Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Fungi (Basel) ; 7(2)2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33525315

RESUMO

The role of the Ustilago maydis putative homolog of the transcriptional repressor ScNRG1, previously described in Saccharomyces cerevisiae, Candida albicans and Cryptococcus neoformans, was analyzed by means of its mutation. In S. cerevisiae this gene regulates a set of stress-responsive genes, and in C. neoformans it is involved in pathogenesis. It was observed that the U. maydisNRG1 gene regulates several aspects of the cell response to acid pH, such as the production of mannosyl-erythritol lipids, inhibition of the expression of the siderophore cluster genes, filamentous growth, virulence and oxidative stress. A comparison of the gene expression pattern of the wild type strain versus the nrg1 mutant strain of the fungus, through RNA Seq analyses, showed that this transcriptional factor alters the expression of 368 genes when growing at acid pH (205 up-regulated, 163 down-regulated). The most relevant genes affected by NRG1 were those previously reported as the key ones for particular cellular stress responses, such as HOG1 for osmotic stress and RIM101 for alkaline pH. Four of the seven genes included WCO1 codifying PAS domain ( These has been shown as the key structural motif involved in protein-protein interactions of the circadian clock, and it is also a common motif found in signaling proteins, where it functions as a signaling sensor) domains sensors of blue light, two of the three previously reported to encode opsins, one vacuolar and non-pH-responsive, and another one whose role in the acid pH response was already known. It appears that all these light-reactive cell components are possibly involved in membrane potential equilibrium and as virulence sensors. Among previously described specific functions of this transcriptional regulator, it was found to be involved in glucose repression, metabolic adaptation to adverse conditions, cellular transport, cell rescue, defense and interaction with an acidic pH environment.

2.
Bol. méd. Hosp. Infant. Méx ; 70(2): 124-132, may.-abr. 2013. ilus
Artigo em Espanhol | LILACS | ID: lil-701232

RESUMO

Introducción. Los defectos septales ventriculares graves, asociados con un ventrículo hipoplásico y otro hiperplásico o con la ausencia total del tabique interventricular, suelen ser incompatibles con la vida embrionaria y fetal. Pese a su gravedad, no se conocen sus causas. Por marcaje in vivo en embriones de pollo se confirmó la importancia de las trabéculas en la morfogénesis del tabique interventricular. Por manipulación genética en embriones de ratón y aves se determinó que la ausencia de la Neuregulina 1 (NRG1) o sus receptores, además de provocar escasa diferenciación de los miocitos ventriculares y deficiente formación de las trabéculas, determina la muerte prematura del embrión. Con base en estos antecedentes, el objetivo fue determinar el papel real de NRG1 en la trabeculogénesis temprana y su importancia en la regulación de la proliferación y apoptosis. Métodos. Se estableció un modelo de órgano cultivo de corazón de embrión de pollo previo al inicio de la trabeculogénesis. Se realizaron ensayos de inhibición total de la actividad de NRG1 endógena y posterior adición de la proteína exógena a diferentes concentraciones, determinando la actividad cíclica de los miocitos ventriculares con el antígeno nuclear de proliferación celular y la apoptosis con lisotraker. Resultados. El suero fetal bovino promueve la proliferación, pero impacta negativamente la trabeculogénesis. La adición de NRG1 a concentraciones bajas y períodos cortos de incubación no induce trabeculogénesis. En contraste, a concentraciones medias y períodos de cultivo no mayores a 24 horas, tiene un efecto positivo sobre este proceso. También promueve la proliferación y evita la apoptosis del miocardio ventricular. El incremento en la concentración de NRG1 posiblemente provoca un desbalance molecular que favorece la proliferación desordenada pero no la trabeculogénesis. Conclusiones. El entendimiento del papel de NRG1 en la trabeculogénesis aporta datos para conocer las redes moleculares involucradas también en el desarrollo del tabique interventricular, información indispensable para entender el origen de los defectos septales ventriculares graves.


Background. Serious ventricular septal defects associated with hypoplastic and hyperplasic ventricles or total absence of the interventricular septum (IVS) are usually incompatible with embryonic and fetal life. Despite the importance of these cardiac diseases, their causes are not yet known. Using in vivo labeling in the chick embryo, the importance of ventricular trabeculation was confirmed in IVS morphogenesis. Using knockout mice and retrovirus in birds, it was determined that lack of function of neuregulin 1 (NRG1) or their ErbB receptors not only causes deficient differentiation of ventricular myocytes and poor formation of trabeculae, but also determines premature death of the embryos. Based on this background, the aim of this work was to determine the actual role of NRG1 in early trabeculogenesis and its importance in proliferation and apoptosis regulation. Methods. An embryonic chicken heart organ culture system at the age prior to the beginning of the trabeculogenesis process was established. Endogenous activity of NRG1 was inhibited in the organ cultures that were then stimulated with NRG1 at different concentrations. Myocyte proliferation was determined using the proliferating cell nuclear antigen and apoptosis with LysoTracker (LTR). Results. Fetal bovine serum promotes proliferation but negatively impacts trabeculogenesis. Low concentration of NRG1 and short periods of incubation do not induce trabeculogenesis. In contrast, average NRG1 concentrations and cultivation periods not exceeding 24 h have a positive effect on the onset of this process. This also promotes myocardial proliferation but avoids apoptosis. Higher concentrations of NRG1 possibly cause a molecular imbalance that favors untidy proliferation but not trabeculogenesis. Conclusions. Understanding of the role of NRG1 on ventricular trabeculogenesis provides valuable information for the molecular pathways also involved in IVS development. This information is essential for understanding the origin of serious ventricular septal defects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA