (alone and in combination with the pollutant mix). Although viral peptides did not intensify the effects of the pollutant mix, our study sheds light on the potential ecotoxicological risk associated with the spread of the new coronavirus in aquatic environments. Therefore, we recommend exploring this topic in other organisms and experimental contexts.
Assuntos
COVID-19 , Poluentes Ambientais , Ephemeroptera , Acetilcolinesterase , Animais , Biomarcadores , Catalase , Ecossistema , Ephemeroptera/fisiologia , Larva , Malondialdeído , Nitritos , Peptídeos , SARS-CoV-2 , Esgotos , Compostos de Sulfidrila/farmacologia , Superóxido DismutaseRESUMO
The giant mussel Choromytilus chorus is a marine bivalve commonly collected in central - southern Chile from fishery zones shared with the salmon industry. These economically relevant areas are also affected by the use of pesticides for controlling sea lice infestations in salmon aquaculture. Their main target is the sea louse Caligus rogercresseyi. However, other than some physiological impacts, the molecular effects of delousing drugs in non-target species such as C. chorus remain largely understudied. This study aimed to explore the transcriptome modulation of Trochophore and D larvae stages of C. chorus after exposure to azamethiphos and deltamethrin drugs. Herein, RNA-seq analyses and mRNA-lncRNAs molecular interactions were obtained. The most significant changes were found between different larval development stages exposed to delousing drugs. Notably, significant transcriptional variations were correlated with the drug concentrations tested. The biological processes involved in the development, such as cell movement and transcriptional activity, were mainly affected. Long non-coding RNAs (lncRNAs) were also identified in this species, and the transcription activity showed similar patterns with coding mRNAs. Most of the significantly expressed lncRNAs were associated with genes annotated to matrix metalloproteinases, collagenases, and transcription factors. This study suggests that exposure to azamethiphos or deltamethrin drugs can modulate the transcriptome signatures related to the early development of the giant mussel C. chorus.
Assuntos
Bivalves , Copépodes , Doenças dos Peixes , RNA Longo não Codificante , Salmo salar , Animais , Bivalves/genética , Copépodes/genética , Perfilação da Expressão Gênica , Salmo salar/genética , Salmão/genética , TranscriptomaRESUMO
Pyriproxyfen is a juvenile hormone analogue that is commonly used to control the immature stages of mosquitoes in both artificial and natural water reservoirs. Recently, concerns have been raised regarding the community effectiveness of pyriproxyfen in preventing vector-transmitted diseases. Such concerns have been based on the unintended effects on non-target organisms and the selection of resistant mosquito populations. This investigation was, therefore, conducted to evaluate the toxicity of pyriproxyfen to Aedes aegypti (Diptera: Culicidae) larvae and the backswimmer Buenoa amnigenus (Hemiptera: Notonectidae), a naturally occurring mosquito larvae predator. We also assessed the abilities of backswimmers exposed to sublethal levels of pyriproxyfen to prey upon mosquito larvae (L2) under three larval densities (3, 6, or 9 larvae/100 mL of water) using artificial containers. Our results revealed that pyriproxyfen killed backswimmers only at concentrations higher than 100 µg active ingredient [a.i.]/L, which is 10 times higher than that recommended for larvicidal field application (i.e, 10 µg a.i./L). The abilities of backswimmers exposed to sublethal levels of pyriproxyfen (100 µg a.i./L) to prey upon mosquito larvae were not affected. Harmful effects on the backswimmer predatory abilities were detected only at concentrations of 150 µg a.i./L and when there was a higher prey availability (i.e., 9 larvae/100 mL of water). Together, our findings indicate that the reduced community effectiveness of this insecticide derives from factors other than its detrimental effects on non-target organisms such as backswimmers.
