Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.999
Filtrar
1.
Sci Rep ; 14(1): 15092, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956160

RESUMO

This study investigates the deformation and damage characteristics of the surrounding rock along the top return mining roadway of an isolated island working face at different stages and reveals its damage mechanism and evolution law. Utilizing a mine in Yangquan City, Shanxi Province, China, as the engineering background, this research employs FLAC 3D numerical simulation and on-site measurements. The findings suggest that the evolution of the plastic zone along the top roadway of the 15,106 island face is largely similar during both the excavation and mining periods. The plastic zones on either side of the roadway are expanding asymmetrically and gradually merging into the plastic zone of the coal pillar. In the destructive stage, the sub-gangs of the roadway are penetrated, indicating the progression into the plastic zone. The investigation points to extensive damage on the larger side of the roadway, the development of fissures, and the significant depth of damage as primary causes of roadway deformation. Moreover, the extent of the plastic zones on both sides of the roadway correlates positively with their relative distance. Continuous monitoring reveals an ongoing increase in roadway displacement, consistent with general observations in coal mining. The results provide valuable insights for optimizing support structures in similar mining environments.

2.
Sci Rep ; 14(1): 15766, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982175

RESUMO

Mining stress induces deformation and fracture of the overlaying rock, which will result in water filling the separation layer if the aquifer finds access to abscission space along the fracture channels. Accurate detection is crucial to prevent water hazards induced by water-bearing fractures. The 3-D time-domain finite-difference method with Yee's grid was adopted to calculate full-space transient electromagnetic response; meanwhile, a typical geologic and geophysical model with a water-bearing block in an separation layer was built according to regional tectonics and stratigraphic developments. By using numerical simulation, the induced voltage and apparent resistivity for both vertical and horizontal components were acquired, and then an approximate inversion was carried out based on the "smoke ring" theory. The results indicate that the diffusion velocity of induced voltage is significantly affected by the water-bearing body in the fracture, and the horizontal velocity of induced voltage is lower than the vertical one. The induced voltage curves indicate that the horizontal response to an anomaly body is stronger than the vertical one, leading to a high apparent resistivity resolution of conductivity contrast and separation layer boundary in the horizontal direction. The results of 3-D simulation making use of a measured data model also demonstrate that the horizontal component of apparent resistivity can reflect the electrical structure in a better way; however, its ability to recognize the concealed and fine conductor is rather weak. Accordingly, the observation method or numerical interpolation method needs to be further improved for data processing and interpretation.

3.
Sci Rep ; 14(1): 15795, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982275

RESUMO

To address the design challenge of the rock-socketed piles posed by the void located below the pile tip, the physical laboratory model tests were designed and performed to simulate rock socketed piles using similar materials. The study investigates the behavior of the single pile under axial loading with the void located at varying distances from the pile tip. Through multi-level load tests, the variations of unit pile side friction, pile tip resistance, pile axial force and pile settlement are obtained for different positions of the void from the pile tip, as well as after grouting. Its comparison to the rock-socketed pile without void is performed as a reference to quantify the reduction in its bearing capacity. The results are presented in the form of graphs for different void positions and its grouting shows the influence on pile bearing capacity and emphasizes the importance of its detailed cautious investigation and introduction in the analysis. The 2D finite element modeling of the model pile-the void based on ABAQUS is performed to further investigate the influence of the void below pile tip on the bearing capacity of model pile, applying the Mohr Coulomb model as the constitutive model of rock mass behavior. The critical distance of the void below the pile tip is determined.

4.
Sci Rep ; 14(1): 15990, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987296

RESUMO

In this work, we studied the near-surface flow field structure of railway bridges with different heights through field investigation and wind tunnel simulation experiments. Meanwhile, we simulated the distribution of sand accumulation around a bridge via CFD software based on the sand accumulation around the Basuoqu bridge in the Cuona Lake section of the Qinghai-Tibet Railway. Results show that the sand around this railway bridge is mainly from the lake sediment on the west side of the railway and the weathered detritus on the east side. The height of the railway bridge in the sandy area affects the distribution of the near-surface flow field and the variation in speed on both sides of the bridge. The wind speed trough on both sides of the 6 m high bridge is higher, and the horizontal distance between the wind speed trough and the bridge section is 1.5 times that of the 3 m high bridge. Wind speed attenuates in a certain range on the windward and leeward sides of the bridge, forming an aeolian area; under the beam body, it is affected by the narrow tube effect, forming a wind erosion area. The height of the bridge determines its sand transport capacity. Under certain wind conditions, the overhead area at the bottom of the 3 m high bridge and its two sides do not have the sand transport capacity, so sand accumulates easily. Nevertheless, the sand accumulation phenomenon gradually disappears with the increase in bridge clearance height. The objectives of this study are to reveal the formation mechanism of sand damage for railway bridges, provide theoretical support for the scientific design of railway bridges in sandy areas, and formulate reasonable railway sand prevention measures to ensure the safety of railway running, which have certain theoretical significance and practical value.

5.
Ultrason Sonochem ; 108: 106982, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38981340

RESUMO

SBS (styrene-butadiene-styrene block copolymer) is currently the most widely used asphalt modifier, and SBS modified asphalt is usually prepared by high-speed shearing. This paper combines the cavitation effect of ultrasonic to assist in the preparation of SBS modified asphalt, and conducts numerical simulation and rheological properties research on the cavitation bubbles in the molten SBS modified asphalt fluid. The cavitation bubbles in the modified asphalt fluid will expand and contract as the pressure changes inside and outside the bubbles. When the cavitation bubble is compressed to the minimum and the pressure inside the bubble reaches 1.94 × 105Pa, the direction of the velocity vector near the cavitation bubble will change with the expansion and compression of the bubble. The expansion-contraction process of a single cavitation bubble can release 6.41 × 10-7J of energy, thus breaking the long bonds in asphalt and generating a large number of free radicals react with the unsaturated C = C bonds in the SBS molecules. According to the preparation process of modified asphalt, the influence of ultrasonic wave on rheological property of modified asphalt was studied through experiments. The results show that ultrasonic treatment can enhance the elasticity of asphalt and improve the temperature sensitivity of asphalt. With the increase of ultrasonic treatment time, the anti-rutting deformation ability of SBS modified asphalt is greatly improved. At the same temperature, the recovery rate of asphalt also increases with the increase of ultrasonic treatment time, and the non-recoverable compliance (Jnr) decreases Combined with the numerical simulation of cavitation bubbles, the ultrasonic process is added to asphalt production, which is of great significance for the green production of modified asphalt and the improvement of the rheological properties of modified asphalt.

6.
ACS Nano ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38976792

RESUMO

Hybrid-dimensional heterojunction transistor (HDHT) photodetectors (PDs) have achieved high responsivities but unfortunately are still with unacceptably slow response speeds. Here, we propose a MASnI3/MoS2 HDHT PD, which exhibits the possibility to obtain high responsivity and fast response simultaneously. By exploring the detailed photoelectric responses utilizing a precise optoelectronic coupling simulation, the electrical performance of the device is optimally manipulated and the underlying physical mechanisms are carefully clarified. Particularly, the influence and modulation characteristics of the trap effects on the carrier dynamics of the PDs are investigated. We find that the localized trap effect in perovskite, especially at its top surface, is primarily responsible for the high responsivity and long response time; moreover, it is normally hard to break such a responsivity-speed trade-off due to the inherent limitation of the trap effect. By synergistically coupling the photogating effect, trap effect, and gate regulation, we indicate that it is possible to achieve an enhancement of the responsivity-bandwidth product by about 3 orders of magnitude. This study facilitates a fine modulation of the responsivity-speed relationship of hybrid-dimensional PDs, enabling breaking the traditional responsivity-speed trade-off of many PDs.

7.
J Biomech ; 172: 112214, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38991421

RESUMO

Unruptured intracranial aneurysms are common in the general population, and many uncertainties remain when predicting rupture risks and treatment outcomes. One of the cutting-edge tools used to investigate this condition is computational fluid dynamics (CFD). However, CFD is not yet mature enough to guide the clinical management of this disease. In addition, recent studies have reported significant flow instabilities when refined numerical methods are used. Questions remain as to how to properly simulate and evaluate this flow, and whether these instabilities are really turbulence. The purpose of the present study is to evaluate the impact of the simulation setup on the results and investigate the occurrence of turbulence in a cerebral artery with an aneurysm. For this purpose, direct numerical simulations were performed with up to 200 cardiac cycles and with data sampling rates of up to 100,000 times per cardiac cycle. Through phase-averaging or triple decomposition, the contributions of turbulence and of laminar pulsatile waves to the velocity, pressure and wall shear stress fluctuations were distinguished. For example, the commonly used oscillatory shear index was found to be closely related to the laminar waves introduced at the inlet, rather than turbulence. The turbulence energy cascade was evaluated through energy spectrum estimates, revealing that, despite the low flow rates and Reynolds number, the flow is turbulent near the aneurysm. Phase-averaging was shown to be an approach that can help researchers better understand this flow, although the results are highly dependent on simulation setup and post-processing choices.

8.
Sci Rep ; 14(1): 16046, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992235

RESUMO

With the shift of coal seam mining to the deep, the in-situ stress of coal and rock mass increases gradually. High ground stress can limit the generation of rock cracks caused by blasting, and blasting usually shows different crushing states than low stress conditions. In order to study the blasting expansion rule of rock mass with cavity under high ground stress and the rock mass fracture state under different side stress coefficients. In this paper, the effective range of blasting and the stress distribution under blasting load are analyzed theoretically. The RHT (Riedel-Hiermaier-Thoma) model is used to numerically simulate the blasting process of rock mass with cavity under different ground stress, and the influence of ground stress and lateral pressure coefficient on the crack growth of rock mass is studied. The results show that when there is no ground stress, the damage cracks in rock mass are more concentrated in the horizontal direction and the fracture development tends to the direction where the holes are located, which confirms the guiding effect and stress concentration effect of the holes in rock mass, which helps to promote the crack penetration between the hole and the hole. The length difference of horizontal and vertical damage cracks in rock mass increases with the increase of horizontal and vertical stress difference. Under the same lateral stress coefficient, the larger the horizontal and vertical stress difference is, the stronger the inhibition effect on crack formation is. For blasting of rock mass with high ground stress, the crack formation length between gun holes decreases with the increase of stress level, and the crack extends preferentially in the direction of higher stress. Therefore, the placement of gun holes along the direction of greater stress and the shortening of hole spacing are conducive to the penetration of cracks between gun holes and empty holes. The research can provide reference for rock breaking behavior of deep rock mass blasting.

9.
Int J Pharm ; : 124408, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38969264

RESUMO

This paper presents a numerical investigation to understand the transport and deposition of sprays emitted by an impinging-jet inhaler in the human respiratory tract under different inhalation flow rates. An injection model is used for the numerical simulations considering the spreading angles of the spray in the two directions, which are measured from experiments. The model parameter is adjusted to match the mean droplet size measured in the previous experiment. A time-varying sinusoidal inhalation flow rate is utilized as airflow conditions, which is closer to the actual situation when using an inhaler. The results demonstrate that the inhalation airflow rate significantly affects the spray's transport behavior and deposition results in the respiratory tract. Both excessively high and low inhalation flow rates lead to an increase in deposition in the mouth-throat. A moderate inhalation flow rate reduces throat deposition while maximizing lung deposition. Higher inhalation flow rates enable faster delivery of the droplets to the lungs, whereas lower inhalation flow rates achieve a more uniform deposition over time in the lungs. The amount of deposition in different parts of the lung lobes follows a fixed order. This study provides valuable insights for optimizing the inhalation flow rate conditions of the impinging-jet inhaler for clinical applications.

10.
Sci Rep ; 14(1): 15301, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961173

RESUMO

Under the condition that the working face was directly covered with hard roof, the abrupt breaking of hard roof release significant amount of energy, thus prone to triggering dynamic disasters such as roadway instability or rockburst. This paper based on the engineering background of the Xieqiao Coal Mine's 11,618 working face, a numerical simulation method was put forward to study the dynamic response of roadway under the disturbance of hard roof breaking and proposed an evaluation index IC for roadway stability. Research indicates that the elastic energy released during the periodic weighting of the hard roof is higher than that released during the first weighting. Under the dynamic disturbance caused by hard roof breaking, the peak stresses of the roadway was slight decreased, accompanied by a significant increase in the range of stress concentration and plastic zone expansion. Roadway deformation patterns are significantly influenced by hard roof breaking, with noticeable increases in deformation on the roof and right side. During the period of hard roof breaking, the possibility of instability of the roadway increase significantly due to the disturbance caused by the dynamic load. The research results reveal the instability mechanism of roadway under the condition of hard roof, and provide a more reliable basis for evaluating the stability of roadway.

11.
Materials (Basel) ; 17(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38893891

RESUMO

Hydraulic asphalt concrete is known for its excellent seepage control performance and strong deformation resistance. This engineering material has widespread applications in the seepage control structures of hydraulic buildings. Recent projects have investigated the use of acidic aggregates to improve economic efficiency. However, they have also highlighted the weaker adhesion between acidic aggregates and asphalt, which necessitates stringent construction process control. This study investigates the impact of resting conditions on the tensile properties of acidic aggregate hydraulic asphalt concrete. The results of the tensile testing indicate that the storage time significantly affects the performance of asphalt concrete. The tensile strength of the specimens without anti-stripping agents decreased from 1.711 MPa to 0.914 MPa after resting periods of 0, 10, 20, and 30 days. The specimens treated with anti-stripping agents also showed a decrease in tensile strength over time, similar to the trend observed in the previous specimens. Digital specimen simulations indicated a decrease in cohesion between the asphalt and the aggregate from 5.375 MPa to 2.664 MPa after 30 days, representing a reduction of 50.44%. To counteract the effect of the storage time on the bonding between acidic aggregates and asphalt, this study recommends reducing the grading index and maximum size of aggregates, decreasing the coarse aggregate content, and selecting smooth aggregate shapes.

12.
Materials (Basel) ; 17(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38893895

RESUMO

A Q345 steel butt-welded joint was manufactured using laser-arc hybrid welding (LAHW) technology, and its microstructure, microhardness, and residual stress (RS) distribution were measured. Using ABAQUS software, a sequentially coupled thermo-metallurgical-mechanical finite element method was employed to model the welding RS distribution in the LAHW joint made of Q345 steel. The effects of solid-state phase transformation (SSPT) and transverse restraint on the welding RS distribution were explored. The results show that a large number of martensite phase transformations occurred in the fusion zone and heat-affected zone of the LAHW joint. Furthermore, the SSPT had a significant effect on the magnitude and distribution of RS in the LAHW joint made of Q345 steel, which must be taken into account in numerical simulations. Transverse restraints markedly increased the transverse RS on the upper surface, with a comparatively minor impact on the longitudinal RS distribution. After the transverse restraint was released, both the longitudinal and transverse RS distributions in the LAHW joint reverted to a level akin to that of the welded joint under free conditions.

13.
Materials (Basel) ; 17(11)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38893986

RESUMO

Secondary cooling electromagnetic stirring (S-EMS) significantly impacts the internal quality of continuous casting slabs. In order to investigate the effects of S-EMS modes on segregation in slabs, a three-dimensional numerical model of the full-scale flow field, solidification, and mass transfer was established. A comparative analysis was conducted between continuous electromagnetic stirring and alternate stirring modes regarding their impacts on steel flow, solidification, and carbon segregation. The results indicated that adopting the alternate stirring mode was more advantageous for achieving uniform flow fields and reducing the disparity in solidification endpoints, thus mitigating carbon segregation. Specifically, the central carbon segregation index under continuous stirring at 320 A was 1.236, with an average of 1.247, while under alternate stirring, the central carbon segregation index decreased to 1.222 with an average of 1.227.

14.
Sci Rep ; 14(1): 13933, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886517

RESUMO

To address the measurement accuracy challenges posed by the internal flow complexity in atypical circular bend pipes with short turning sections and without extended straight pipe segments, this study designed an experimental circular "S"-shaped bent pipe with a diameter of 0.4 m and a bending angle of 135°. Numerical analysis was used to determine the stable region for velocity distribution within the experimental segment. Furthermore, a novel evaluation method based on the coefficient of variation was proposed to accurately locate the optimal position for installing thermal mass flow meters on the test cross section. Additionally, a formula for calculating the pipeline flow rate based on velocity differences was derived. This formula considers pipeline flow as the dependent variable and uses the velocity at two points in the test cross section as the independent variable. Experimental validation on a primary standard test bench demonstrated that the flow rate calculated by this method had an error controlled within 0.625% compared to the standard flow rate, thus effectively verifying the method's high accuracy and engineering applicability. This research provides a new testing methodology and practical basis for flow measurement in complex pipeline systems, offering significant guidance for research and applications in related fields.

15.
Polymers (Basel) ; 16(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38891487

RESUMO

This article proposes a numerical routine to predict the residual stresses developing in an epoxy component during its curing. The scaling of viscoelastic properties with the temperature and the degree of conversion is modeled, adopting a mathematical formulation that considers the concurrent effects of curing and structural relaxation on the epoxy's viscoelastic relaxation time. The procedure comprises two moduli: at first, the thermal-kinetical problem is solved using the thermal module of Ansys and a homemade routine written in APDL, then the results in terms of temperature and the degree of conversion profiles are used to evaluate the viscoelastic functions, and the structural problem is solved in the mechanical module of Ansys, allowing the residual stresses calculation. The results show that the residual stresses mainly arise during cooling and scale with the logarithm of the Biot number.

16.
Polymers (Basel) ; 16(11)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38891525

RESUMO

Rubber concrete has been applied to a certain extent in fatigue-resistant structures due to its good durability. Based on a cohesive model of rubber composed of a five-phase material containing mortar, aggregate, rubber, aggregate-mortar interfacial transition zone (ITZ), and rubber-mortar ITZ, this paper studies the influence of the cohesive parameters in the rubber-mortar ITZ on the fatigue problem of rubber concrete on the mesoscopic scale. As the weak part of cement-based composite materials, the ITZ has a great influence on the mechanical properties and durability of concrete, but the performance of the ITZ is difficult to test in macro experiments, resulting in difficulties in determining its simulation parameters. Based on the cohesive model with a rubber content of 5%, this study uses Monofactor analysis and the Plackett-Burman test to quickly and effectively determine the primary and secondary influences of the cohesive model parameters in the rubber-mortar ITZ; further, the response surface method is used to optimize the cohesive parameters in the rubber-mortar ITZ, and the numerical simulation results after optimizing the cohesive parameters are compared and analyzed with the simulation results before optimization. The results show that, under the setting of the optimized parameters, the simulation results of each item of the optimal cohesive model parameters in the rubber-mortar ITZ are in line with the reality and closer to the experimental data, and they are also applicable to rubber concrete models with different rubber dosing.

17.
Sci Rep ; 14(1): 14131, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898131

RESUMO

To study the influence of pits on shock wave propagation and the propagation of shock waves within pits, numerical simulations were used to calculate the distribution of overpressure peak values at the bottom and rear of the pits at 5 depths and 5 explosion center distances. The results indicate that diffraction occurs when the explosion shock wave passes through the edge of the crater; The peak overpressure of the shock wave at the bottom of the pit exhibits a "spoon shaped" distribution, and the peak overpressure on the right side is significantly higher than that on the left side; There are two distinct boundary regions for the overpressure of the shock wave behind the crater due to the influence of the crater; The distance between the explosion centers has little effect on the distribution trend of the overpressure peak of the shock wave at the bottom and rear of the pit, mainly affecting the magnitude of the overpressure peak. The research results provide theoretical support for the analysis of the propagation law of explosion shock waves and guidance for the design of protective engineering structures, with significant engineering application value.

18.
Front Nutr ; 11: 1382296, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38835959

RESUMO

A new dryer, integrating infrared and heat pump drying technologies, was designed to enhance licorice processing standardization, aiming at improved drying efficiency and product quality. Numerical simulation using COMSOL software validated the air distribution model through prototype data comparison. To address uneven air distribution, a spoiler was strategically placed based on CFD simulation to optimize its size and position using the velocity deviation ratio and non-uniformity coefficient as indices. Post-optimization, the average velocity deviation ratio decreased from 0.5124 to 0.2565%, and the non-uniformity coefficient dropped from 0.5913 to 0.3152, achieving a more uniform flow field in the drying chamber. Testing the optimized dryer on licorice demonstrated significant improvements in flow field uniformity, reducing licorice drying time by 23.8%. Additionally, optimized drying enhanced licorice color (higher L* value) and increased retention rates of total phenol, total flavone, and vitamin C. This research holds substantial importance for advancing licorice primary processing, fostering efficiency, and improving product quality.

19.
Sci Prog ; 107(2): 368504241260268, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38836302

RESUMO

The bearing and deformation characteristics of monopile foundation under the monotonic and cyclic loads are key factors to consider in the design of the transmission tower structure or offshore wind energy converters. The model tests and numerical simulations of monopile foundation under monotonic and cyclic horizontal loads were performed in sand to explore the bearing characteristics and the deformation characteristics of pile. The potentially affected factors including loading height, relative density of soil, displacement amplitude were analyzed. The results show that with the loading height varies from 1D to 4D, the horizontal static bearing capacity of the pile under different the soil relative density decreased by 1.63-1.9 times, and the peak bending moment increased by 22.9%-36.8%. Under the cyclic loads, the peak load on the pile top increased by 31.7%-56.1% for each 1 mm increase in displacement amplitude. The stiffness of soil around pile varies as the number of cycles increases with the development trend of decreases first and then increases gradually. As the horizontal load and cycle number increase, the range of the displacement of soil extends towards the bottom of pile, until it covers the entire lower part of the model.

20.
Sci Rep ; 14(1): 13423, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862618

RESUMO

To effectively control the dust generated by coal mining operations, a new type of cyclonic pneumatic mist curtain dust control device was developed. Using CFD software, numerical simulations were conducted on the internal airflow velocity field, the exit velocity of the cyclonic pneumatic mist curtain, and the mist droplet particle field of the curtain. Experiments were carried out to measure the spray coverage, droplet size, and the dust control performance of the model device. The results indicate that when the water pump supply pressure is 8 MPa, the fan supply wind speed is 12 m/s, and the nozzle installation angle is 75 degrees, the cyclonic pneumatic mist curtain dust control device model operates under optimal conditions. The effective coverage of the cyclonic mist curtain is 380 × 3300 mm, fully suppressing dust generation on one side of the curtain. An optimal dust removal distance of about 90 cm was determined. After installing the cyclonic pneumatic mist curtain dust control device, the average dust reduction efficiency for respirable dust reached 91.07%, and the overall dust reduction efficiency achieved 93.34%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...