Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
1.
Biomolecules ; 14(6)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38927104

RESUMO

Chemo-enzymatic syntheses of strongly fluorescent nucleoside analogs, potentially applicable in analytical biochemistry and cell biology are reviewed. The syntheses and properties of fluorescent ribofuranosides of several purine, 8-azapurine, and etheno-purine derivatives, obtained using various types of purine nucleoside phosphorylase (PNP) as catalysts, as well as α-ribose-1-phosphate (r1P) as a second substrate, are described. In several instances, the ribosylation sites are different to the canonical purine N9. Some of the obtained ribosides show fluorescence yields close to 100%. Possible applications of the new analogs include assays of PNP, nucleoside hydrolases, and other enzyme activities both in vitro and within living cells using fluorescence microscopy.


Assuntos
Corantes Fluorescentes , Purina-Núcleosídeo Fosforilase , Purina-Núcleosídeo Fosforilase/metabolismo , Purina-Núcleosídeo Fosforilase/química , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Humanos , Nucleosídeos/química , Nucleosídeos/metabolismo , Nucleosídeos/síntese química , Purinas/química , Purinas/metabolismo , Purinas/síntese química
2.
Cell Biochem Biophys ; 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483755

RESUMO

Nucleoside analogs are a common form of chemotherapy that disrupts DNA replication and repair, leading to cell cycle arrest and apoptosis. Reactive oxygen species (ROS) production is a significant mechanism through which these drugs exert their anticancer effects. This study investigated a new nucleoside analog called FNC or Azvudine, and its impact on ROS production and cell viability in Dalton's lymphoma (DL) cells. The study found that FNC treatment resulted in a time- and dose-dependent increase in ROS levels in DL cells. After 15 and 30 min of treatment with 2 and 1 mg/ml of FNC, mitochondrial ROS production was observed in DL cells. Furthermore, prolonged exposure to FNC caused structural alterations and DNA damage in DL cells. The results suggest that FNC's ability to impair DL cell viability may be due to its induction of ROS production and indicate a need for further investigation.

3.
Hepatol Int ; 18(2): 435-448, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38376650

RESUMO

BACKGROUND AND AIMS: Functional cure is difficult to achieve using current antiviral therapies; moreover, limited data are available regarding treatment outcomes in children. This retrospective study aimed to assess the frequency of functional cure among children undergoing antiviral treatment for active chronic hepatitis B (CHB). METHODS: A total of 372 children aged 1-16 years, with active CHB were enrolled and underwent either nucleos(t)ide analog monotherapy or combination therapy with interferon-α (IFN-α) for 24-36 months. All children attended follow-up visits every 3 months. Functional cure was defined as evidence of hepatitis B virus (HBV) DNA loss, circulating hepatitis B e antigen (HBeAg) loss/seroconversion, and hepatitis B surface antigen (HBsAg) loss. RESULTS: After 36 months of antiviral treatment and/or follow-up visits, children with CHB aged 1- < 7 years exhibited higher rates of HBV DNA clearance, HBeAg seroconversion, and HBsAg loss than CHB children ≥ 7-16 years of age (93.75% versus [vs.] 86.21% [p < 0.0001]; 79.30% vs. 51.72% [p < 0.0001]; and 50.78% vs. 12.93% [p < 0.0001], respectively). Longitudinal investigation revealed more rapid dynamic reduction in HBV DNA, HBeAg, and HBsAg levels in children aged 1-7 years than in those aged ≥ 7-16 years with CHB. According to further age-stratified analysis, HBsAg loss rates were successively decreased in children with CHB who were 1- < 3, 3- < 7, 7- < 12, and 12-16 years of age (62.61% vs. 41.13% vs. 25.45% vs. 1.64%, respectively; p < 0.0001) at 36 months. In addition, baseline HBsAg level < 1,500 IU/mL was found to favor disease cure among these pediatric patients. No serious adverse events were observed throughout the study period. CONCLUSION: Results of the present study demonstrated that children aged 1- < 7 years, with active CHB can achieve a high functional cure rate by undergoing antiviral therapy compared to those aged ≥ 7 years, who undergo antiviral therapy. These data support the use of antiviral treatment at an early age in children with CHB. However, future prospectively randomized controlled trials are necessary to validate the findings of this study.


Assuntos
Antivirais , Hepatite B Crônica , Adolescente , Criança , Humanos , Antivirais/uso terapêutico , DNA Viral , Antígenos E da Hepatite B , Antígenos de Superfície da Hepatite B , Vírus da Hepatite B/genética , Estudos Retrospectivos , Resultado do Tratamento
4.
ChemMedChem ; 19(3): e202300608, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38095428

RESUMO

The synthesis and antiproliferative evaluation of novel d-glucopyranuronamide-containing nucleosides is described. Based on our previously reported anticancer d-glucuronamide-based nucleosides, new analogues comprising N/O-dodecyl or N-propargyl substituents at the glucuronamide unit and anomerically-N-linked 2-acetamido-6-chloropurine, 6-chloropurine or 4-(6-chloropurinyl)methyl triazole motifs were synthesized in 4-6 steps starting from acetonide-protected glucofuranurono-6,3-lactone. The methodologies were based on the access to N-substituted glycopyranuronamide precursors, namely 1,2-O-acetyl derivatives or glucuronoamidyl azides for further nucleobase N-glycosylation or 1,3-dipolar cycloaddition with N9 - and N7 -propargyl-6-chloropurines, respectively. N-Propargyl glucuronamide-based N9 -purine nucleosides were converted into (triazolyl)methyl amide-6,6-linked pseudodisaccharide nucleosides via cycloaddition with methyl 6-azido-glucopyranoside. A CuI/Amberlyst A-21 catalytic system employed in the cycloaddition reactions also effected conversion into 6-dimethylaminopurine nucleosides. Antiproliferative evaluation in chronic myeloid leukemia (K562) and breast cancer (MCF-7) cells revealed significant effects exhibited by the synthesized monododecylated purine-containing nucleosides. A N-propargyl 3-O-dodecyl glucuronamide derivative comprising a N9 -ß-linked 6-chloropurine moiety was the most active compound against MCF-7 cells (GI50 =11.9 µM) while a related α-(purinyl)methyltriazole nucleoside comprising a N7 -linked 6-chloropurine moiety exhibited the highest activity against K562 cells (GI50 =8.0 µM). Flow cytometry and immunoblotting analysis of apoptosis-related proteins in K562 cells treated with the N-propargyl 3-O-dodecyl glucuronamide-based N9 -linked 6-chloropurine nucleoside indicated that it acts via apoptosis induction.


Assuntos
Amidas , Nucleosídeos , Humanos , Nucleosídeos/farmacologia , Amidas/farmacologia , Nucleosídeos de Purina , Glucuronatos
5.
Biomedicines ; 11(12)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38137356

RESUMO

The integration of artificial intelligence (AI) into drug discovery has markedly advanced the search for effective therapeutics. In our study, we employed a comprehensive computational-experimental approach to identify potential anti-SARS-CoV-2 compounds. We developed a predictive model to assess the activities of compounds based on their structural features. This model screened a library of approximately 700,000 compounds, culminating in the selection of the top 100 candidates for experimental validation. In vitro assays on human intestinal epithelial cells (Caco-2) revealed that 19 of these compounds exhibited inhibitory activity. Notably, eight compounds demonstrated dose-dependent activity in Vero cell lines, with half-maximal effective concentration (EC50) values ranging from 1 µM to 7 µM. Furthermore, we utilized a clustering approach to pinpoint potential nucleoside analog inhibitors, leading to the discovery of two promising candidates: azathioprine and its metabolite, thioinosinic acid. Both compounds showed in vitro activity against SARS-CoV-2, with thioinosinic acid also significantly reducing viral loads in mouse lungs. These findings underscore the utility of AI in accelerating drug discovery processes.

6.
BMC Infect Dis ; 23(1): 726, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37880598

RESUMO

OBJECTIVE: To compare the effectiveness of seven major interventions [Bulevirtide (BLV), Interferon (IFN), Nucleoside analogs (NAs), BLV + IFN, BLV + NAs, IFN + NAs, and Placebo] to treat chronic hepatitis D. METHODS: We followed PRISMA-NMA guidelines, searched databases (Cochrane Library, PubMed, EMBASE, and Web Of Science) for eligible randomized controlled trials (RCTs), and applied STATA17.0 software to execute the meta-analysis. RESULTS: We included 14 randomized controlled trials (814 patients) comparing seven different interventions. The results of the network meta-analysis showed that: ① Sustained virological response (after 24 weeks of follow-up): Four intervention groups (BLV + IFN, IFN alone, IFN + NAs, and NAs alone) were effective (relative risk (RR) = 13.30, 95% confidence interval (Cl) [1.68,105.32], RR = 12.13, 95% Cl [1.46,101.04], RR = 5.05, 95% Cl [1.68,15.19], RR = 5.03, 95% Cl [1.66,15.20]), with no statistically significant differences between the four groups. The top three in probability rankings were: BLV + NAs, BLV + IFN, and BLV alone (surface under the cumulative ranking curve (SUCRA) = 86.8%, 80.3%, and 48.4%; ② Sustained biochemical response (after 24 weeks of follow-up): BLV + IFN and IFN were superior to BLV (RR = 14.71, 95% Cl [1.14,189.07], RR = 16.67, 95% Cl [1.39,199.52]). The top three were BLV alone, BLV + NAs, and BLV + IFN (SUCRA = 86.9%,81.2%, and 64.3%). ③ Histological response: NAs were superior to BLV (RR = 2.08, 95% Cl [1.10,3.93]), whereas the difference between other treatment regimens was not statistically significant, and the top three in the probability ranking were BLV alone, BLV + NAs, and BLV + IFN (SUCRA = 75.6%, 75.6%, and 61.8%). CONCLUSIONS: IFN, IFN + BLV, and IFN + NAs were effective in clearing HDV RNA and normalizing alanine aminotransferase levels; however, IFN and IFN + NAs had a high rate of viral relapse at 24 weeks post-treatment follow-up. There was no additional benefit of adding NAs to IFN therapy for chronic hepatitis D; however, the combination of IFN + BLV significantly improved short-term HDV RNA clearance, which showed strong synergistic effects. The seven regimens included in the study did not contribute significantly to liver histological improvement. Therefore, the IFN + BLV combination has the most potential as a treatment option to improve the long-term prognosis or even cure chronic hepatitis D. TRIAL REGISTRATION: This systematic evaluation and meta-analysis was registered with PROSPERO under the registration number: CRD42022314544.).


Assuntos
Hepatite D Crônica , Humanos , Metanálise em Rede , Hepatite D Crônica/tratamento farmacológico , Ensaios Clínicos Controlados Aleatórios como Assunto , Interferons , RNA , Antivirais/uso terapêutico
7.
Biomolecules ; 13(10)2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37892134

RESUMO

In light of the COVID-19 global pandemic caused by SARS-CoV-2, ongoing research has centered on minimizing viral spread either by stopping viral entry or inhibiting viral replication. Repurposing antiviral drugs, typically nucleoside analogs, has proven successful at inhibiting virus replication. This review summarizes current information regarding coronavirus classification and characterization and presents the broad clinical consequences of SARS-CoV-2 activation of the angiotensin-converting enzyme 2 (ACE2) receptor expressed in different human cell types. It provides publicly available knowledge on the chemical nature of proposed therapeutics and their target biomolecules to assist in the identification of potentially new drugs for the treatment of SARS-CoV-2 infection.


Assuntos
COVID-19 , Humanos , SARS-CoV-2/metabolismo , Peptidil Dipeptidase A/química , Antivirais/farmacologia , Antivirais/uso terapêutico , Internalização do Vírus
8.
Eur J Med Chem ; 261: 115852, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37801825

RESUMO

The Zika virus (ZIKV) infections remains a global health threat. However, no approved drug for treating ZIKV infection. We previously found TZY12-9, a 5'-amino NI analog, that showed anti-ZIKV activity without chemical phosphorylation. Here, a series of 5'-amino NI analogs were synthesized and evaluated. The compound XSJ2-46 exhibited potent in vitro activity without requiring chemical phosphorylation, favorable pharmacokinetic and acute toxicity profiles. Preliminary mechanisms of anti-ZIKV activity of XSJ2-46 were investigated via a series of ZIKV non-structural protein inhibition assays and host cell RNA-seq. XSJ2-46 acted at the replication stage of viral infection cycle, and exhibited reasonable inhibition of RNA-dependent RNA polymerases (RdRp) with an IC50 value of 8.78 µM, while not affecting MTase. RNA-seq analysis also revealed differential expression genes involved in cytokine and cytokine receptor pathway in ZIKV-infected U87 cells treated with XSJ2-46. Importantly, treatment with XSJ2-46 (10 mg/kg/day) significantly enhanced survival protection (70% survival) in ZIKV-infected ICR mice. Additionally, XSJ2-46 administration resulted in a significant decrease in serum levels of ZIKV viral RNA in the IFNα/ß receptor-deficient (Ifnar-/-) A129 mouse model. Therefore, the remarkable in vitro and in vivo anti-ZIKV activity of compound XSJ2-46 highlights the promising research direction of utilizing the 5'-amino NI structure skeleton for developing antiviral NIs.


Assuntos
Infecção por Zika virus , Zika virus , Animais , Camundongos , Zika virus/fisiologia , Infecção por Zika virus/tratamento farmacológico , Antivirais/química , Camundongos Endogâmicos ICR , Replicação Viral
9.
Int J Mol Sci ; 24(19)2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37834006

RESUMO

Emerging and re-emerging viruses periodically cause outbreaks and epidemics around the world, which ultimately lead to global events such as the COVID-19 pandemic. Thus, the urgent need for new antiviral drugs is obvious. Over more than a century of antiviral development, nucleoside analogs have proven to be promising agents against diversified DNA and RNA viruses. Here, we present the synthesis and evaluation of the antiviral activity of nucleoside analogs and their deglycosylated derivatives based on a hydroxybenzo[4,5]imidazo[1,2-c]pyrimidin-1(2H)-one scaffold. The antiviral activity was evaluated against a panel of structurally and phylogenetically diverse RNA and DNA viruses. The leader compound showed micromolar activity against representatives of the family Coronaviridae, including SARS-CoV-2, as well as against respiratory syncytial virus in a submicromolar range without noticeable toxicity for the host cells. Surprisingly, methylation of the aromatic hydroxyl group of the leader compound resulted in micromolar activity against the varicella-zoster virus without any significant impact on cell viability. The leader compound was shown to be a weak inhibitor of the SARS-CoV-2 RNA-dependent RNA polymerase. It also inhibited biocondensate formation important for SARS-CoV-2 replication. The active compounds may be considered as a good starting point for further structure optimization and mechanistic and preclinical studies.


Assuntos
Nucleosídeos , Vírus de RNA , Humanos , Nucleosídeos/farmacologia , Nucleosídeos/química , Antivirais/farmacologia , Antivirais/química , RNA Viral , Pandemias , SARS-CoV-2 , DNA
10.
Molecules ; 28(20)2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37894522

RESUMO

Nucleoside analogs play a crucial role in the production of high-value antitumor and antimicrobial drugs. Currently, nucleoside analogs are mainly obtained through nucleic acid degradation, chemical synthesis, and biotransformation. However, these methods face several challenges, such as low concentration of the main product, the presence of complex matrices, and the generation of numerous by-products that significantly limit the development of new drugs and their pharmacological studies. Therefore, this work aims to summarize the universal separation methods of nucleoside analogs, including crystallization, high-performance liquid chromatography (HPLC), column chromatography, solvent extraction, and adsorption. The review also explores the application of molecular imprinting techniques (MITs) in enhancing the identification of the separation process. It compares existing studies reported on adsorbents of molecularly imprinted polymers (MIPs) for the separation of nucleoside analogs. The development of new methods for selective separation and purification of nucleosides is vital to improving the efficiency and quality of nucleoside production. It enables us to obtain nucleoside products that are essential for the development of antitumor and antiviral drugs. Additionally, these methods possess immense potential in the prevention and control of serious diseases, offering significant economic, social, and scientific benefits to the fields of environment, biomedical research, and clinical therapeutics.


Assuntos
Impressão Molecular , Nucleosídeos , Polímeros/química , Impressão Molecular/métodos , Polímeros Molecularmente Impressos , Cromatografia Líquida de Alta Pressão/métodos , Adsorção , Extração em Fase Sólida/métodos
11.
PNAS Nexus ; 2(9): pgad256, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37674858

RESUMO

Rubella is a highly contagious viral infection that usually causes a mild disease in children and adults. However, infection during pregnancy can result in a fetal or newborn death or congenital rubella syndrome (CRS), a constellation of permanent birth defects including cataracts, heart defects, and sensorineural deafness. The live-attenuated rubella vaccine has been highly effective, with the Americas declared free of endemic rubella transmission in 2015. However, rubella remains a significant problem worldwide and the leading cause of vaccine-preventable birth defects globally. Thus, elimination of rubella and CRS is a goal of the World Health Organization. No specific therapeutics are approved for the rubella virus. Therefore, we set out to identify whether existing small molecules may be repurposed for use against rubella virus infection. Thus, we performed a high-throughput screen for small molecules active against rubella virus in human respiratory cells and identified two nucleoside analogs, NM107 and AT-527, with potent antiviral activity. Furthermore, we found that combining these nucleoside analogs with inhibitors of host nucleoside biosynthesis had synergistic antiviral activity. These studies open the door to new potential approaches to treat rubella infections.

12.
Chem Asian J ; 18(17): e202300510, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37541298

RESUMO

Development of probe systems that provide unique spectral signatures for duplex, G-quadruplex (GQ) and i-motif (iM) structures is very important to understand the relative propensity of a G-rich-C-rich promoter region to form these structures. Here, we devise a platform using a combination of two environment-sensitive nucleoside analogs namely, 5-fluorobenzofuran-modified 2'-deoxyuridine (FBF-dU) and 5-fluoro-2'-deoxyuridine (F-dU) to study the structures adopted by a promoter region of the c-Myc oncogene. FBF-dU serves as a dual-purpose probe containing a fluorescent and 19 F NMR label. When incorporated into the C-rich sequence, it reports the formation of different iMs via changes in its fluorescence properties and 19 F signal. F-dU incorporated into the G-rich ON reports the formation of a GQ structure whose 19 F signal is clearly different from the signals obtained for iMs. Rewardingly, the labeled ONs when mixed with respective complementary strands allows us to determine the relative population of different structures formed by the c-Myc promoter by the virtue of the probe's ability to produce distinct and resolved 19 F signatures for different structures. Our results indicate that at physiological pH and temperature the c-Myc promoter forms duplex, random coil and GQ structures, and does not form an iM. Whereas at acidic pH, the mixture largely forms iM and GQ structures. Taken together, our system will complement existing tools and provide unprecedented insights on the population equilibrium and dynamics of nucleic acid structures under different conditions.

13.
Genes Dis ; 10(3): 1019-1028, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37396526

RESUMO

Little is known about the difference in durability of HBsAg seroclearance induced by nucleoside analogs (NAs) or by interferon (IFN). A real-world, retrospective cohort study was conducted. Patients were assigned into two groups: NAs monotherapy-induced HBsAg seroclearance subjects and IFN monotherapy induced-HBsAg seroclearance subjects. A total of 198 subjects, comprised by 168 NAs monotherapy-induced and 30 IFN monotherapy-induced, who achieved HBsAg seroclearance were included in this study. The one-year probabilities of confirmed HBsAg seroclearance were significantly different in patients with NAs monotherapy and IFN monotherapy (0.960 (with 95% CI 0.922-0.999) vs. 0.691 (with 95% CI 0.523-0.913), log-rank-P = 4.04e-4). 73.3% (11 of 15) HBsAg recurrence occurred within one year after HBsAg seroclearance. The one-year probabilities of confirmed HBsAg seroclearance were higher in IFN monotherapy patients with anti-HBs than in IFN monotherapy patients without anti-HBs (0.839 (with 95% CI 0.657-1.000) vs. 0.489 (with 95% CI 0.251-0.953), log-rank test, P = 0.024). Our study thus provided novel insights into the durability of HBsAg seroclearance induced by NAs or IFN monotherapy. In particular, the HBsAg seroreversion rate was relatively high in IFN monotherapy subjects. The presence of anti-HBs was significantly correlated with a longer durability of functional cure induced by IFN treatment. And one-year follow-up in HBsAg seroclearance achieved individuals is proper for averting HBsAg seroreversion and other liver disease.

14.
Viruses ; 15(6)2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37376614

RESUMO

Herpes simplex virus-1 (HSV-1) and -2 (HSV-2) are large, spherically shaped, double-stranded DNA viruses that coevolved with Homo sapiens for over 300,000 years, having developed numerous immunoevasive mechanisms to survive the lifetime of their human host. Although in the continued absence of an acceptable prophylactic and therapeutic vaccine, approved pharmacologics (e.g., nucleoside analogs) hold benefit against viral outbreaks, while resistance and toxicity limit their universal application. Against these shortcomings, there is a long history of proven and unproven home remedies. With the breadth of purported alternative therapies, patients are exposed to risk of harm without proper information. Here, we examined the shortcomings of the current gold standard HSV therapy, acyclovir, and described several natural products that demonstrated promise in controlling HSV infection, including lemon balm, lysine, propolis, vitamin E, and zinc, while arginine, cannabis, and many other recreational drugs are detrimental. Based on this literature, we offered recommendations regarding the use of such natural products and their further investigation.


Assuntos
Produtos Biológicos , Herpes Simples , Herpesvirus Humano 1 , Humanos , Antivirais/uso terapêutico , Aciclovir/uso terapêutico , Herpes Simples/tratamento farmacológico , Herpesvirus Humano 2 , Produtos Biológicos/uso terapêutico
15.
Int J Mol Sci ; 24(10)2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37240213

RESUMO

Since the beginning of the COVID-19 pandemic, the scientific community has focused on prophylactic vaccine development. In parallel, the experience of the pharmacotherapy of this disease has increased. Due to the declining protective capacity of vaccines against new strains, as well as increased knowledge about the structure and biology of the pathogen, control of the disease has shifted to the focus of antiviral drug development over the past year. Clinical data on safety and efficacy of antivirals acting at various stages of the virus life cycle has been published. In this review, we summarize mechanisms and clinical efficacy of antiviral therapy of COVID-19 with drugs based on plasma of convalescents, monoclonal antibodies, interferons, fusion inhibitors, nucleoside analogs, and protease inhibitors. The current status of the drugs described is also summarized in relation to the official clinical guidelines for the treatment of COVID-19. In addition, here we describe innovative drugs whose antiviral effect is provided by antisense oligonucleotides targeting the SARS-CoV-2 genome. Analysis of laboratory and clinical data suggests that current antivirals successfully combat broad spectra of emerging strains of SARS-CoV-2 providing reliable defense against COVID-19.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Pandemias/prevenção & controle , Antivirais/farmacologia , Antivirais/uso terapêutico , Interferons/uso terapêutico
16.
Ter Arkh ; 95(1): 85-89, 2023 Feb 24.
Artigo em Russo | MEDLINE | ID: mdl-37167119

RESUMO

Dengue fever is classified as one of the most common viral diseases with a transmission mechanism implemented through arthropod vectors. The expansion of of the Aedes aegypti mosquito is leading to a significant increase in the number of cases of dengue fever in more than 100 countries, highlighting the importance of developing and implementing specific prevention and treatment measures. Etiotropic drugs with proven efficacy against the pathogen are not registered, and the use of the vaccine is approved only among seropositive individuals. In this regard, pathogenetic treatment remains the main therapeutic strategy, however, work on the synthesis of antiviral drugs is being actively carried out. Due to the unique functions of non-structural proteins NS3 and NS5 in the viral replication cycle, they have become the main targets for studying the antiviral activity of a number of chemotherapy drugs. Of these proteins, due to the most conserved structure, the NS5 protein is a promising target for inhibition, however, success in obtaining a clinical effect using a number of available antiviral drugs has not been reached. This study describes the positive experience of using the nucleoside analogue riamilovir in the treatment of a patient with dengue fever in the Republic of Guinea.


Assuntos
Vírus da Dengue , Dengue , Animais , Humanos , Vírus da Dengue/fisiologia , Replicação Viral , Antivirais/farmacologia , Antivirais/uso terapêutico , Guiné , Mosquitos Vetores , Dengue/tratamento farmacológico
17.
Methods Mol Biol ; 2660: 95-121, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37191793

RESUMO

Nucleoside analogs (NAs) are an established class of anticancer agents being used clinically for the treatment of diverse cancers, either as monotherapy or in combination with other established anticancer or pharmacological agents. To date, nearly a dozen anticancer NAs are approved by the FDA, and several novel NAs are being tested in preclinical and clinical trials for future applications. However, improper delivery of NAs into tumor cells because of alterations in expression of one or more drug carrier proteins (e.g., solute carrier (SLC) transporters) within tumor cells or cells surrounding the tumor microenvironment stands as one of the primary reasons for therapeutic drug resistance. The combination of tissue microarray (TMA) and multiplexed immunohistochemistry (IHC) is an advanced, high-throughput approach over conventional IHC that enables researchers to effectively investigate alterations to numerous such chemosensitivity determinants simultaneously in hundreds of tumor tissues derived from patients. In this chapter, taking an example of a TMA from pancreatic cancer patients treated with gemcitabine (a NA chemotherapeutic agent), we describe the step-by-step procedure of performing multiplexed IHC, imaging of TMA slides, and quantification of expression of some relevant markers in these tissue sections as optimized in our laboratory and discuss considerations while designing and carrying out this experiment.


Assuntos
Antineoplásicos , Transporte Biológico , Resistencia a Medicamentos Antineoplásicos , Gencitabina , Imuno-Histoquímica , Nucleosídeos , Análise Serial de Tecidos , Humanos , Anticorpos , Antineoplásicos/metabolismo , Antineoplásicos/uso terapêutico , Fluorescência , Gencitabina/metabolismo , Gencitabina/uso terapêutico , Imuno-Histoquímica/métodos , Nucleosídeos/análogos & derivados , Nucleosídeos/metabolismo , Nucleosídeos/uso terapêutico , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Inclusão em Parafina , Análise Serial de Tecidos/métodos , Fixação de Tecidos
18.
Virus Res ; 329: 199094, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36933835

RESUMO

Cellular senescence is a cellular state with a broad spectrum of age-related physiological conditions that can be affected by various infectious diseases and treatments. Therapy of hepatitis B virus (HBV) infection with nucleos(t)ide analogs [NA(s)] is well established and benefits many HBV-infected patients, but requires long-term, perhaps lifelong, medication. In addition to the effects of HBV infection, the effects of NA administration on hepatocellular senescence are still unclear. This study investigated how HBV infection and NA treatment influence cellular senescence in human hepatocytes and humanized-liver chimeric mice chronically infected with live HBV. HBV infection upregulates or downregulates multiple cellular markers including senescence-associated ß-galactosidase (SA-ß-Gal) activity and cell cycle regulatory proteins (e.g., p21CIP1) expression level in hepatocellular nuclei and humanized-mice liver. A novel highly potent anti-HBV NA, E-CFCP, per se did not have significant disturbance on markers evaluated. Besides, E-CFCP treatment restored HBV-infected cells to their physiological phenotypes that are comparable to the HBV-uninfected cells. The results reported here demonstrate that, regardless of the mechanism(s), chronic HBV infection perturbates multiple senescence-associated markers in human hepatocytes and humanized-mice liver, but E-CFCP can restore this phenomenon.


Assuntos
Hepatite B Crônica , Hepatite B , Humanos , Camundongos , Animais , Vírus da Hepatite B/genética , Hepatócitos , Hepatite B/tratamento farmacológico , Hepatite B/metabolismo
19.
Molecules ; 28(4)2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36838506

RESUMO

The natural chemical modifications of messenger RNA (mRNA) in living organisms have shown essential roles in both physiology and pathology. The mapping of mRNA modifications is critical for interpreting their biological functions. In another dimension, the synthesized nucleoside analogs can enable chemical labeling of cellular mRNA through a metabolic pathway, which facilitates the study of RNA dynamics in a pulse-chase manner. In this regard, the sequencing tools for mapping both natural modifications and nucleoside tags on mRNA at single base resolution are highly necessary. In this work, we review the progress of chemical sequencing technology for determining both a variety of naturally occurring base modifications mainly on mRNA and a few on transfer RNA and metabolically incorporated artificial base analogs on mRNA, and further discuss the problems and prospects in the field.


Assuntos
Nucleosídeos , RNA , Nucleosídeos/metabolismo , RNA Mensageiro/genética , RNA/metabolismo , Processamento Pós-Transcricional do RNA , Mutação
20.
Artigo em Inglês | MEDLINE | ID: mdl-35929908

RESUMO

We report the synthesis and cytotoxicity in MCF-7 and MDA-MB-231 breast cancer cells of novel 1,2,3- and 1,2,4-triazolyl analogs of ribavirin. We modified ribavirin's carboxamide moiety to test the effects of lipophilic groups. 1-ß-D-Ribofuranosyl-1H-1,2,3-triazoles were prepared using Click Chemistry, whereas an unprecedented application of a prior 1,2,4-triazole ring synthesis was used for 1-ß-D-ribofuranosyl-1H-1,2,4-triazole analogs. Though cytotoxicity was mediocre and there was no correlation with lipophilicity, we discovered that a structurally similar concentrative nucleoside transporter 2 (CNT2) inhibitor was modestly cytotoxic (MCF-7 IC50 of 42 µM). These syntheses could be used to efficiently investigate variation in the nucleobase.


Assuntos
Antineoplásicos , Neoplasias da Mama , Humanos , Feminino , Ribavirina , Células MCF-7 , Amidas , Antineoplásicos/farmacologia , Triazóis , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...