Assuntos
Aedes , Heterópteros , Inseticidas , Animais , Inseticidas/toxicidade , Larva , Controle de Mosquitos/métodos , Mosquitos Vetores , Piridinas , ÁguaRESUMO
Worldwide pesticide usage was estimated in up to 3.5 million tons in 2020. The number of approved products varies among different countries, however, in Brazil, there are nearly 5000 of such products available. Among them, insecticides correspond to a group of mounting importance for controlling crop pests and disease-associated vectors in public health. Unfortunately, resistance to commercially approved insecticides is commonly observed, limiting the use of these products. Thus, the search for more effective and environmentally friendly products is both a challenge and a necessity since several insecticides are no longer allowed in many countries. In this review, we discuss the historical strategies used in the development of modern insecticides, including chemical structure alterations, mechanism of action and their impact on insecticidal activity. The environmental impact of each pesticide class is also discussed, with persistence data and activity on non-target organisms, along with the human toxicological effect. By tracing the historical route of discovery and development of blockbuster pesticides like DDT, pyrethroids and organophosphates, we also aim to categorize and relate the successful chemical alterations and novel pesticide development strategies that resulted in safer alternatives. A brief discussion on the Brazilian registration procedure and a perspective of insecticides currently approved in the country was also included.
Assuntos
Inseticidas , Praguicidas , Piretrinas , Meio Ambiente , Humanos , Resistência a Inseticidas , Inseticidas/toxicidade , Organofosfatos , Praguicidas/farmacologiaRESUMO
Forestry pest management includes biological and chemical methods of pest control. Using insecticides and natural enemies can be compatible in forest pest management programs. The compatibility of the predatory stink bug Podisus distinctus with the insecticide indoxacarb, used in forestry, needs to be evaluated in Brazil. This study investigated the mortality, survival, respiration, preference, prey consumption, and locomotor activity of P. distinctus adults exposed to indoxacarb. In concentration-mortality bioassays, the lethality of indoxacarb (LC50 = 2.62 g L-1 and LC90 = 6.11 g L-1) was confirmed in P. distinctus adults. The survival rate was 100% in predator insects not exposed to indoxacarb, declining to 40.7% in predator insects exposed to 2.62 g L-1 and 0.1% in predators treated with 6.11 g L-1. Indoxacarb reduced the respiration of P. distinctus from 18.45 to 14.41 µL CO2 h-1 at 2.62 g L-1 for up to 3 h after insecticide exposure, inhibiting food consumption and displaying hyperexcitation. The harmful effects of indoxacarb to the natural enemy suggest that it should be better assessed for use with P. distinctus for pest management in forestry.
Assuntos
Hemípteros , Heterópteros , Inseticidas , Animais , Inseticidas/farmacologia , Oxazinas/farmacologia , Comportamento PredatórioRESUMO
Bio-insecticides have been increasingly used worldwide as ecofriendly alternatives to pesticides, but data on their effects in non-target freshwater organisms is still scarce and limited to insects. The aim of this study was to determine the lethal and sub-lethal effects of the bio-insecticides Bac Control (based on Bacillus thuringiensis kurstaki-Btk) and Boveril (based on Beauveria bassiana-Bb) on regeneration, behavioral, and reproductive endpoints of the freshwater planarian Girardia tigrina. The estimated LC50-48h were > 800 mg a.i./L for Btk and 60.74 mg a.i./L for Bb. In addition, exposure to Btk significantly decreased locomotion and feeding activities of planarians (lowest observed effect concentration (LOEC) of 12.5 mg a.i./L Btk) and fecundity rate (LOEC = 3.12 mg a.i./L Btk), whereas exposure to Bb significantly delayed regeneration (LOEC = 0.75 mg a.i./L Bb) and decreased fecundity rate (1.5 mg a.i./L Bb) of planarians. Thus, both bio-insecticides induced deleterious sub-lethal effects on a non-insect freshwater invertebrate species. However, only Bb-based formulation affected the survival, fecundity rate, and regeneration at concentrations below the maximum predicted environmental concentration (PEC = 247 mg/L). Thus, care should be taken when using such formulations as alternatives to chemical insecticides near aquatic ecosystems.