Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Virol ; 98(2): e0167723, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38240590

RESUMO

Rotavirus infection is a leading cause of gastroenteritis in children worldwide; the genome of this virus is composed of 11 segments of dsRNA packed in a triple-layered protein capsid. Here, we investigated the role of nucleolin, a protein with diverse RNA-binding domains, in rotavirus infection. Knocking down the expression of nucleolin in MA104 cells by RNA interference resulted in a remarkable 6.3-fold increase in the production of infectious rhesus rotavirus (RRV) progeny, accompanied by an elevated synthesis of viral mRNA and genome copies. Further analysis unveiled an interaction between rotavirus segment 10 (S10) and nucleolin, potentially mediated by G-quadruplex domains on the viral genome. To determine whether the nucleolin-RNA interaction regulates RRV replication, MA104 cells were transfected with AGRO100, a compound that forms G4 structures and selectively inhibits nucleolin-RNA interactions by blocking the RNA-binding domains. Under these conditions, viral production increased by 1.5-fold, indicating the inhibitory role of nucleolin on the yield of infectious viral particles. Furthermore, G4 sequences were identified in all 11 RRV dsRNA segments, and transfection of oligonucleotides representing G4 sequences in RRV S10 induced a significant increase in viral production. These findings show that rotavirus replication is negatively regulated by nucleolin through the direct interaction with the viral RNAs by sequences forming G4 structures.IMPORTANCEViruses rely on cellular proteins to carry out their replicative cycle. In the case of rotavirus, the involvement of cellular RNA-binding proteins during the replicative cycle is a poorly studied field. In this work, we demonstrate for the first time the interaction between nucleolin and viral RNA of rotavirus RRV. Nucleolin is a cellular protein that has a role in the metabolism of ribosomal rRNA and ribosome biogenesis, which seems to have regulatory effects on the quantity of viral particles and viral RNA copies of rotavirus RRV. Our study adds a new component to the current model of rotavirus replication, where cellular proteins can have a negative regulation on rotavirus replication.


Assuntos
Nucleolina , RNA Viral , Infecções por Rotavirus , Rotavirus , Humanos , Nucleolina/metabolismo , RNA Viral/genética , Rotavirus/fisiologia , Infecções por Rotavirus/virologia , Replicação Viral
2.
Int J Mol Sci ; 22(23)2021 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-34884955

RESUMO

Proliferative retinopathies produces an irreversible type of blindness affecting working age and pediatric population of industrialized countries. Despite the good results of anti-VEGF therapy, intraocular and systemic complications are often associated after its intravitreal use, hence novel therapeutic approaches are needed. The aim of the present study is to test the effect of the AS1411, an antiangiogenic nucleolin-binding aptamer, using in vivo, ex vivo and in vitro models of angiogenesis and propose a mechanistic insight. Our results showed that AS1411 significantly inhibited retinal neovascularization in the oxygen induced retinopathy (OIR) in vivo model, as well as inhibited branch formation in the rat aortic ex vivo assay, and, significantly reduced proliferation, cell migration and tube formation in the HUVEC in vitro model. Importantly, phosphorylated NCL protein was significantly abolished in HUVEC in the presence of AS1411 without affecting NFκB phosphorylation and -21 and 221-angiomiRs, suggesting that the antiangiogenic properties of this molecule are partially mediated by a down regulation in NCL phosphorylation. In sum, this new research further supports the NCL role in the molecular etiology of pathological angiogenesis and identifies AS1411 as a novel anti-angiogenic treatment.


Assuntos
Aptâmeros de Nucleotídeos/administração & dosagem , Oligodesoxirribonucleotídeos/administração & dosagem , Oxigênio/efeitos adversos , Fosfoproteínas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Neovascularização Retiniana/tratamento farmacológico , Animais , Aptâmeros de Nucleotídeos/farmacologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Injeções Intravítreas , Camundongos , MicroRNAs/genética , Oligodesoxirribonucleotídeos/farmacologia , Fosfoproteínas/antagonistas & inibidores , Fosfoproteínas/genética , Fosforilação/efeitos dos fármacos , Proteínas de Ligação a RNA/antagonistas & inibidores , Proteínas de Ligação a RNA/genética , Neovascularização Retiniana/induzido quimicamente , Neovascularização Retiniana/genética , Neovascularização Retiniana/metabolismo , Nucleolina
3.
Cells ; 10(6)2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34200613

RESUMO

Aptamers are single-stranded DNA or RNA oligonucleotides that are currently used in clinical trials due to their selectivity and specificity to bind small molecules such as proteins, peptides, viral particles, vitamins, metal ions and even whole cells. Aptamers are highly specific to their targets, they are smaller than antibodies and fragment antibodies, they can be easily conjugated to multiple surfaces and ions and controllable post-production modifications can be performed. Aptamers have been therapeutically used for age-related macular degeneration, cancer, thrombosis and inflammatory diseases. The aim of this review is to highlight the therapeutic, diagnostic and prognostic possibilities associated with aptamers, focusing on eye pathological angiogenesis.


Assuntos
Aptâmeros de Nucleotídeos/farmacologia , Oftalmopatias/terapia , Terapia de Alvo Molecular/métodos , Neovascularização Patológica/terapia , Humanos
4.
Electron. j. biotechnol ; Electron. j. biotechnol;52: 1-12, July. 2021. tab, ilus, graf
Artigo em Inglês | LILACS | ID: biblio-1283167

RESUMO

BACKGROUND: Chronic lymphocytic leukaemia (CLL) is a neoplasm of B-cells characterized by variable prognosis. Exploring the proteome of CLL cells may provide insights into the disease. Therefore, eleven proteomics experiments were conducted on eleven primary CLL samples. RESULTS: We reported a CLL proteome consisting of 919 proteins (false discovery rate (FDR) 1%) whose identification was based on the sequencing of two or more distinct peptides (FDR of peptide sequencing 1%). Mass spectrometry-based protein identification was validated for four different proteins using Western blotting and specific antibodies in different CLL samples. Small sizes of nucleolin (~57 kDa and ~68 kDa) showed a potential association with good prognosis CLL cells (n = 8, p < 0.01). Compared with normal B-cells, CLL cells over-expressed thyroid hormone receptor-associated protein 3 (THRAP3; n = 9; p = 0.00007), which is implicated in cell proliferation; and heterochromatin protein 1-binding protein 3 (HP1BP3; n = 10; p = 0.0002), which promotes cell survival and tumourogenesis. A smaller form of HP1BP3, which may correspond to HP1BP3 isoform-2, was specifically identified in normal B-cells (n = 10; p = 0.0001). HP1BP3 and THRAP3 predicted poor prognosis of CLL (p 0.05). Consistently, THRAP3 and HP1BP3 were found to be associated with cancer-related pathways (p 0.05). CONCLUSIONS: Our findings add to the known proteome of CLL and confirm the prognostic importance of two novel cancer-associated proteins in this disease.


Assuntos
Leucemia Linfocítica Crônica de Células B , Biomarcadores Tumorais/análise , Espectrometria de Massas , Fatores de Transcrição/análise , Proteínas Nucleares/análise , Western Blotting , Cromatografia Líquida , Proteômica , Proteínas de Ligação a DNA/análise
5.
Graefes Arch Clin Exp Ophthalmol ; 254(9): 1753-63, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27313162

RESUMO

PURPOSE: Corneal neovascularisation (CNV), with consequent loss of transparency, is due to an imbalance of proangiogenic factors. Cell-surface nucleolin (NCL) has been associated with neo-angiogenesis. There are studies identifying NCL translocation from nucleus to the cell surface, which is essential for endothelial cell proliferation. To find the possible role of NCL in the generation of corneal neovessels, the aim of this study is to characterise the NCL presence and cell-localisation in non-injured corneas, as well as to describe the changes in NCL cell and tissue localisation in CNV, and to analyse the effect of bevacizumab on NCL cellular and tissular distribution. METHODS: Suture-induced CNV was performed in mice. The corneal tissues were obtained and the histological and co-immunofluorescence assays were performed using different proteins, such as CD31, cadherin and isolectin B4. To determine the possible role of VEGF in NCL presence and localisation in our CNV model, bevacizumab was concomitantly used. RESULTS: Nucleolin was principally observed in the nucleus of the basal epithelial cells of normal corneas. Interestingly, angiogenesis-induced changes were observed in the localisation of NCL, not only in tissue but also at the cellular level where NCL was extranuclear in epithelial cells, stromal cells and neovessels. In contrast, these changes were reverted when bevacizumab was used. Besides, NCL was able to stain only aberrant corneal neovessels in comparison with retinal vessels. CONCLUSIONS: NCL mobilisation outside the nucleus during angiogenesis could have a possible role as a proangiogenic molecule in the corneal tissue.


Assuntos
Córnea/metabolismo , Neovascularização da Córnea/metabolismo , Fosfoproteínas/biossíntese , Proteínas de Ligação a RNA/biossíntese , Animais , Córnea/irrigação sanguínea , Córnea/patologia , Neovascularização da Córnea/diagnóstico , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Nucleares , Coelhos , Nucleolina
6.
Virology ; 489: 51-62, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26707270

RESUMO

Feline calicivirus depends on host-cell proteins for its replication. We previously showed that knockdown of nucleolin (NCL), a phosphoprotein involved in ribosome biogenesis, resulted in the reduction of FCV protein synthesis and virus yield. Here, we found that NCL may not be involved in FCV binding and entry into cells, but it binds to both ends of the FCV genomic RNA, and stimulates its translation in vitro. AGRO100, an aptamer that specifically binds and inactivates NCL, caused a strong reduction in FCV protein synthesis. This effect could be reversed by the addition of full-length NCL but not by a ΔrNCL, lacking the N-terminal domain. Consistent with this, FCV infection of CrFK cells stably expressing ΔrNCL led to a reduction in virus protein translation. These results suggest that NCL is part of the FCV RNA translational complex, and that the N-terminal part of the protein is required for efficient FCV replication.


Assuntos
Infecções por Caliciviridae/veterinária , Calicivirus Felino/genética , Doenças do Gato/metabolismo , Doenças do Gato/virologia , Fosfoproteínas/metabolismo , Biossíntese de Proteínas , RNA Viral/genética , Proteínas de Ligação a RNA/metabolismo , Animais , Infecções por Caliciviridae/genética , Infecções por Caliciviridae/metabolismo , Infecções por Caliciviridae/virologia , Calicivirus Felino/fisiologia , Doenças do Gato/genética , Gatos , Linhagem Celular , Interações Hospedeiro-Patógeno , Fosfoproteínas/genética , RNA Viral/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral , Nucleolina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA