Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
1.
Free Radic Biol Med ; 222: 331-343, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38876456

RESUMO

The progressive loss of dopaminergic neurons in the midbrain is the hallmark of Parkinson's disease (PD). A newly emerging form of lytic cell death, ferroptosis, has been implicated in PD. However, it remains unclear in terms of PD-associated ferroptosis underlying causative genes and effective therapeutic approaches. This research explored the underlying mechanism of ferroptosis-related genes in PD. Here, Firstly, we found NOX1 associated with ferroptosis differently in PD patients by bioinformatics analysis. In vitro and in vivo models of PD were constructed to explore the underlying mechanism. qPCR, Western blot analysis, immunohistochemistry, immunofluorescence, Ferro orange, and BODIPY C11 were utilized to analyze the levels of ferroptosis. Transcriptomics sequencing was to investigate the downstream pathway and the analysis of immunoprecipitation to validate the upstream factor. In conclusion, NOX1 upregulation and activation of ferroptosis-related neurodegeneration, therefore, might be useful as a clinical therapeutic agent.

2.
Discov Med ; 36(183): 788-798, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38665027

RESUMO

BACKGROUND: High-salt diet (HSD) is a pivotal risk factor for osteoporosis (OP). Accumulating evidence has supported that tauroursodeoxycholic acid (TUDCA), a naturally produced hydrophilic bile acid, exerts positive effects on the treatment of OP. This study is committed to shedding light on the impacts of TUDCA on high salt-treated osteoblasts and probing into its underlying mechanisms of action. METHODS: Cell counting kit-8 (CCK-8) assay was used to determine the viability of osteoblasts. Alkaline phosphatase (ALP) staining and Alizarin red S (ARS) staining were used to measure osteoblast differentiation. Reverse transcription-quantitative PCR (RT-qPCR) and western blot were used to examine the expression of osteogenic markers. Western blot was also used to analyze the expression of superoxide dismutase-2 (SOD2), peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1α), and NADPH oxidase 1 (NOX1). The production of reactive oxygen species (ROS) was evaluated via dichloro-dihydro-fluorescein diacetate (DCFH-DA) assay. Following PGC-1α knockdown in TUDCA-pretreated osteoblasts exposed to NaCl, the aforementioned functional experiments were implemented again. RESULTS: MC3T3-E1 cell viability was not significantly impacted by increasing concentrations of TUDCA. However, in NaCl-exposed MC3T3-E1 cells, the viability loss, oxidative stress, and decline of differentiation were all dose-dependently obstructed by TUDCA treatment. Moreover, NaCl exposure reduced PGC-1α expression and increased NOX1 expression, which was then reversed by TUDCA. PGC-1α deletion partially abolished the effects of TUDCA on PGC-1α and NOX1, differentiation, and oxidative stress in NaCl-treated osteoblasts. CONCLUSIONS: TUDCA might protect against high salt-induced OP via modulation of NOX1 mediated by PGC-1α.


Assuntos
NADPH Oxidase 1 , Osteoblastos , Estresse Oxidativo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Ácido Tauroquenodesoxicólico , Animais , Camundongos , Diferenciação Celular/efeitos dos fármacos , NADPH Oxidase 1/metabolismo , NADPH Oxidase 1/genética , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Espécies Reativas de Oxigênio/metabolismo , Ácido Tauroquenodesoxicólico/farmacologia
3.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167152, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38582012

RESUMO

Intrahepatic cholangiocarcinoma (ICC) is a kind of hepatobiliary tumor that is increasing in incidence and mortality. The gut microbiota plays a role in the onset and progression of cancer, however, the specific mechanism by which the gut microbiota acts on ICC remains unclear. In this study, feces and plasma from healthy controls and ICC patients were collected for 16S rRNA sequencing or metabolomics analysis. Gut microbiota analysis showed that gut microbiota abundance and biodiversity were altered in ICC patients compared with controls. Plasma metabolism analysis showed that the metabolite glutamine content of the ICC patient was significantly higher than that of the controls. KEGG pathway analysis showed that glutamine plays a vital role in ICC. In addition, the use of antibiotics in ICC animals further confirmed that changes in gut microbiota affect changes in glutamine. Further experiments showed that supplementation with glutamine inhibited ferroptosis and downregulated ALK5 and NOX1 expression in HuCCT1 cells. ALK5 overexpression or NOX1 overexpression increased NOX1, p53, PTGS2, ACSL4, LPCAT3, ROS, MDA and Fe2+ and decreased FTH1, SLC7A11 and GSH. Knockdown of NOX1 suppressed FIN56-induced ferroptosis. In vivo, supplementation with glutamine promoted tumor growth. Overexpression of ALK5 repressed tumor growth and induced ferroptosis in nude mice, which could be reversed by the addition of glutamine. Our results suggested that the gut microbiota altered glutamine metabolism to inhibit ferroptosis in ICC by regulating the ALK5/NOX1 axis.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Ferroptose , Microbioma Gastrointestinal , Glutamina , NADPH Oxidase 1 , Colangiocarcinoma/patologia , Colangiocarcinoma/metabolismo , Colangiocarcinoma/microbiologia , Colangiocarcinoma/tratamento farmacológico , Ferroptose/efeitos dos fármacos , Humanos , Glutamina/metabolismo , NADPH Oxidase 1/metabolismo , NADPH Oxidase 1/genética , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Neoplasias dos Ductos Biliares/patologia , Neoplasias dos Ductos Biliares/metabolismo , Neoplasias dos Ductos Biliares/microbiologia , Camundongos , Masculino , Linhagem Celular Tumoral , Receptores de Ativinas Tipo I/metabolismo , Receptores de Ativinas Tipo I/genética , Camundongos Nus , Feminino , Pessoa de Meia-Idade , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Receptor do Fator de Crescimento Transformador beta Tipo I
4.
Am J Physiol Gastrointest Liver Physiol ; 326(3): G264-G273, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38258487

RESUMO

Exercise as a lifestyle modification is a frontline therapy for nonalcoholic fatty liver disease (NAFLD), but how components of exercise attenuate steatosis is unclear. To uncouple the effect of increased muscle mass from weight loss in obesity, myostatin knockout mice were bred on a lean and obese db/db background. Myostatin deletion increases gastrocnemius (Gastrocn.) mass and reduces hepatic steatosis and hepatic sterol regulatory element binding protein 1 (Srebp1) expression in obese mice, with no impact on adiposity or body weight. Interestingly, hypermuscularity reduces hepatic NADPH oxidase 1 (Nox1) expression but not NADPH oxidase 4 (Nox4) in db/db mice. To evaluate a deterministic function of Nox1 on steatosis, Nox1 knockout mice were bred on a lean and db/db background. NOX1 deletion significantly attenuates hepatic oxidant stress, steatosis, and Srebp1 programming in obese mice to parallel hypermuscularity, with no improvement in adiposity, glucose control, or hypertriglyceridemia to suggest off-target effects. Directly assessing the role of NOX1 on SREBP1, insulin (Ins)-mediated SREBP1 expression was significantly increased in either NOX1, NADPH oxidase organizer 1 (NOXO1), and NADPH oxidase activator 1 (NOXA1) or NOX5-transfected HepG2 cells versus ?-galactosidase control virus, indicating superoxide is the key mechanistic agent for the actions of NOX1 on SREBP1. Metabolic Nox1 regulators were evaluated using physiological, genetic, and diet-induced animal models that modulated upstream glucose and insulin signaling, identifying hyperinsulinemia as the key metabolic derangement explaining Nox1-induced steatosis in obesity. GEO data revealed that hepatic NOX1 predicts steatosis in obese humans with biopsy-proven NAFLD. Taken together, these data suggest that hypermuscularity attenuates Srebp1 expression in db/db mice through a NOX1-dependent mechanism.NEW & NOTEWORTHY This study documents a novel mechanism by which changes in body composition, notably increased muscle mass, protect against fatty liver disease. This mechanism involves NADPH oxidase 1 (NOX1), an enzyme that increases superoxide and increases insulin signaling, leading to increased fat accumulation in the liver. NOX1 may represent a new early target for preventing fatty liver to stave off later liver diseases such as cirrhosis or liver cancer.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Camundongos , Insulina/metabolismo , Fígado/metabolismo , Camundongos Knockout , Camundongos Obesos , Músculo Esquelético/metabolismo , Miostatina , NADPH Oxidase 1/metabolismo , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , Obesidade/metabolismo , Superóxidos/metabolismo
5.
Biomed Pharmacother ; 170: 116042, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38118351

RESUMO

Glaucoma, a prevalent cause of permanent visual impairment worldwide, is characterized by the progressive degeneration of retinal ganglion cells (RGCs). NADPH oxidase (NOX) 1 and NOX4 are pivotal nodes in various retinal diseases. Setanaxib, a potent and highly selective inhibitor of NOX1 and NOX4, can impede the progression of various diseases. This study investigated the efficacy of setanaxib in ameliorating retinal ischemia-reperfusion (I/R) injury and elucidated its underlying mechanisms. The model of retinal I/R induced by acute intraocular hypertension and the oxygen-glucose deprivation/reoxygenation (OGD/R) model of primary RGCs were established. By suppressing NOX1 and NOX4 expression in RGCs, setanaxib mitigated I/R-induced retinal neuronal loss, structural disruption, and dysfunction. Setanaxib reduced TUNEL-positive cells, upregulated Bcl-2, and inhibited Bax, Bad, and cleaved-caspase-3 overexpression after I/R injury in vitro and in vivo. Moreover, setanaxib also significantly reduced cellular senescence, as demonstrated by downregulating SA-ß-gal-positive and p16-INK4a expression. Furthermore, setanaxib significantly suppressed ROS production, Hif-1α and FOXO1 upregulation, and NRF2 downregulation in damaged RGCs. These findings highlight that the setanaxib effectively inhibited NOX1 and NOX4, thereby regulating ROS production and redox signal activation. This inhibition further prevents the activation of apoptosis and senescence related factors in RGCs, ultimately protecting them against retinal I/R injury. Consequently, setanaxib exhibits promising potential as a therapeutic intervention for glaucoma.


Assuntos
Glaucoma , Traumatismo por Reperfusão , Doenças Retinianas , Humanos , Espécies Reativas de Oxigênio/metabolismo , Células Ganglionares da Retina , Estresse Oxidativo , Apoptose , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Doenças Retinianas/tratamento farmacológico , Doenças Retinianas/metabolismo , Isquemia/metabolismo , Reperfusão , Glaucoma/tratamento farmacológico , Glaucoma/metabolismo , NADPH Oxidase 4/metabolismo , NADPH Oxidase 1
6.
Adv Redox Res ; 92023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37900981

RESUMO

The NADPH oxidase 1 (NOX1) complex formed by proteins NOX1, p22phox, NOXO1, NOXA1, and RAC1 plays an important role in the generation of superoxide and other reactive oxygen species (ROS) which are involved in normal and pathological cell functions due to their effects on diverse cell signaling pathways. Cell migration and invasiveness are at the origin of tumor metastasis during cancer progression which involves a process of cellular de-differentiation known as the epithelial-mesenchymal transition (EMT). During EMT cells lose their polarized epithelial phenotype and express mesenchymal marker proteins that enable cytoskeletal rearrangements promoting cell migration, expression and activation of matrix metalloproteinases (MMPs), tissue remodeling, and cell invasion during metastasis. In this work, we explored the importance of the peroxiredoxin 6 (PRDX6)-NOX1 enzyme interaction leading to NOXA1 protein stabilization and increased levels of superoxide produced by NOX in hepatocarcinoma cells. This increase was accompanied by higher levels of N-cadherin and MMP2, correlating with a greater capacity for cell migration and invasiveness of SNU475 hepatocarcinoma cells. The increase in superoxide and the associated downstream effects on cancer progression were suppressed when phospholipase A2 or peroxidase activities of PRDX6 were abolished by site-directed mutagenesis, reinforcing the importance of these catalytic activities in supporting NOX1-based superoxide generation. Overall, these results demonstrate a clear functional cooperation between NOX1 and PRDX6 catalytic activities which generate higher levels of ROS production, resulting in a more aggressive tumor phenotype.

7.
Antioxidants (Basel) ; 12(10)2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37891912

RESUMO

Atrial fibrillation (AF) is the most common type of cardiac arrhythmia and its prevalence increases with age. The irregular and rapid contraction of the atria can lead to ineffective blood pumping, local blood stasis, blood clots, ischemic stroke, and heart failure. NADPH oxidases (NOX) and mitochondria are the main sources of reactive oxygen species in the heart, and dysregulated activation of NOX and mitochondrial dysfunction are associated with AF pathogenesis. NOX- and mitochondria-derived oxidative stress contribute to the onset of paroxysmal AF by inducing electrophysiological changes in atrial myocytes and structural remodeling in the atria. Because high atrial activity causes cardiac myocytes to expend extremely high energy to maintain excitation-contraction coupling during persistent AF, mitochondria, the primary energy source, undergo metabolic stress, affecting their morphology, Ca2+ handling, and ATP generation. In this review, we discuss the role of oxidative stress in activating AF-triggered activities, regulating intracellular Ca2+ handling, and functional and anatomical reentry mechanisms, all of which are associated with AF initiation, perpetuation, and progression. Changes in the extracellular matrix, inflammation, ion channel expression and function, myofibril structure, and mitochondrial function occur during the early transitional stages of AF, opening a window of opportunity to target NOX and mitochondria-derived oxidative stress using isoform-specific NOX inhibitors and mitochondrial ROS scavengers, as well as drugs that improve mitochondrial dynamics and metabolism to treat persistent AF and its transition to permanent AF.

8.
Redox Biol ; 67: 102905, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37820403

RESUMO

Inflammatory bowel diseases (IBD) are chronic intestinal disorders that result from an inappropriate inflammatory response to the microbiota in genetically susceptible individuals, often triggered by environmental stressors. Part of this response is the persistent inflammation and tissue injury associated with deficiency or excess of reactive oxygen species (ROS). The NADPH oxidase NOX1 is highly expressed in the intestinal epithelium, and inactivating NOX1 missense mutations are considered a risk factor for developing very early onset IBD. Albeit NOX1 has been linked to wound healing and host defence, many questions remain about its role in intestinal homeostasis and acute inflammatory conditions. Here, we used in vivo imaging in combination with inhibitor studies and germ-free conditions to conclusively identify NOX1 as essential superoxide generator for microbiota-dependent peroxynitrite production in homeostasis and during early endotoxemia. NOX1 loss-of-function variants cannot support peroxynitrite production, suggesting that the gut barrier is persistently weakened in these patients. One of the loss-of-function NOX1 variants, NOX1 p. Asn122His, features replacement of an asparagine residue located in a highly conserved HxxxHxxN motif. Modelling the NOX1-p22phox complex revealed near the distal heme an internal pocket restricted by His119 and Asn122 that is part of the oxygen reduction site. Functional studies in several human NADPH oxidases show that substitution of asparagine with amino acids with larger side chains is not tolerated, while smaller side chains can support catalytic activity. Thus, we identified a previously unrecognized structural feature required for the electron transfer mechanism in human NADPH oxidases.


Assuntos
Asparagina , Doenças Inflamatórias Intestinais , Humanos , Ácido Peroxinitroso , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Doenças Inflamatórias Intestinais/genética , Espécies Reativas de Oxigênio/metabolismo , NADPH Oxidase 1/genética
9.
J Clin Med ; 12(20)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37892765

RESUMO

This study aimed to determine the role of oxidative stress produced by the renin-angiotensin system (RAS) in cataract formation in streptozotocin-induced diabetic rats (STZ) using angiotensin II receptor blockers (ARBs). Rats were treated with streptozotocin and orally administered candesartan (2.5 mg/kg/day) or a normal diet for 10 weeks until sacrifice. Cataract progression was assessed through a slit-lamp examination. Animals were euthanized at 18 weeks, and the degree of cataract progression was evaluated. Oxidative stress was also assessed. In STZ-treated rats, lens opacity occurred at 12 weeks. Cataract progression was inhibited in the ARB-treated group compared with the placebo group (p < 0.05). STZ-treated rats exhibited upregulated angiotensin-converting enzyme (ACE) gene expression than control rats. Oxidative stress-related factors were upregulated in the placebo-treated group but suppressed in the ARB-treated group. A correlation coefficient test revealed a positive correlation between ACE gene expression and oxidative stress-related factors and a negative correlation between ACE and superoxide dismutase. Immunostaining revealed oxidative stress-related factors and advanced glycation end products in the lens cortex of the placebo-treated group. The mechanism of diabetic cataracts may be related to RAS, and the increase in focal ACE and angiotensin II in the lens promotes oxidative stress-related factor production.

10.
Eur J Med Res ; 28(1): 323, 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37679792

RESUMO

BACKGROUND: Cervical cancer the fourth most frequently diagnosed cancer and the fourth leading cause of cancer death in women, with an estimated 604,000 new cases and 342,000 deaths worldwide in 2020 for high rates of recurrence and metastasis. Identification of novel targets could aid in the prediction and treatment of cervical cancer. NADPH oxidase 1 (NOX1) gene-mediated production of reactive oxygen species (ROS) could induce migration and invasion of cervical cancer cells. Tumor-associated macrophages (TAMs) play important roles in cervical cancer. Tumor cell-derived exosomes mediate signal transduction between the tumor and tumor microenvironment. Elucidation of the mechanisms of NOX1-carrying exosomes involved in the regulation of TAMs may provide valuable insights into the progression of cervical cancer. METHODS: Uniformly standardized mRNA data of pan-carcinoma from the UCSC database were downloaded. Expression of NOX1 in tumor and adjacent normal tissues for each tumor type was calculated using R language software and significant differences were analyzed. SNP data set were downloaded for all TCGA samples processed using MuTect2 software from GDC. Cell experiment and animal tumor formation experiment were used to evaluate whether exosomal NOX1 stimulating ROS production to promote M2 polarization of TAM in cervical cancer. RESULTS: NOX1 is highly expressed with a low mutational frequency in pan-carcinoma. Upregulation of NOX1 may be associated with infiltration of M2-type macrophages in cervical cancer tissues, and NOX1 promotes malignant features of cervical cancer cells by stimulating ROS production. Exosomal NOX1 promotes M2 polarization of by stimulating ROS production. Exosomal NOX1 enhances progression of cervical cancer and M2 polarization in vivo by stimulating ROS production. CONCLUSION: Exosomal NOX1 promotes TAM M2 polarization-mediated cancer progression through stimulating ROS production in cervical cancer.


Assuntos
Neoplasias do Colo do Útero , Feminino , Animais , Humanos , Neoplasias do Colo do Útero/genética , NADPH Oxidase 1/genética , Espécies Reativas de Oxigênio , Macrófagos Associados a Tumor , Macrófagos , Microambiente Tumoral
11.
Eur J Pharmacol ; 959: 176083, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37769985

RESUMO

BACKGROUND: Diabetic foot ulcer (DFU) is a common diabetic complication associated with disability and reduced quality of life. Available therapeutics are not sufficient to combat the spread of DFU. Here we aim to investigate the impact of alagebrium, an advanced glycation end product (AGE)-crosslink breaker, on the healing of DFU. METHODS: Diabetes was induced in Wistar rats by STZ, and after four weeks, wound was induced on the foot. Alagebrium (10 mg/kg) was administered orally for 14 days, and wound size was measured every 3 days. Behavioral tests i.e., hot plate and footprint tests, were performed to assess sensory function and gait. Blood was collected to assess HbA1c, serum AGEs, MDA and NOX1. Tissue was collected to assess histological changes and expression of NF-κB, iNOS, TNF-α, VEGF and EGF. In a subsequent set of experiments with similar design, alagebrium was applied topically as a film-forming gel. RESULTS: Systemic alagebrium treatment accelerated the healing of diabetic wound, improved sensory functions and gait, and ameliorated histological changes. It also reduced serum levels of AGEs, MDA and NOX1, and the tissue expression of NF-κB, iNOS, TNF-α, and increased VEGF and EGF in diabetic rats. Topical alagebrium led to similar beneficial effects i.e., accelerated diabetic wound healing, improved wound histological changes, reduced expression of NF-κB and iNOS and increased VEGF. CONCLUSIONS: Our findings suggest repurposing of alagebrium for the management of DFU to accelerate the healing process and improve the clinical outcomes in diabetic patients.


Assuntos
Diabetes Mellitus Experimental , Pé Diabético , Humanos , Ratos , Animais , Pé Diabético/tratamento farmacológico , Pé Diabético/metabolismo , NF-kappa B/metabolismo , Diabetes Mellitus Experimental/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator de Crescimento Epidérmico/farmacologia , Qualidade de Vida , Ratos Wistar , Cicatrização , Produtos Finais de Glicação Avançada/metabolismo , NADPH Oxidase 1
12.
Front Cell Dev Biol ; 11: 1231489, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37635877

RESUMO

Cell migration is essential for many biological and pathological processes. Establishing cell polarity with a trailing edge and forming a single lamellipodium at the leading edge of the cell is crucial for efficient directional cell migration and is a hallmark of mesenchymal cell motility. Lamellipodia formation is regulated by spatial-temporal activation of the small GTPases Rac and Cdc42 at the front edge, and RhoA at the rear end. At a molecular level, partitioning-defective (Par) protein complex comprising Par3, Par6, and atypical Protein Kinase (aPKC isoforms ζ and λ/ι) regulates front-rear axis polarization. At the front edge, integrin clustering activates Cdc42, prompting the formation of Par3/Par6/aPKC complexes to modulate MTOC positioning and microtubule stabilization. Consequently, the Par3/Par6/aPKC complex recruits Rac1-GEF Tiam to activate Rac1, leading to lamellipodium formation. At the rear end, RhoA-ROCK phosphorylates Par3 disrupting its interaction with Tiam and inactivating Rac1. RhoA activity at the rear end allows the formation of focal adhesions and stress fibers necessary to generate the traction forces that allow cell movement. Nox1-based NADPH oxidase is necessary for PDGF-induced migration in vitro and in vivo for many cell types, including fibroblasts and smooth muscle cells. Here, we report that Nox1-deficient cells failed to acquire a normal front-to-rear polarity, polarize MTOC, and form a single lamellipodium. Instead, these cells form multiple protrusions that accumulate Par3 and active Tiam. The exogenous addition of H2O2 rescues this phenotype and is associated with the hyperactivation of Par3, Tiam, and Rac1. Mechanistically, Nox1 deficiency induces the inactivation of PP2A phosphatase, leading to increased activation of aPKC. These results were validated in Nox1y/- primary mouse aortic smooth muscle cells (MASMCs), which also showed PP2A inactivation after PDGF-BB stimulation consistent with exacerbated activation of aPKC. Moreover, we evaluated the physiological relevance of this signaling pathway using a femoral artery wire injury model to generate neointimal hyperplasia. Nox1y/- mice showed increased staining for the inactive form of PP2A and increased signal for active aPKC, suggesting that PP2A and aPKC activities might contribute to reducing neointima formation observed in the arteries of Nox1y/- mice.

13.
Cardiovasc Res ; 119(12): 2190-2201, 2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37401647

RESUMO

AIMS: Enhancing SIRT1 activity exerts beneficial cardiovascular effects. In diabetes, plasma SIRT1 levels are reduced. We aimed to investigate the therapeutic potential of chronic recombinant murine SIRT1 (rmSIRT1) supplementation to alleviate endothelial and vascular dysfunction in diabetic mice (db/db). METHODS AND RESULTS: Left internal mammary arteries obtained from patients undergoing coronary artery bypass grafting with or without a diagnosis of diabetes were assayed for SIRT1 protein levels. Twelve-week-old male db/db mice and db/+ controls were treated with vehicle or rmSIRT1 intraperitoneally for 4 weeks, after which carotid artery pulse wave velocity (PWV) and energy expenditure/activity were assessed by ultrasound and metabolic cages, respectively. Aorta, carotid, and mesenteric arteries were isolated to determine endothelial and vascular function using the myograph system.Arteries obtained from diabetic patients had significantly lower levels of SIRT1 relative to non-diabetics. In line, aortic SIRT1 levels were reduced in db/db mice compared to db/+ mice, while rmSIRT1 supplementation restored SIRT1 levels. Mice receiving rmSIRT1 supplementation displayed increased physical activity and improved vascular compliance as reflected by reduced PWV and attenuated collagen deposition. Aorta of rmSIRT1-treated mice exhibited increased endothelial nitric oxide (eNOS) activity, while endothelium-dependent contractions of their carotid arteries were significantly decreased, with mesenteric resistance arteries showing preserved hyperpolarization. Ex vivo incubation with reactive oxygen species (ROS) scavenger Tiron and NADPH oxidase inhibitor apocynin revealed that rmSIRT1 leads to preserved vascular function by suppressing NADPH oxidase (NOX)-related ROS synthesis. Chronic rmSIRT1 treatment resulted in reduced expression of both NOX1 and NOX4, in line with a reduction in aortic protein carbonylation and plasma nitrotyrosine levels. CONCLUSIONS: In diabetic conditions, arterial SIRT1 levels are significantly reduced. Chronic rmSIRT1 supplementation improves endothelial function and vascular compliance by enhancing eNOS activity and suppressing NOX-related oxidative stress. Thus, SIRT1 supplementation may represent novel therapeutic strategy to prevent diabetic vascular disease.


Assuntos
Diabetes Mellitus Experimental , Humanos , Camundongos , Masculino , Animais , Espécies Reativas de Oxigênio/metabolismo , Diabetes Mellitus Experimental/metabolismo , Vasodilatação , Sirtuína 1/metabolismo , Análise de Onda de Pulso , Endotélio Vascular/metabolismo , Estresse Oxidativo , NADPH Oxidases/metabolismo , Suplementos Nutricionais , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo III/metabolismo
14.
Pathol Res Pract ; 247: 154479, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37262995

RESUMO

Colorectal cancer (CRC) is a human malignancy which associates with high mortality rate and poor prognosis. Despite the initial effectiveness in clinical applications of chemotherapeutic agents, a fraction of patients develops chemoresistance. Fbxw7 is an F-box protein serving as a substrate recognition subunit of E3 ubiquitin ligase, leading to degradation of various oncoproteins. In this study, Fbxw7 was significantly downregulated in CRC tumors as well as CRC cells. Fbxw7 suppressed CRC cell proliferation and migration. Moreover, we observed Fbxw7 was positively associated with cisplatin sensitivity. Fbxw7 was significantly downregulated in cisplatin resistant CRC cells. Overexpression of Fbxw7 effectively increased the cisplatin sensitivity of cisplatin resistant CRC cells. Co-immunoprecipitation and GST pull-down assays showed Fbxw7 bond with Nox1 which was a superoxide-generating NADPH oxidase and showed oncogenic roles in colon cancer cells. Interestingly, Fbxw7 downregulated Nox1 through binding it to degrade Nox1 protein. We demonstrated that Fbxw7 negatively regulated mTOR activity through downregulation of Nox1. Finally, overexpression of Fbxw7 effectively increased the cisplatin sensitivity of CRC cells. This process could be further overturned by Nox1 restoration in Fbxw7-overexpressing colon cancer cells. In summary, these results unveiled that Fbxw7 targeted Nox1 for degradation, resulting in blocking the downstream Nox1-mTORC1 signaling to sensitize CRC cells to cisplatin. Our study potentiates that targeting the Fbxw7-Nox1-mTOR pathway could be an effective approach to overcome chemoresistance of colon cancer cells.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Humanos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Linhagem Celular Tumoral , Neoplasias do Colo/tratamento farmacológico , Serina-Treonina Quinases TOR , Neoplasias Colorretais/patologia
15.
Pharmaceuticals (Basel) ; 16(6)2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37375795

RESUMO

Meloxicam has shown significant neuroprotection in experimental models of stroke, Alzheimer's disease, and Parkinson's disease. However, the potential of meloxicam to treat depression-like neuropathology in a chronic restraint stress (CRS) model and the associated molecular changes has been insufficiently explored. The current work aimed to explore the potential neuroprotective actions of meloxicam against CRS-evoked depression in rats. In the current experiments, animals received meloxicam (10 mg/kg/day; i.p.) for 21 days, and CRS was instigated by restraining the animals for 6 h/day during the same period. The sucrose preference test and the forced swimming test were used to explore the depression-linked anhedonia/despair, whereas the open-field test examined the animals' locomotor activity. The current findings revealed that CRS elicited typical depression behavioral anomalies in the animals, including anhedonia, despair, and diminished locomotor activity; these findings were reinforced with Z-normalization scores. These observations were corroborated by brain histopathological changes and increased damage scores. In CRS-exposed animals, serum corticosterone spiked, and the hippocampi revealed decreased monoamine neurotransmitter levels (norepinephrine, serotonin, and dopamine). Mechanistically, neuroinflammation was evident in stressed animals, as shown by elevated hippocampal TNF-α and IL-1ß cytokines. Moreover, the hippocampal COX-2/PGE2 axis was activated in the rats, confirming the escalation of neuroinflammatory events. In tandem, the pro-oxidant milieu was augmented, as seen by increased hippocampal 8-hydroxy-2'-deoxyguanosine alongside increased protein expression of the pro-oxidants NOX1 and NOX4 in the hippocampi of stressed animals. In addition, the antioxidant/cytoprotective Nrf2/HO-1 cascade was dampened, as evidenced by the lowered hippocampal protein expression of Nrf2 and HO-1 signals. Interestingly, meloxicam administration mitigated depression manifestations and brain histopathological anomalies in the rats. These beneficial effects were elicited by meloxicam's ability to counteract the corticosterone spike and hippocampal neurotransmitter decrease while also inhibiting COX-2/NOX1/NOX4 axis and stimulating Nrf2/HO-1 antioxidant pathway. Together, the present findings prove the neuroprotective/antidepressant actions of meloxicam in CRS-induced depression by ameliorating hippocampal neuroinflammation and pro-oxidant changes, likely by modulating COX-2/NOX1/NOX4/Nrf2 axis.

16.
Front Biosci (Landmark Ed) ; 28(5): 100, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37258467

RESUMO

BACKGROUND: Diabetic nephropathy (DN) is one of the most serious complications of diabetes. Rhein has been reported to be effective in treating DN. This study aimed to investigate the role and mechanism of rhein in the treatment of DN. METHODS: High glucose-induced (HG) podocyte injury model and streptozocin-induced (STZ) DN mouse model were constructed and intervened with rhein. Cell viability was detected by Cell Counting Kit-8 (CCK-8) assay. The reactive oxygen species (ROS) level was measured by flow cytometry. The expression of Ras-related C3 botulinum toxin substrate 1 (Rac1), NADPH Oxidase 1 (NOX1), and ß-catenin were measured by quantitative real-time PCR (RT-qPCR). The contents of glutathione peroxidase 4 (GPX4), α-smooth muscle actin (α-SMA), Nephrin, and Podocin were characterized by immunofluorescence (IF) staining. Hematoxylin-eosin (HE) staining and Masson staining were employed to observe the renal morphological changes and tubulointerstitial fibrosis. The contents of α-SMA and Nephrin were detected by immunohistochemistry (IHC) staining. The kits were utilized to analyze various biochemical indicators. RESULTS: Rhein inhibited the HG-induced accumulation of ROS, malondialdehyde (MDA), and Fe2+, and the expression of α-SMA, Transferrin Receptor 1 (TFR1), acyl-CoA synthetase long-chain family member 4 (ACSL4), Vimentin, Snail, and Desmin. Rhein inhibited the expression of Rac1 and its downstream targets NOX1 and ß-catenin. Rac1 silencing (si-Rac1) inhibited the accumulation of MDA and Fe2+ and the expression of Rac1, NOX1, ß-catenin, α-SMA, TFR1, and ACSL4. Rac1 overexpression (oe-Rac1) resulted in the inhibition of superoxide dismutase (SOD), glutathione (GSH), GPX4 synthesis, and down-regulation of Recombinant Solute Carrier Family 7, Member 11 (SLC7A11) and Nephrin expression in HG-treated podocytes. Rac1 Lentivirus (LV-Rac1) injection significantly promoted the accumulation of MDA and Fe2+ and increased the expression of RAC1, NOX1, ß-catenin, TFR1, ACSL4, and α-SMA in DN mice. CONCLUSIONS: Rhein inhibited ferroptosis and epithelial-mesenchymal transition (EMT) to attenuate DN by regulating the Rac1/NOX1/ß-catenin axis.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Ferroptose , Camundongos , Animais , beta Catenina/metabolismo , Nefropatias Diabéticas/metabolismo , NADPH Oxidase 1/farmacologia , Transição Epitelial-Mesenquimal , Espécies Reativas de Oxigênio/metabolismo
17.
Cell Rep ; 42(6): 112519, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37224811

RESUMO

Cancer chemoresistance is often attributed to slow-cycling persister populations with cancer stem cell (CSC)-like features. However, how persister populations emerge and prevail in cancer remains obscure. We previously demonstrated that while the NOX1-mTORC1 pathway is responsible for proliferation of a fast-cycling CSC population, PROX1 expression is required for chemoresistant persisters in colon cancer. Here, we show that enhanced autolysosomal activity mediated by mTORC1 inhibition induces PROX1 expression and that PROX1 induction in turn inhibits NOX1-mTORC1 activation. CDX2, identified as a transcriptional activator of NOX1, mediates PROX1-dependent NOX1 inhibition. PROX1-positive and CDX2-positive cells are present in distinct populations, and mTOR inhibition triggers conversion of the CDX2-positive population to the PROX1-positive population. Inhibition of autophagy synergizes with mTOR inhibition to block cancer proliferation. Thus, mTORC1 inhibition-mediated induction of PROX1 stabilizes a persister-like state with high autolysosomal activity via a feedback regulation that involves a key cascade of proliferating CSCs.


Assuntos
Neoplasias do Colo , Humanos , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias do Colo/metabolismo , Retroalimentação , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , NADPH Oxidase 1
18.
Cell Rep ; 42(3): 112183, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36857177

RESUMO

Circadian oscillation of gut microbiota exerts significant influence on host physiology, but the host factors that sustain microbial oscillations are rarely reported. We compared the gut microbiome and metabolome of wild-type and BMAL1-deficient cynomolgus monkeys during a diurnal cycle by performing 16S rRNA sequencing and untargeted fecal metabolomics and uncovered the influence of intestinal H2O2 on microbial compositions. Ablation of BMAL1 induced expansion of Bacteroidota at midnight and altered microbial oscillations. Some important fecal metabolites changed significantly, and we investigated their correlations with microbes. Further analyses revealed that disturbed rhythmicity of NOX1-derived intestinal H2O2 was responsible for the altered microbial oscillations in BMAL1-deficient monkeys. Mechanistic studies showed that BMAL1 transactivated NOX1 via binding to the E1-E2 site in its promoter. Notably, BMAL1-dependent activation of NOX1 was conserved in cynomolgus monkeys and humans. Our study demonstrates the importance of intestine clock-controlled H2O2 rhythmicity on the rhythmic oscillation of gut microbiota.


Assuntos
Ritmo Circadiano , Microbioma Gastrointestinal , Animais , Humanos , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Ritmo Circadiano/fisiologia , Microbioma Gastrointestinal/fisiologia , Peróxido de Hidrogênio/farmacologia , Macaca fascicularis , RNA Ribossômico 16S
19.
Development ; 150(20)2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36897562

RESUMO

Reactive oxygen species (ROS) are generated from NADPH oxidases and mitochondria; they are generally harmful for stem cells. Spermatogonial stem cells (SSCs) are unique among tissue-stem cells because they undergo ROS-dependent self-renewal via NOX1 activation. However, the mechanism by which SSCs are protected from ROS remains unknown. Here, we demonstrate a crucial role for Gln in ROS protection using cultured SSCs derived from immature testes. Measurements of amino acids required for SSC cultures revealed the indispensable role of Gln in SSC survival. Gln induced Myc expression to drive SSC self-renewal in vitro, whereas Gln deprivation triggered Trp53-dependent apoptosis and impaired SSC activity. However, apoptosis was attenuated in cultured SSCs that lacked NOX1. In contrast, cultured SSCs lacking Top1mt mitochondria-specific topoisomerase exhibited poor mitochondrial ROS production and underwent apoptosis. Gln deprivation reduced glutathione production; supra-molar Asn supplementation allowed offspring production from SSCs cultured without Gln. Therefore, Gln ensures ROS-dependent SSC-self-renewal by providing protection against NOX1 and inducing Myc.


Assuntos
Glutamina , Espermatogônias , Masculino , Camundongos , Animais , Espermatogônias/metabolismo , Glutamina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proliferação de Células , Células-Tronco , Células Cultivadas
20.
Int J Mol Sci ; 24(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36902094

RESUMO

Noxo1, the organizing element of the Nox1-dependent NADPH oxidase complex responsible for producing reactive oxygen species, has been described to be degraded by the proteasome. We mutated a D-box in Noxo1 to express a protein with limited degradation and capable of maintaining Nox1 activation. Wild-type (wt) and mutated Noxo1 (mut1) proteins were expressed in different cell lines to characterize their phenotype, functionality, and regulation. Mut1 increases ROS production through Nox1 activity affects mitochondrial organization and increases cytotoxicity in colorectal cancer cell lines. Unexpectedly the increased activity of Noxo1 is not related to a blockade of its proteasomal degradation since we were unable in our conditions to see any proteasomal degradation either for wt or mut1 Noxo1. Instead, D-box mutation mut1 leads to an increased translocation from the membrane soluble fraction to a cytoskeletal insoluble fraction compared to wt Noxo1. This mut1 localization is associated in cells with a filamentous phenotype of Noxo1, which is not observed with wt Noxo1. We found that mut1 Noxo1 associates with intermediate filaments such as keratin 18 and vimentin. In addition, Noxo1 D-Box mutation increases Nox1-dependent NADPH oxidase activity. Altogether, Nox1 D-box does not seem to be involved in Noxo1 degradation but rather related to the maintenance of the Noxo1 membrane/cytoskeleton balance.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Espécies Reativas de Oxigênio , NADPH Oxidase 1/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Humanos , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...