Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 319
Filtrar
1.
Sci Rep ; 14(1): 15626, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38972933

RESUMO

Reservoir simulation is crucial for understanding the flow response in underground reservoirs, and it significantly helps reduce uncertainties in geological characterization and optimize methodologies for field development strategies. However, providing efficient and accurate solutions for the strong heterogeneity remains challenging, as most of the discretization methods cannot handle this complexity. In this work, we perform a comprehensive assessment of various numerical linearization techniques employed in reservoir simulation, particularly focusing on the performance of the nonlinear solver for problem dealing with fluid flow in porous media. The primary linearization methods examined are finite difference central (FDC), finite forward difference (FDF), and operator-based linearization (OBL). These methods are rigorously analyzed and compared in terms of their accuracy, computational efficiency, and adaptability to changing reservoir conditions. The results demonstrate that each method has distinct strengths and limitations. The FDC method is more accurate particularly in complex simulations where strong heterogeneity are introduced but is generally slower in convergence. The OBL on the other hand, is more efficient and converges quickly, which makes it suitable for scenarios with limited computational resources and simple physics, while the FDF method provides a balanced combination of precision and computational speed, contingent upon careful step size management of the derivative estimations. This paper aims to guide the selection of appropriate linearization techniques for enhancing nonlinear solvers' accuracy and efficiency in reservoir simulation .

2.
Front Bioeng Biotechnol ; 12: 1355617, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38846802

RESUMO

Gliding is a crucial phase in swimming, yet the understanding of fluid force and flow fields during gliding remains incomplete. This study analyzes gliding through Computational Fluid Dynamics simulations. Specifically, a numerical model based on the Smoothed Particle Hydrodynamics (SPH) method for flow-object interactions is established. Fluid motion is governed by continuity, Navier-Stokes, state, and displacement equations. Modified dynamic boundary particles are used to implement solid boundaries, and steady and uniform flows are generated with inflow and outflow conditions. The reliability of the SPH model is validated by replicating a documented laboratory experiment on a circular cylinder advancing steadily beneath a free surface. Reasonable agreement is observed between the numerical and experimental drag force and lift force. After the validation, the SPH model is employed to analyze the passive drag, vertical force, and pitching moment acting on a streamlined gliding 2D swimmer model as well as the surrounding velocity and vorticity fields, spanning gliding velocities from 1 m/s to 2.5 m/s, submergence depths from 0.2 m to 1 m, and attack angles from -10° to 10°. The results indicate that with the increasing gliding velocity, passive drag and pitching moment increase whereas vertical force decreases. The wake flow and free surface demonstrate signs of instability. Conversely, as the submergence depth increases, there is a decrease in passive drag and pitching moment, accompanied by an increase in vertical force. The undulation of the free surface and its interference in flow fields diminish. With the increase in the attack angle, passive drag and vertical force decrease whereas pitching moment increases, along with the alteration in wake direction and the increasing complexity of the free surface. These outcomes offer valuable insights into gliding dynamics, furnishing swimmers with a scientific basis for selecting appropriate submergence depth and attack angle.

3.
Sci Rep ; 14(1): 13814, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38877195

RESUMO

Precast Concrete Sandwich Panel (PCSP) is composed of concrete load-bearing panels, thermal insulation panels, and decorative panels, which are assembled through connectors, integrating load-bearing, thermal insulation, and decorative functions. The connector bears the main shear force between the wall panels, and the shear resistance and insulation performance of the connector largely determine the mechanical stability and insulation effect of the wall panels, which is a key component in PCSPs. The current common practice is to cross assemble stainless steel insulation (SSI) connectors and Glass-Fiber-Reinforced Plastic (GFRP) connectors into PCSPs, which can reduce building energy consumption and save resources while meeting strength and insulation requirements. A large-scale pull-out test on a PCSP with intersecting SSI-GFRP connectors was conducted in this paper. The damage process and damage pattern of PCSP were observed and the shear performance of SSI-GFRP connectors was analyzed. Secondly, a numerical analysis model of the test PCSP was built using ABAQUS finite element software and its validity was verified through the test data. In addition, parameters such as connector diameter, connector number ratio and concrete strength were analyzed for their effect on the shear performance of SSI-GFRP connectors and it was found that connector diameter and connector number ratio had a significant effect. Finally, it is found that there are some differences between the classical theory for calculating the shear performance of SSI-GFRP connectors and the actual results. A theoretical correction factor (ζ) is given to improve the accuracy of the calculation of the classical theory, and its influencing factors and changing rules are investigated.

4.
Sci Rep ; 14(1): 12211, 2024 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806568

RESUMO

This paper deals with the mathematical analysis of Tuberculosis by using fractal fractional operator. Mycobacterium TB is the bacteria that causes tuberculosis. This airborne illness mostly impacts the lungs but may extend to other body organs. When the infected individual coughs, sneezes or speaks, the bacterium gets released into the air and travels from one person to another. Five classes have been formulated to study the dynamics of this disease: susceptible class, infected of DS, infected of MDR, isolated class, and recovered class. To study the suggested fractal fractional model's wellposedness associated with existence results, and boundedness of solutions. Further, the invariant region of the considered model, positive solutions, equilibrium point, and reproduction number. One would typically employ a fractional calculus approach to obtain numerical solutions for the fractional order Tuberculosis model using the Adams-Bashforth-Moulton method. The fractional order derivatives in the model can be approximated using appropriate numerical schemes designed for fractional order differential equations.


Assuntos
Fractais , Mycobacterium tuberculosis , Tuberculose , Humanos , Tuberculose/microbiologia , Mycobacterium tuberculosis/patogenicidade , Modelos Teóricos , Modelos Biológicos , Algoritmos
5.
Heliyon ; 10(9): e30545, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38765077

RESUMO

Chinese yam production is thriving in Aomori Prefecture, a cold and snowy region in Japan. Recently, there has been an increasing risk of nitrogen leaching in Chinese-yam fields, which consist of sandy soil, due to localized torrential rain. The relationships between the type of fertilizer used for Chinese-yam cultivation, the amount of nitrogen (N) leaching, and the timing of leaching remain unknown. Therefore, this study aimed to fill this knowledge gap by investigating the effects of different fertilizers (fast-acting and/or slow-release fertilizer) and irrigation practices (conventional and/or excessive irrigation) in order to mitigate the detrimental impact of nitrogen leaching on groundwater quality. An enhanced mathematical model and the spatiotemporal dynamics of inorganic nitrogen concentration in soil pore water were evaluated the negative impact of nitrogen leaching on the groundwater environment was evaluated. The results showed that the combined use of slow-release fertilizers could significantly reduce nitrate-nitrogen concentration in soil-water, especially during the harvest season. This study demonstrated that cultivating Chinese yam with a fertilizer application system that includes the use of slow-release fertilizer can diminish the negative impact of nitrogen leaching on the groundwater environment, contributing to our understanding of sustainable agricultural practices in regions facing similar environmental challenges. Therefore, our findings represent an important advancement providing new approaches to maintaining productivity while mitigating the adverse impacts on groundwater environments, as well as offering guidelines for agricultural practices in regions facing similar environmental challenges.

6.
J Clin Monit Comput ; 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38733504

RESUMO

PURPOSE: This study introduces a method to non-invasively and automatically quantify respiratory muscle effort (Pmus) during mechanical ventilation (MV). The methodology hinges on numerically solving the respiratory system's equation of motion, utilizing measurements of airway pressure (Paw) and airflow (Faw). To evaluate the technique's effectiveness, Pmus was correlated with expected physiological responses. In volume-control (VC) mode, where tidal volume (VT) is pre-determined, Pmus is expected to be linked to Paw fluctuations. In contrast, during pressure-control (PC) mode, where Paw is held constant, Pmus should correlate with VT variations. METHODS: The study utilized data from 250 patients on invasive MV. The data included detailed recordings of Paw and Faw, sampled at 31.25 Hz and saved in 131.1-second epochs, each covering 34 to 41 breaths. The algorithm identified 51,268 epochs containing breaths on either VC or PC mode exclusively. In these epochs, Pmus and its pressure-time product (PmusPTP) were computed and correlated with Paw's pressure-time product (PawPTP) and VT, respectively. RESULTS: There was a strong correlation of PmusPTP with PawPTP in VC mode (R² = 0.91 [0.76, 0.96]; n = 17,648 epochs) and with VT in PC mode (R² = 0.88 [0.74, 0.94]; n = 33,620 epochs), confirming the hypothesis. As expected, negligible correlations were observed between PmusPTP and VT in VC mode (R² = 0.03) and between PmusPTP and PawPTP in PC mode (R² = 0.06). CONCLUSION: The study supports the feasibility of assessing respiratory effort during MV non-invasively through airway signal analysis. Further research is warranted to validate this method and investigate its clinical applications.

7.
Sci Rep ; 14(1): 12327, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811693

RESUMO

Precast concrete structures have developed rapidly because they meet the requirements of green and low-carbon social development. In this paper, a precast post-tensioned high-performance concrete frame beam-column joint was proposed, and the low-cycle reversed load test was performed on the four proposed joints. The main differences between the four joints are the different prestress values applied by the joints and whether the beam-column joint is provided with L-shaped steel. The seismic performance indexes such as hysteresis curve, stiffness degradation, deformation capacity, energy dissipation capacity and residual deformation of each node were obtained through experiments. By comparing various seismic performance indicators, it could be found that the use of high-performance concrete could effectively avoid the phenomenon of local crushing of concrete due to excessive prestressing. At the same time, it was found that the setting of L-shaped steel plate at the beam-column junction could effectively avoid the early damage at the beam-column junction. On the basis of the test, the three-line restoring force model of the joint was established by the method of experimental regression analysis. The model could better reflect the stress situation of each stage of the joint. Based on the experimental and theoretical analysis, the finite element analysis model of the joint was established, and the model calculation results were in good agreement with the experimental results.

8.
Heliyon ; 10(9): e30333, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38707334

RESUMO

Based on the significance of heat transfer in tubular flows, various methods of heat transfer enhancement have been developed by scholars. The use of turbulator inserts like twisted tapes is widely discussed and suggested by researchers, and many studies have concentrated on the positive influence of these devices. However, the question is whether these devices always positively impact heat transfer and fluid flow. In this study, efforts were made to find possible adverse impacts of using twisted tapes on the average Nusselt number (Nu), friction factor (f), flow behavior, and performance evaluation criterion (PEC) of water-titania nanofluid. Three-dimensional (3D) numerical methods were used to assess a combination of three different configurations of 156 cases with/without turbulators with different numbers of blades and pitch ratios (PR). Results suggest that at Reynolds number (Re) = 4000, 6000, and 8000, only 25 %, 25 %, and 22.9 % of the examined cases led to PEC values over 1. Based on the results, while twisted tapes raised the Nu by up to 65.1 %, the f can be increased by up to more than six times. Furthermore, streamlines and velocity magnitude contours were employed to discuss the fluid flow behavior in the presence of the turbulators. According to the findings, while with the best turbulator, the PEC value was increased by only 6.3 %, some of the turbulators reduced this parameter by up to 11.8 %, which is more severe. The worst performance was observed with the Case C (three-bladed) turbulator at a PR value of 11, which reduced the PEC by 11.8 %.

9.
Materials (Basel) ; 17(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38612095

RESUMO

Concrete sleepers in operation are commonly damaged by various internal and external factors, such as poor materials, manufacturing defects, poor construction, environmental factors, and repeated loads and driving characteristics of trains; these factors affect the vibration response, mode shape, and natural frequency of damaged concrete sleepers. However, current standards in South Korea require only a subjective visual inspection of concrete sleepers to determine the damage degree and necessity of repair or replacement. In this study, an impact hammer test was performed on concrete sleepers installed on the operating lines of urban railroads to assess the field applicability of the modal test method, with the results indicating that the natural frequency due to concrete sleeper damage was lower than that of the undamaged state. Furthermore, the discrepancy between the simulated and measured natural frequencies of the undamaged concrete sleeper was approximately 1.87%, validating the numerical analysis result. The natural frequency of the damaged concrete sleepers was lower than that of the undamaged concrete sleeper, and cracks in both the concrete sleeper core and the rail seat had the lowest natural frequency among all the damage categories. Therefore, the damage degrees of concrete sleepers can be quantitatively estimated using measured natural-frequency values.

10.
Biomedicines ; 12(4)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38672224

RESUMO

In this study, the authors analyzed modern resin materials typically used for temporary reconstructions on implants and manufactured via 3D printing. Three broadly used resins: NextDent Denture 3D, NextDent C&B MFH Bleach, and Graphy TC-80DP were selected for analysis and compared to currently used acrylic materials and ABS-like resin. In order to achieve this, mechanical tests were conducted, starting with the static tensile test PN-EN. After the mechanical tests, analysis of the chemical composition was performed and images of the SEM microstructure were taken. Moreover, numerical simulations were conducted to create numerical models of materials and compare the accuracy with the tensile test. The parameters obtained in the computational environment enabled more than 98% correspondence between numerical and experimental charts, which constitutes an important step towards the further development of numeric methods in dentistry and prosthodontics.

11.
Int J Implant Dent ; 10(1): 19, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656614

RESUMO

PURPOSE: Dental implants have been successfully implemented as a treatment for tooth loss. However, peri-implantitis, an inflammatory reaction owing to microbial deposition around the implant, can lead to implant failure. So, it is necessary to treat peri-implantitis. Therefore, this numerical study is aimed at investigating conditions for treating peri-implantitis. METHODS: Photothermal therapy, a laser treatment method, utilizes photothermal effect, in which light is converted to heat. This technique has advantage of selectively curing inflamed tissues by increasing their temperature. Accordingly, herein, photothermal effect on peri-implantitis is studied through numerical analysis with using Arrhenius damage integral and Arrhenius thermal damage ratio. RESULTS: Through numerical analysis on peri-implantitis treatment, we explored temperature changes under varied laser settings (laser power, radius, irradiation time). We obtained the temperature distribution on interface of artificial tooth root and inflammation and determined whether temperature exceeds or does not exceed 47℃ to know which laser power affects alveolar bone indirectly. We defined the Arrhenius thermal damage ratio as a variable and determined that the maximum laser power that does not exceed 47℃ at the AA' line is 1.0 W. Additionally, we found that the value of the Arrhenius thermal damage ratio is 0.26 for a laser irradiation time of 100 s and 0.50 for 500 s. CONCLUSION: The result of this numerical study indicates that the Arrhenius thermal damage ratio can be used as a standard for determining the treatment conditions to help assisted laser treatment for peri-implantitis in each numerical analysis scenario.


Assuntos
Peri-Implantite , Terapia Fototérmica , Peri-Implantite/terapia , Peri-Implantite/radioterapia , Humanos , Terapia Fototérmica/métodos , Temperatura , Implantes Dentários/efeitos adversos , Lasers
12.
Sensors (Basel) ; 24(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38610584

RESUMO

An efficient path integral (PI) model for the accurate analysis of curved dielectric structures on coarse grids via the two-dimensional nonstandard finite-difference time-domain (NS-FDTD) technique is introduced in this paper. In contrast to previous PI implementations of the perfectly electric conductor case, which accommodates orthogonal cells in the vicinity of curved surfaces, the novel PI model employs the occupation ratio of dielectrics in the necessary cells, providing thus a straightforward and instructive means to treat an assortment of practical applications. For its verification, the reflection from a flat plate and the scattering from a cylinder using the PI model are investigated. Results indicate that the featured methodology can enable the reliable and precise modeling of arbitrarily shaped dielectrics in the NS-FDTD algorithm on coarse grids.

13.
Polymers (Basel) ; 16(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38611231

RESUMO

In the micro-tube gas-assisted extrusion process, flow theories ignoring cross-scale viscoelastic variations fail to effectively characterize the rheological state of the melt. To investigate the impact of cross-scale viscoelastic variation on the quality of the micro-tube gas-assisted extrusion, a 3D multiphase flow extrusion model incorporating a double gas-assisted layer was developed. Subsequently, we modified the DCPP constitutive equations based on the cross-scale factor model. Both the traditional and gas-assisted extrusions were simulated under macroscale and cross-scale models using the Ansys Polyflow. Finally, using the established gas-assisted extrusion platform, extrusion experiments were conducted. The results indicate that, owing to the reduced melt viscosity under the cross-scale model, the deformation behavior of the melt is more pronounced than in the macroscale model. The cross-scale model's numerical results more closely match the experimental outcomes under the same parameters, thereby confirming the feasibility of the theoretical analysis and numerical simulation. Moreover, the predictive capability of the cross-scale model for the micro-tube gas-assisted extrusion is further validated through numerical and experimental analyses with varying parameters. It is demonstrated that the cross-scale viscoelastic variation is a critical factor that cannot be overlooked in the gas-assisted extrusion.

14.
Heliyon ; 10(5): e27180, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38495210

RESUMO

Buckwheat is a globally recognized, nutritionally rich crop with robust adaptability, serving as a multi-purpose plant for its health benefits. Achieving precise and mechanized plot seed harvesting is a critical step in obtaining accurate results in breeding experiments. However, plot breeding requires no seed retention, no mixing, and ensures no accumulation of seed in the threshing unit. A self-cleaning technology was developed to prevent seed retention, mixing, and accumulation in the multistage tangential cylinder threshing unit. The newly designed cleaning system has five air inlets and a centrifugal fan for pneumatic cleaning. CFD simulations were conducted for each inlet position, coupled with four varying inlet velocities and the rotation speed of the main threshing cylinder. During the post-processing stage of the CFD modeling, a line consisting of fifty points was drawn beneath the threshing drums, and the air velocity at these points was recorded. The optimal configuration of inlet position, inlet air velocity, and main threshing drum rotation speed for efficient cleaning was identified based on the ratio of points beneath the drums where the airflow speed surpassed the suspension speed of buckwheat to the points where the airflow speed was lower than the suspension speed of buckwheat. The optimal configuration for "inlet_1" was identified based on the suspension velocity of buckwheat grain, with an inlet velocity of 4 m/s and a main threshing drum speed of 450 rpm.

15.
Sci Rep ; 14(1): 7532, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553536

RESUMO

This study investigates the Tip Clearance Cavitation (TCC) characteristics of three different Tip Clearances (TC) (0.4, 0.6, 0.8) and five inlet negative pressure conditions Pj = (- 20-60)kPa to improve the reliability of the aerospace high-speed centrifugal pump during in-orbit operation, based on the premise of good agreement between the TC 0.6 test curve and the simulation performance curve. Under negative pressure and high-speed conditions, the variation gradient of cavitation characteristics with various inlet negative pressures is non-linear and has a sudden change, but the trend becomes stable after the inlet negative pressure drops to a certain stage. The tip clearance cavitation characteristics vary from the blade surface cavitation characteristics due to the difference in forces on both sides. This study is a proper starting point for the design of aerospace power pumps.

16.
Sci Rep ; 14(1): 6928, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519560

RESUMO

Longwall mining method is widely used for underground coal production in the world. Additional stresses occur surrounding the longwall during underground mining. Stresses occurring surrounding the longwall are investigated by many researchers for years. How these stresses affect longwall production, gob, main gate, tailgate and main haulage road has been always an important issue. In this study, the effect of the safety pillar left at the end of the panel on the main haulage road is investigated. For this purpose, 6 models with different pillar distances are created and the stresses occurring in the main haulage road, tailgate and main gate at different pillar distances are examined. It has been demonstrated with numerical models that the optimum pillar distance according to these stress conditions does not damage the main haulage road, tailgate and main gate. In addition, the pillar distance of 10 m gives maximum coal recovery efficiency, and it has been shown by numerical models that the stresses occurring in the main haulage road, main gate and tailgate are not damaging to these galleries.

17.
Sci Rep ; 14(1): 6909, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519594

RESUMO

Layered rock slope exists widely. Because of its special slope structure, it is prone to bending deformation and toppling failure, which is a serious threat to engineering construction and safety operation. At present, the research of layered rock slope still has great innovation potential. During the construction of Wudongde Hydropower Station on Jinsha River, safety and stability problems such as slope geological structure development, face rock unloading and relaxation, and even slip and large deformation were encountered. Through field exploration, it is found that the rock and soil stratification of the slope on both sides of Wudongde Hydropower Station is highly obvious. At present, there is a lack of research on-site long-term displacement monitoring of layered rock high-steep slope, especially for layered slope in complex hydrogeology and construction environment. In order to strengthen the research on the deformation and stability of layered rock slope, this paper analyzes the measured displacement data of Wudongde hydropower station slope, and establishes three-dimensional geological finite element model with the help of numerical simulation software. The stability of the slope is calculated by combining the finite difference method and the strength reduction method. Finally, the evolution mechanism of the deformation of the layered rock slope is explained according to the geological structure characteristics. The main conclusions of this paper are as follows: the layered slope in the dam reservoir area is prone to deformation under the combined action of long-term construction disturbance and fissure water seepage, and the construction disturbance has a strong influence on the artificial excavation area below 1070 m, and the maximum rock mass deformation and surface displacement in the artificial excavation area of the slope reach 92.2 mm and 312.5 mm, respectively. However, the influence of construction disturbance on the natural mountain above 1070 m is limited, the valley deformation of the natural mountain on the left bank of the reservoir area is higher than that on the right bank, and the cumulative deformation is still less than 20 mm. The influence of seepage on the displacement of the area with higher elevation at the top of the slope is more obvious, and the influence of excavation and other disturbances on the displacement of the artificial excavation area with lower elevation is more obvious. The deformation of the river valley in the water cushion pond behind the dam increases slowly, and the change trend of the field deformation data is mostly consistent with that of the numerical calculation. The horizontal shrinkage of the mountains on both sides shows a contraction trend on the whole, and the maximum horizontal shrinkage calculated by numerical simulation is close to 20 mm, which is located at the elevation of 990 m.

18.
Materials (Basel) ; 17(5)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38473662

RESUMO

In order to improve the impact resistance of sandwich panels under low-velocity impact, the lotus leaf vein is selected as a biological prototype to design a bio-inspired honeycomb (BIH) sandwich panel. ABAQUS is used to establish and effectively verify the finite element (FE) model of the BIH sandwich panel. To systematically compare and study the mechanical properties of BIH and conventional hexagonal honeycomb sandwich panels under low-velocity impact, the maximum displacement of face-sheets, the deformation mode, the plastic energy consumption and the dynamic response curve of the impact end are presented. At the same time, the performance differences between them are revealed from the perspective of an energy absorption mechanism. Furthermore, the influence of the circumscribed circle diameter ratio of the BIH trunk to branch (γ), the thickness ratio of the trunk to branch (K) and the impact angle (θ) on impact resistance is studied. Finally, the BIH sandwich panel is further optimized by using the response surface method. It can be concluded that, compared to conventional hexagonal honeycomb sandwich panels, the addition of walls in the BIH sandwich panel reduces the maximum deformation of the rear face-sheet by 10.29% and increases plastic energy consumption by 8.02%. Properly adjusting the structural parameters can effectively enhance the impact resistance of the BIH sandwich panel.

19.
J Dent Res ; 103(4): 378-387, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38372132

RESUMO

Quantitative analysis of irregular anatomical structures is crucial in oral medicine, but clinicians often typically measure only several representative indicators within the structure as references. Deep learning semantic segmentation offers the potential for entire quantitative analysis. However, challenges persist, including segmentation difficulties due to unclear boundaries and acquiring measurement landmarks for clinical needs in entire quantitative analysis. Taking the palatal alveolar bone as an example, we proposed an artificial intelligence measurement tool for the entire quantitative analysis of irregular dental structures. To expand the applicability, we have included lightweight networks with fewer parameters and lower computational demands. Our approach finally used the lightweight model LU-Net, addressing segmentation challenges caused by unclear boundaries through a compensation module. Additional enamel segmentation was conducted to establish a measurement coordinate system. Ultimately, we presented the entire quantitative information within the structure in a manner that meets clinical needs. The tool achieved excellent segmentation results, manifested by high Dice coefficients (0.934 and 0.949), intersection over union (0.888 and 0.907), and area under the curve (0.943 and 0.949) for palatal alveolar bone and enamel in the test set. In subsequent measurements, the tool visualizes the quantitative information within the target structure by scatter plots. When comparing the measurements against representative indicators, the tool's measurement results show no statistically significant difference from the ground truth, with small mean absolute error, root mean squared error, and errors interval. Bland-Altman plots and intraclass correlation coefficients indicate the satisfactory agreement compared with manual measurements. We proposed a novel intelligent approach to address the entire quantitative analysis of irregular image structures in the clinical setting. This contributes to enabling clinicians to swiftly and comprehensively grasp structural features, facilitating the design of more personalized treatment plans for different patients, enhancing clinical efficiency and treatment success rates in turn.


Assuntos
Inteligência Artificial , Medicina Bucal , Humanos , Esmalte Dentário , Processamento de Imagem Assistida por Computador
20.
Heliyon ; 10(4): e26045, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38390087

RESUMO

When employing the open stope mining method for extracting materials in underground mines, it is necessary for personnel and equipment to operate within a specified range of the goaf area, thus, adoption of appropriate mining parameters in the mining field is crucial for promoting safe production practices. In this study, the Harazi iron mine is taken as the research subject, with theoretical analysis combined with numerical simulation that enables the authors to simulate and analyze the width parameter of the mining field. Theoretical analysis utilizing the Matthew stability chart method confirms that the width of the mining field in Harazi iron mine should not exceed 9 m. Based on this finding, the mechanical response characteristics accompanying the mining process at different widths within the mining field limits are analyzed via the Flac3D numerical analysis software. As a result of this analysis, the optimal width of the mining field in Harazi iron mine is determined to be 8 m. The method utilized in this article provides a rational approach to determining structural parameters of the mining field and can effectively aid in promoting mine safety practices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...